# 36 Odds, Expected Value, and Conditional Probability

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face 1 then he wins the game, otherwise he loses. The probability of winning is 1 whereas the probability of losing is 5. The odds of winning is 1:5(read to 5). This expression means that the probability of losing is five times the probability of winning. Thus, probabilities describe the frequency of a favorable result in relation to all possible outcomes whereas the odds in favor compare the favorable outcomes to the unfavorable outcomes. More formally, odds in favor favorable outcomes unfavorable outcomes If E is the event of all favorable outcomes then its complementary, E, is the event of unfavorable outcomes. Hence, odds in favor Also, we define the odds against an event as odds against unfavorable outcomes favorable outcomes Any probability can be converted to odds, and any odds can be converted to a probability. Converting Odds to Probability Suppose that the odds for an event E is a:b. Thus, ak and bk where k is a positive integer. Since E and E are complementary then 1

2 n(s) +. Therefore, P (E) n(s) + ak ak+bk a a+b P (E) n(s) + bk ak+bk b a+b Example 36.1 If the odds in favor of an event E is 5 to 4, compute P (E) and P (E). Solution. We have P (E) and P (E) Converting Probability to Odds Given P (E), we want to find the odds in favor of E and the odds against E. The odds in favor of E are n(s) n(s) P (E) P (E) P (E) 1 P (E) and the odds against E are 1 P (E) P (E) 2

3 Example 36.2 For each of the following, find the odds in favor of the event s occurring: (a) Rolling a number less than 5 on a die. (b) Tossing heads on a fair coin. (c) Drawing an ace from an ordinary 52-card deck. Solution. (a) The probability of rolling a number less than 5 is 4 6 and that of rolling 5 or 6 is 2. Thus, the odds in favor of rolling a number less than 5 is or 2:1 (b) ( Since P (H) 1 and P (T ) 1 then the odds in favor of getting heads is ) ( 2 1 ) 2 or 1:1 (c) We have P(ace) 4 48 and P(not an ace) drawing an ace is ( ) ( ) 52 1 or 1:12 12 so that the odds in favor of Remark 36.1 A probability such as P (E) 5 is just a ratio. The exact number of favorable 6 outcomes and the exact total of all outcomes are not necessarily known. Practice Problems Problem 36.1 If the probability of a boy s being born is 1, and a family plans to have four 2 children, what are the odds against having all boys? Problem 36.2 If the odds against Deborah s winning first prize in a chess tournament are 3 to 5, what is the probability that she will win first prize? Problem 36.3 What are the odds in favor of getting at least two heads if a fair coin is tossed three times? Problem 36.4 If the probability of rain for the day is 60%, what are the odds against its raining? 3

4 Problem 36.5 On a tote board at a race track, the odds for Gameylegs are listed as 26:1. Tote boards list the odds that the horse will lose the race. If this is the case, what is the probability of Gameylegs s winning the race? Problem 36.6 If a die is tossed, what are the odds in favor of the following events? (a) Getting a 4 (b) Getting a prime (c) Getting a number greater than 0 (d) Getting a number greater than 6. Problem 36.7 Find the odds against E if P (E) 3 4. Problem 36.8 Find P(E) in each case. (a) The odds in favor of E are 3:4 (b) The odds against E are 7:3 Expected Value A cube has three red faces, two green faces, and one blue face. A game consists of rolling the cube twice. You pay \$ 2 to play. If both faces are the same color, you are paid \$ 5(that is you win \$3). If not, you lose the \$2 it costs to play. Will you win money in the long run? Let W denote the event that you win. Then W {RR, GG, BB} and P (W ) P (RR) + P (GG) + P (BB) %. Thus, P (L) 11 61%. Hence, if you play the game 18 times you expect 18 to win 7 times and lose 11 times on average. So your winnings in dollars will be That is, you can expect to lose \$1 if you play the game 18 times. On the average, you will lose 1 per game (about 6 cents). 18 This can be found also using the equation

5 We call this number the expected value. More formally, let the outcomes of an experiment be a sequence of real numbers n 1, n 2,, n k, and suppose that the outcomes occur with respective probabilities p 1, p 2,, p k. Then the expected value of the experiment is E n 1 p 1 + n 2 p n k p k. Example 36.3 Suppose that an insurance company has broken down yearly automobile claims for drivers from age 16 through 21 as shown in the following table. Amount of claim Probability , , , , , How much should the company charge as its average premium in order to break even on costs for claims? Solution. Finding the expected value E 0(0.80)+2, 000(0.10)+4, 000(0.05)+6, 000(0.03)+8, 000(0.01)+10, 000(0.01) 760 Since average claim value is \$760, the average automobile insurance premium should be set at \$760 per year for the insurance company to break even Example 36.4 An American roulette wheel has 38 compartments around its rim. Two of these are colored green and are numbered 0 and 00. The remaining compartments are numbered 1 through 36 and are alternately colored black and red. When the wheel is spun in one direction, a small ivory ball is rolled in the opposite direction around the rim. When the wheel and the ball slow down, the ball eventually falls in any one compartments with equal likelyhood if the wheel is fair. One way to play is to bet on whether the ball will fall in a red slot or a black slot. If you bet on red for example, you win the amount of the bet if the ball lands in a red slot; otherwise you lose. What is the expected win if you consistently bet \$5 on red? 5

6 Solution. The probability of winning is and that of losing is. Your expected win is On average you should expect to lose 26 cents per play Practice Problems Problem 36.9 Compute the expected value of the score when rolling two dice. Problem A game consists of rolling two dice. You win the amounts shown for rolling the score shown. Score \$ won Compute the expected value of the game. Problem Consider the spinner in Figure 36.1, with the payoff in each sector of the circle. Should the owner of this spinner expect to make money over an extended period of time if the charge is \$2.00 per spin? Figure 36.1 Problem You play a game in which two dice are rolled. If a sum of 7 appears, you win \$10; otherwise, you lose \$2.00. If you intend to play this game for a long time, should you expect to make money, lose money, or come out about even? Explain. 6

7 Problem Suppose it costs \$8 to roll a pair of dice. You get paid the sum of the numbers in dollars that appear on the dice. What is the expected value of this game? Problem An insurance company will insure your dorm room against theft for a semester. Suppose the value of your possessions is \$800. The probability of your being 1 robbed of \$400 worth of goods during a semester is, and the probability of your being robbed of \$800 worth of goods is. Assume that these are 400 the only possible kinds of robberies. How much should the insurance company charge people like you to cover the money they pay out and to make an additional \$20 profit per person on the average? Problem Consider a lottery game in which 7 out of 10 people lose, 1 out of 10 wins \$50, and 2 out of 10 wins \$35. If you played 10 times, about how much would you expect to win? Problem Suppose a lottery game allows you to select a 2-digit number. Each digit may be either 1, 2, 3, 4, or 5. If you pick the winning number, you win \$10. Otherwise, you win nothing. What is the expected payoff? Conditional Probability and Independent Events When the sample space of an experiment is affected by additional information, the new sample space is reduced in size. For example, suppose we toss a fair coin three times and consider the following events: A : getting a tail on the first toss B : getting a tail on all three tosses Since S {HHH, HHT, HT H, HT T, T HH, T HT, T T H, T T T } then P (A) 4 1 and P (B) 1. What if we were told that event A has occurred (that is, a tail occurred on the first toss), and we are now asked to find P (B). The sample space is now reduced to {T HH, T HT, T T H, T T T }. The probability that all three are tails given that the first toss is a tail is

8 The notation we use for this situation is P (B A), read the probability of B given A, and we write P (B A) 1. Notice that 4 P (B A) P (A B). P (A) This is true in general, and we have the following: Given two events A and B belonging to the same sample S. The conditional probability P (B A) denotes the probability that event B will occur given that event A has occurred. It is given by the formula P (B A) P (A B). P (A) Example 36.5 Consider the experiment of tossing a fair die. Denote by A and B the following events: A {Observing an even number of dots on the upper face of the die}, B {Observing a number of dots less than or equal to 3 on the upper face of the die}. Find the probability of the event A, given the event B. Solution. Since A {2, 4, 6} and B {1, 2, 3} then A B {2} and therefore P (A B) If P (B A) P (B), i.e., the occurrence of the event A does not affect the probability of the event B, then we say that the two events A and B are independent. In this case the above formula gives P (A B) P (A) P (B). This formula is known as the multiplication rule of probabilities. If two events are not independent, we say that they are dependent. In this case, P (B A) P (B). 8

9 Example 36.6 Consider the experiment of tossing a fair die. Denote by A and B the following events: A {Observing an even number of dots on the upper face of the die}, B {Observing a number of dots less than or equal to 4 on the upper face of the die}. Are A and B independent? Solution. Since A {2, 4, 6} and B {1, 2, 3, 4} then A B {2, 4} and therefore P (A B) Practice Problems P (A). Thus, A and B are independent. Problem Suppose that A is the event of rolling a sum of 7 with two fair dice. Make up an event B so that (a) A and B are independent. (b) A and B are dependent. Problem When tossing three fair coins, what is the probability of getting two tails given that the first coin came up heads? Problem Suppose a 20-sided die has the following numerals on its face:1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7,,8 9, 10, 11, 12, 13, 14, 15, 16. The die is rolled once and the number on the top face is recorded. Let A be the event the number is prime, and B be the event the number is odd. Find P (A B) and P (B A). Problem What is the probability of rolling a 6 on a fair die if you know that the roll is an even number? Problem A red die and a green die are rolled. What is the probability of obtaining an even number on the red die and a multiple of 3 on the green die? 9

10 Problem Two coins are tossed. What is the probability of obtaining a head on the first coin and a tail on the second coin? Problem Consider two boxes: Box 1 contains 2 white and 2 black balls, and box 2 contains 2 white balls and three black balls. What is the probability of drawing a black ball from each box? Problem A container holds three red balls and five blue balls. One ball is drawn and discarded. Then a second ball is drawn. (a) Whta is the probability that the second ball drawn is red if you drew a red ball the first time? (b) What is the probability of drawing a blue ball second if the first ball was red? (c) What is the probability of drawing a blue ball second if the first ball was blue? Problem Consider the following events. A: rain tomorrow B: You carry an umbrella C: coin flipped tomorrow lands on heads Which of two events are dependent and which are independent? Problem You roll a regular red die and a regular green die. Consider the following events. A: a 4 on the red die B: a 3 on the green die C: a sum of 9 on the two dice Tell whether each pair of events is independent or dependent. (a) A and B (b) B and C 10

### Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

### V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay \$ to play. A penny and a nickel are flipped. You win \$ if either

### Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

### Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

### Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

### Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

### Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

### MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

### Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum

### Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19

Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery

### In the situations that we will encounter, we may generally calculate the probability of an event

What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

### Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

### Slide 1 Math 1520, Lecture 23. This lecture covers mean, median, mode, odds, and expected value.

Slide 1 Math 1520, Lecture 23 This lecture covers mean, median, mode, odds, and expected value. Slide 2 Mean, Median and Mode Mean, Median and mode are 3 concepts used to get a sense of the central tendencies

### Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

### Probability and Expected Value

Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

### AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

### The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

### Probabilistic Strategies: Solutions

Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

### PROBABILITY 14.3. section. The Probability of an Event

4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### Statistics 100A Homework 3 Solutions

Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win \$ for each black ball selected and we

### Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space

### Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS

Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,

### Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

### Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

### Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Formula for Theoretical Probability

Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out

### Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

### Section 6-5 Sample Spaces and Probability

492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

### Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics

Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3

### Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

### Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

### Responsible Gambling Education Unit: Mathematics A & B

The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:

### Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

### Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

### Chapter 16: law of averages

Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

### Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

### Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

### Week 2: Conditional Probability and Bayes formula

Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question

### Basic Probability Theory II

RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

### We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is

Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36

### 3.2 Roulette and Markov Chains

238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

### Chapter 4 Probability

The Big Picture of Statistics Chapter 4 Probability Section 4-2: Fundamentals Section 4-3: Addition Rule Sections 4-4, 4-5: Multiplication Rule Section 4-7: Counting (next time) 2 What is probability?

### 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

### The Casino Lab STATION 1: CRAPS

The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will

### Expected Value and the Game of Craps

Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

### 14.4. Expected Value Objectives. Expected Value

. Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers

### PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA

PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet

### Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.

Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

### Economics 1011a: Intermediate Microeconomics

Lecture 12: More Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 12: More on Uncertainty Thursday, October 23, 2008 Last class we introduced choice under uncertainty. Today we will explore

### 13.0 Central Limit Theorem

13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated

### AP Statistics 7!3! 6!

Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

### Practical Probability:

Practical Probability: Casino Odds and Sucker Bets Tom Davis tomrdavis@earthlink.net April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet

### Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

### Session 8 Probability

Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

### 6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

You are about to learn the very best method there is to beat an even-money bet ever devised. This works on almost any game that pays you an equal amount of your wager every time you win. Casino games are

### PROBABILITY NOTIONS. Summary. 1. Random experiment

PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non

### Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

### Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

### Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

### TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE. Topic P2: Sample Space and Assigning Probabilities

TOPIC P2: SAMPLE SPACE AND ASSIGNING PROBABILITIES SPOTLIGHT: THE CASINO GAME OF ROULETTE Roulette is one of the most popular casino games. The name roulette is derived from the French word meaning small

### Pattern matching probabilities and paradoxes A new variation on Penney s coin game

Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting

### number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

### Math 3C Homework 3 Solutions

Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

### Betting systems: how not to lose your money gambling

Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple

### Conducting Probability Experiments

CHAPTE Conducting Probability Experiments oal Compare probabilities in two experiments. ame. Place a shuffled deck of cards face down.. Turn over the top card.. If the card is an ace, you get points. A

### Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

### Probability OPRE 6301

Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.

### STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

### MAT 1000. Mathematics in Today's World

MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

### Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every

### Problem sets for BUEC 333 Part 1: Probability and Statistics

Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are back-of-chapter exercises from

### If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not

4.1 REVIEW AND PREVIEW RARE EVENT RULE FOR INFERENTIAL STATISTICS If, under a given assumption, the of a particular observed is extremely, we conclude that the is probably not. 4.2 BASIC CONCEPTS OF PROBABILITY

### Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.

374 Chapter 8 The Mathematics of Likelihood 8.3 Expected Value Find an expected value involving two events. Find an expected value involving multiple events. Use expected value to make investment decisions.

### Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

### Unit 19: Probability Models

Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

### Counting principle, permutations, combinations, probabilities

Counting Methods Counting principle, permutations, combinations, probabilities Part 1: The Fundamental Counting Principle The Fundamental Counting Principle is the idea that if we have a ways of doing

### Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

### Second Midterm Exam (MATH1070 Spring 2012)

Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems

### STRIKE FORCE ROULETTE

STRIKE FORCE ROULETTE Cycles, cycles, cycles... You cannot get away from them in the game of Roulette. Red, black, red, black... Red, red, red, red. Black, black, black... Red, red, black, black... 1st

### The New Mexico Lottery

The New Mexico Lottery 26 February 2014 Lotteries 26 February 2014 1/27 Today we will discuss the various New Mexico Lottery games and look at odds of winning and the expected value of playing the various

### Probability and Counting Rules

blu3496x_ch04.qxd 7/6/06 0:49 AM Page 77 B&W CONFIRMINGS C H A P T E R 4 Probability and Counting Rules Objectives Outline After completing this chapter, you should be able to 4 Determine sample spaces

### Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

### MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

### calculating probabilities

4 calculating probabilities Taking Chances What s the probability he s remembered I m allergic to non-precious metals? Life is full of uncertainty. Sometimes it can be impossible to say what will happen

### Basic Probability Theory I

A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population

### Stat 134 Fall 2011: Gambler s ruin

Stat 134 Fall 2011: Gambler s ruin Michael Lugo Setember 12, 2011 In class today I talked about the roblem of gambler s ruin but there wasn t enough time to do it roerly. I fear I may have confused some

### Expected Value and Variance

Chapter 6 Expected Value and Variance 6.1 Expected Value of Discrete Random Variables When a large collection of numbers is assembled, as in a census, we are usually interested not in the individual numbers,

### Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

### Rules of core casino games in Great Britain

Rules of core casino games in Great Britain June 2011 Contents 1 Introduction 3 2 American Roulette 4 3 Blackjack 5 4 Punto Banco 7 5 Three Card Poker 9 6 Dice/Craps 11 2 1 Introduction 1.1 This document

### Probability and Counting

Probability and Counting Basic Counting Principles Permutations and Combinations Sample Spaces, Events, Probability Union, Intersection, Complements; Odds Conditional Probability, Independence Bayes Formula

### Chapter 14 From Randomness to Probability

226 Part IV Randomness and Probability Chapter 14 From Randomness to Probability 1. Roulette. If a roulette wheel is to be considered truly random, then each outcome is equally likely to occur, and knowing

### Expected Value and Variance

Chapter 6 Expected Value and Variance 6.1 Expected Value of Discrete Random Variables When a large collection of numbers is assembled, as in a census, we are usually interested not in the individual numbers,