Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3


 Howard Bryce Caldwell
 2 years ago
 Views:
Transcription
1
2 Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind?
3 experiment: choose 5 cards at random from a standard deck Ω = {5combinations of 52 cards} m(ω) = ( 1 for all ω Ω 52 5 )
4 E = {outcomes in Ω with three of a kind} P(E) = ω E m(ω) =(number of outcomes in E) 1 ( 52 5 )
5 Task: Create a hand with three of a kind. Stage 1: Choose the denomination (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, or K) for the three of a kind. Stage 2: Choose 3 cards from the selected denomination. Stage 3: Choose the denominations for the remaining 2 cards. Stage 4. Choose one card from the smaller denomination. Stage 5. Choose one card from the larger denomination. n 1 = 13, n 2 = ( ) 4 3, n3 = ( ) 12 2, n4 = 4, n 5 = 4
6 The number of ways to complete the task is: N = 13 ( 4 3) ( 12 2 ) 4 4 = 54, 912. The number of outcomes in E is the number N of ways to complete the task. P(E) = N ( ) = 54,912 2,598, % chance
7 F = {outcomes in Ω with two pairs} P(F) = ω F m(ω) =(number of outcomes in F) 1 ( 52 5 )
8 Task: Create a hand with two pairs. Stage 1: Choose two denominations (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, or K) for the pairs. Stage 2: Choose 2 cards from the smaller denomination. Stage 3: Choose 2 cards from the larger denomination. Stage 4. Choose one card with a denomination different from those selected for the pairs. n 1 = ( ) 13 2, n2 = ( ) 4 2, n3 = ( 4 2), n4 = 44
9 The number of ways to complete the task is: N = ( 13 2 ) ( 4 2) ( 4 2) 44 = 123, 552. The number of outcomes in F is the number N of ways to complete the task. P(F) = N ( ) = 123,552 2,598, % chance
10 Your are more likely to be dealt two pairs (4.75% chance) than three of a kind (2.11% chance).
11 Problem B: You decide to play Roulette. Are you more likely to win at least once in 10 bets on a column or in 5 bets on red?
12 SubProblems: (1) one bet on a column (2) ten bets on a column (3) one bet on red (4) five bets on red
13 (1) one bet on a column experiment: spin a Roulette wheel one time Ω = {0, 00, 1, 2, 3,..., 36} E: win a bet on a column m(ω) = 1 38 for all ω Ω P(E) = ω E m(ω) = (number of outcomes in E) 1 38 = 12 38
14 (2) ten bets on a column Bernoulli trials process n = 10 experiment: one bet on a column success: win failure: lose p = 12 38, q = X = number of successes
15 P(X 1) = 1 P(X = 0) = 1 b ( 10, 12 38, 0) = 1 ( 10 0 ) ( ( ) % ) 0 ( 26 ) 10 38
16 (3) one bet on red experiment: spin a Roulette wheel one time Ω = {0, 00, 1, 2, 3,..., 36} F : win a bet on red m(ω) = 1 38 for all ω Ω P(F) = m(ω) = (number of outcomes in F) 1 38 = ω F
17 (4) five bets on red Bernoulli trials process n = 5 experiment: one bet on red success: win failure: lose p = 18 38, q = X = number of successes
18 P(X 1) = 1 P(X = 0) = 1 b ( 10, 18 38, 0) = 1 ( 10 0 ) ( ( ) % ) 0 ( 20 ) 10 38
19 You are slightly more likely to win at least once in 10 bets on a column (97.6% chance) than you are to win at least once in 5 bets on red (95.7% chance).
20 Problem C: You conduct the following experiment in our class of 25 students: Everyone privately flips their own coin. If it lands heads, they answer yes to the question you give them. If it lands tails, they answer the question truthfully. The question is, Have you ever cheated on an exam in college? How many yes answers out of 25 would convince you that there are cheaters in the class?
21 Set this experiment up as a hypothesis test using Example 3.11 as a model. null hypothesis: there are no cheaters in the class alternative hypothesis: there are some cheaters in the class p = probability of a yes response null hypothesis: p = 1 2 alternative hypothesis: p > 1 2
22 n = 25 people answer the question X = number of yes responses m = critical value We reject the null hypothesis if X m, and accept it if X < m. We choose m so that P(X m) < 0.05 under the assumption that the null hypothesis is true. In other words, we give students the benefit of the doubt, and assume there are no cheaters in the class. We reject this assumption only if the evidence is strong enough.
23 (P m) = = = 25 k=m 25 k=m 25 k=m b ( 25, 1 2, k) ( 25 k ( 25 k ) ( 1 2 ) ( 1 2 ) k ( ) 1 (25 k) 2 ) 25
24 The Mathematica output below suggests we choose m = Table m, N Binomial 25, k 1 2 k m 25, m, 13, 25 13, 0.5, 14, , 15, , 16, , 17, , 18, , 19, , 20, , 21, , 22, , 23, , 24, , 25, or more yes answers would convince us there are cheaters in the class.
25
AP Statistics 7!3! 6!
Lesson 64 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
More informationMath 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
More informationSection 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationStatistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
More informationCh. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
More informationThe overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
More informationChapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
More informationIntroductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationStatistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
More informationExpected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
More informationHONORS STATISTICS. Mrs. Garrett Block 2 & 3
HONORS STATISTICS Mrs. Garrett Block 2 & 3 Tuesday December 4, 2012 1 Daily Agenda 1. Welcome to class 2. Please find folder and take your seat. 3. Review OTL C7#1 4. Notes and practice 7.2 day 1 5. Folders
More informationSecond Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
More informationSTAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
More informationThe Casino Lab STATION 1: CRAPS
The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will
More informationECE 316 Probability Theory and Random Processes
ECE 316 Probability Theory and Random Processes Chapter 4 Solutions (Part 2) Xinxin Fan Problems 20. A gambling book recommends the following winning strategy for the game of roulette. It recommends that
More informationChapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics
Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3
More informationSlide 1 Math 1520, Lecture 23. This lecture covers mean, median, mode, odds, and expected value.
Slide 1 Math 1520, Lecture 23 This lecture covers mean, median, mode, odds, and expected value. Slide 2 Mean, Median and Mode Mean, Median and mode are 3 concepts used to get a sense of the central tendencies
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More informationSection 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More information3.2 Roulette and Markov Chains
238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.
More informationStatistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large
More informationChapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More informationCS170 Lab 11 Abstract Data Types & Objects
CS170 Lab 11 Abstract Data Types & Objects Introduction: Abstract Data Type (ADT) An abstract data type is commonly known as a class of objects An abstract data type in a program is used to represent (the
More informationIn the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
More informationSTA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science
STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science Mondays 2:10 4:00 (GB 220) and Wednesdays 2:10 4:00 (various) Jeffrey Rosenthal Professor of Statistics, University of Toronto
More informationNONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of pvalues classical significance testing depend on assumptions
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationRules of core casino games in Great Britain
Rules of core casino games in Great Britain June 2011 Contents 1 Introduction 3 2 American Roulette 4 3 Blackjack 5 4 Punto Banco 7 5 Three Card Poker 9 6 Dice/Craps 11 2 1 Introduction 1.1 This document
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationMath 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More information36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
More informationIntroduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang
Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More informationDiscrete Math in Computer Science Homework 7 Solutions (Max Points: 80)
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you
More informationThe Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
More informationChapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
More informationFinal Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
More informationSampling Distribution of the Mean & Hypothesis Testing
Sampling Distribution of the Mean & Hypothesis Testing Let s first review what we know about sampling distributions of the mean (Central Limit Theorem): 1. The mean of the sampling distribution will be
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More information13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
More informationElementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
More informationREPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
More informationSection 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationProbability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
More information26 Applications of Probability
26 Applications of Probability The Binomial Distribution The binomial distribution is as important as any distribution in probability. It is quite simply the description of the outcome of throwing a coin
More informationElementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
More informationYou can place bets on the Roulette table until the dealer announces, No more bets.
Roulette Roulette is one of the oldest and most famous casino games. Every Roulette table has its own set of distinctive chips that can only be used at that particular table. These chips are purchased
More informationLaw of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev
Law of Large Numbers Alexandra Barbato and Craig O Connell Honors 391A Mathematical Gems Jenia Tevelev Jacob Bernoulli Life of Jacob Bernoulli Born into a family of important citizens in Basel, Switzerland
More informationProbability QUESTIONS Principles of Math 12  Probability Practice Exam 1 www.math12.com
Probability QUESTIONS Principles of Math  Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More informationStandard 12: The student will explain and evaluate the financial impact and consequences of gambling.
STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every
More informationROULETTE. APEX gaming technology 20140407
ROULETTE APEX gaming technology 20140407 Version History Version Date Author(s) Changes 1.0 20140217 AG First draft 1.1 20140407 AG New Infoscreens List of Authors Andreas Grabner ii 1 Introduction
More informationChapter 26: Tests of Significance
Chapter 26: Tests of Significance Procedure: 1. State the null and alternative in words and in terms of a box model. 2. Find the test statistic: z = observed EV. SE 3. Calculate the Pvalue: The area under
More informationRoulette Best Winning System!!!
Roulette Best Winning System!!! 99.7% winning system  100% risk free Guaranteed The roulette system detailed here is a well known winning system. Many people have made money out of this system, including
More informationVISUAL GUIDE to. RX Scripting. for Roulette Xtreme  System Designer 2.0
VISUAL GUIDE to RX Scripting for Roulette Xtreme  System Designer 2.0 UX Software  2009 TABLE OF CONTENTS INTRODUCTION... ii What is this book about?... iii How to use this book... iii Time to start...
More informationThe game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors.
LIVE ROULETTE The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors. The ball stops on one of these sectors. The aim of roulette is to predict
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More information2. Discrete random variables
2. Discrete random variables Statistics and probability: 21 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be
More informationPROBABILITY C A S I N O L A B
A P S T A T S A Fabulous PROBABILITY C A S I N O L A B AP Statistics Casino Lab 1 AP STATISTICS CASINO LAB: INSTRUCTIONS The purpose of this lab is to allow you to explore the rules of probability in the
More informationAP: LAB 8: THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationUnit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)
Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Logistic regression generalizes methods for 2way tables Adds capability studying several predictors, but Limited to
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More informationPermutation & NonParametric Tests
Permutation & NonParametric Tests Statistical tests Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?) Form a test statistic for which large values indicate
More informationElementary Statistics
lementary Statistics Chap10 Dr. Ghamsary Page 1 lementary Statistics M. Ghamsary, Ph.D. Chapter 10 Chisquare Test for Goodness of fit and Contingency tables lementary Statistics Chap10 Dr. Ghamsary Page
More informationMidterm Exam #1 Instructions:
Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The
More informationDetermine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
More informationWorksheet for Teaching Module Probability (Lesson 1)
Worksheet for Teaching Module Probability (Lesson 1) Topic: Basic Concepts and Definitions Equipment needed for each student 1 computer with internet connection Introduction In the regular lectures in
More informationExample: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
More informationDiscrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22
CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More informationBasic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
More informationWe rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is
Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 136, and there are two compartments labeled 0 and 00. Half of the compartments numbered 136
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationUsing Retrocausal Practice Effects to Predict OnLine Roulette Spins. Michael S. Franklin & Jonathan Schooler UCSB, Department of Psychology.
Using Retrocausal Practice Effects to Predict OnLine Roulette Spins Michael S. Franklin & Jonathan Schooler UCSB, Department of Psychology Summary Modern physics suggest that time may be symmetric, thus
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationExam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationUnit 4 The Bernoulli and Binomial Distributions
PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population
More informationM 1313 Review Test 4 1
M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)
More informationBinomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STATUB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationProbability OPRE 6301
Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More informationBinomial random variables
Binomial and Poisson Random Variables Solutions STATUB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
More informationHypothesis Testing. Learning Objectives. After completing this module, the student will be able to
Hypothesis Testing Learning Objectives After completing this module, the student will be able to carry out a statistical test of significance calculate the acceptance and rejection region calculate and
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationContemporary Mathematics Online Math 1030 Sample Exam I Chapters 1214 No Time Limit No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 1214 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the lefthand margin. You
More informationChapter 13 & 14  Probability PART
Chapter 13 & 14  Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14  Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph
More informationGaming the Law of Large Numbers
Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.
More informationMATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
More information