# THERMODYNAMICS -study of energy transformations

Size: px
Start display at page:

## Transcription

1 THERMODYNAMICS -study of energy transformations Chemical reactions involve not just the conversion of reactants involve products, but also involve an energy change- heat. Energy changes accompany all chemical reactions and are due to rearranging of chemical bonding. The energy of chemical bonding (a form of potential energy) should be considered in terms of breaking existing bonds and forming new bonds. Often, the outcome of an exothermic reaction is a decrease in internal energy, while the outcome of an endothermic reaction is an increase in internal energy. Question: What can happen to a system in which an internal energy change is occurring? Answer: The system can undergo a change in temperature, a phase change can occur, or a chemical reaction can be initiated. Heat, Work, and Energy: 1st Law of Thermodynamics = Law of Conservation of Energy In a chemical system, the energy exchanged between a system and its surroundings can be accounted for by heat (q) and work (w). ΔE = q + w Process Work done by the system on the surroundings - Work done on the system by the surroundings + Heat absorbed by the system from the surroundings (endothermic) Heat absorbed by the surroundings from the system (exothermic) Signs + - The expansion/contraction of a gas against external pressure: w= -PΔV P units would be J/L.atm *If there is no change in the total volume of gas before/after a reaction occurs, there is no significant work done by or on the system. Chemicals react at a constant external pressure (often 1 atm). Enthalpy can be considered to be energy with work taken out. Of course, Delta H will represent the exchange of heat between a system and its surroundings at constant external pressure. ΔH = ΔE + PΔV ex. A gas absorbs 28.5 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is: Answer?

2 Constant Conditions: Here's a list of how the first law behaves when various conditions are held constant. Under conditions of constant volume ΔV = 0. Since Since W = 0 and ΔE = q. When there is no heat flow, q=0 and ΔE = -w. When the temperature of a gaseous system is constant, ΔE = 0 and q=w. Recall that the internal energy is directly proportional to its temperature. When the external pressure remains unchanged, q is referred to as the change in enthalpy. Under these conditions the 1st law may be written as ΔE = ΔH - P ΔV. In a chemical reaction in which the # of moles of gas is constant, ΔV=0, and ΔE = ΔH. question -----> In which of the following reactions will the value for ΔE be greater than that of ΔH? A) CaCN 2 (s) + 3 H 2 O(l) -----> CaCO 3 (s) + 2 NH 3 (g) B) 3 H 2 (g) + N 2 (g) ---> 2 NH 3 (g) C) UO 2 (s) + 4 HF(l) -----> UF 4 (s) + 2 H 2 O(l) D) H 2(g) + I 2 (g) -----> 2HI (g) answer ----> ΔE = ΔH - P ΔV is clear that if the value of work PΔV is negative, ΔE will be greater than ΔE = ΔH. For any rxn that consumes more moles of gas than it produces the value of ΔV will be negative. B is the choice. (produces 2 moles of gas while consuming 4 moles of gas. The final V is less than its initial volume. It results in -W and a value for ΔE > ΔH. ENTHALPY A state function used to describe the heat changes that occur in a reaction under constant pressure. When a reaction is allowed to take place in an open container a quantity of heat proportional to the quantity of matter present, will be released or absorbed. Hess's Law This law states that the enthalpies of reactions may be added when these reactions are added. Substances appearing on the same side are added, while those on opposite sides are subtracted. Some reactions will need to be reversed and multiplied through by a by number, so that when they are combined the desired equation will result. question ----> Find the enthalpy of the equation: C 2 H 2(g) + 5/2O 2 (g) ----> 2 CO 2 (g) + H 2 O (l) given the following information; (1) 2 C (graphite) + H 2 (g) -----> C 2 H 2(g) ΔH = kJ (2) C( graphite) + O 2 (g) ----> CO 2 (g) ΔH = kj (3) H 2 (g) + 1/2 O 2 (g) -----> H 2 O(l) ΔH = kj answer ---> Since C2H2(g) appears only in equation (1) it is necessary to reverse equation 1 so that the C2H2 appears on the left hand side to correspond to the desired equation. Since CO2(g) appears only in equation (2), it is necessary to multiply equation (2) by 2, so that 2 CO2's will appear on the right hand side.

3 Since H2O(l) appears only in equation (3), there is no need to alter this equation since one H20 appears on the right hand side of equation (3) and this is exactly what is required in the desired equation. C 2 H 2(g) > 2 C (graphite) + H 2 (g) ΔH = kj 2C( graphite) + 2O 2 (g) ----> 2CO 2 (g) ΔH = kj H 2 (g) + 1/2 O 2 (g) -----> H 2 O(l) ΔH = kj C 2 H 2(g) + 5/2O 2 (g) ----> 2 CO 2 (g) + H 2 O (l) ΔH rxn = kj What is the difference between the Standard Heat of Formation and Standard Heat of Reaction? The enthalpy change which occurs when 1 mole of a compound is produced from its elements in their standard heat of formation. When all substances in a chemical reaction are in their standard states, the enthalpy change is called the standard heat of reaction. Bond Dissociation Energy The change in enthalpy required to break a bond is called the bond dissociation energy ( or bond energy). When bonds are broken energy is absorbed. When bonds are formed energy is released. Here's the equation for the bond dissociation of hydrogen: H 2 (g) -----> 2H(g) ΔH =+435 kj *The larger the bond energy, the greater the bond's strength and the shorter the bond's length. The ΔH rxn can be determined by : ΔH rxn = [Σ bond E. (reactants)] - [Σ bond E. (products)] question > C 2 H 2(g) + 5/2O 2 (g) ----> 2 CO 2 (g) + H 2 O (l) C-C H-C H-O C=O C=C C=C O=O solution > 1. Work out the structural formulas to ID the # and types of bonds: H-C=C-H + 5/2 O=O -----> 2 O=C=O + H-O-H 2. ΔH = [2 (H-C) + 1 (C=C)+ 5/2 O=O] - 4 [(O=C) + 2 (H-O) 3. ΔH = [2(414) + 1(837) + 5/2 (498)] - [4(803) + 2(464)] = -1230kJ *This method is less accurate than the previous method due to bond energies taken are usually averages. ENTROPY It is a quantitative measure of the disorder or randomness of a system. The greater the number of ways that matter can be arranged, the great entropy. Hints: Entropy increases with temperature S<L<G for entropy When the number of moles of gas increase the entropy will increase When pure substances form mixtures, entropy will increase

4 ΔS 0 rxn = [Σ S 0 (products))] - [Σ S 0 (reactants)] Units are: J/K or J/K.mol 2nd Law of Thermodynamics; Any reactions that tends to proceed forward to form products is said to be spontaneous. The total change of entropy will be positive. ΔS(universe) = ΔS system + ΔS surroundings > 0 *All isolated systems spontaneously tend toward equilibrium. Once a system reaches equilibrium it achieves a maximum state of entropy. GIBBS FREE ENERGY G is a measure of energy available to the system to do useful work. The difference in free energy between the products and the reactants is the free energy change ΔG. It determines the direction of a reaction. However, it is activation energy which determines its rate. ΔG = - (reaction is spontaneous) ΔG = + (reaction is nonspontaneous) ΔG = 0 (reaction is equilibrium) In general, nature likes to move toward two different and contradictory states - low energy and high disorder, so spontaneous processes must result in decreasing enthalpy or increasing entropy or both. ΔG = ΔH - TΔS Goose Hunters Take Shotguns OR Gators Hate the Seminoles T=must be in K units for energy (ΔH & ΔS) = must be same units ΔH ΔS T ΔG - + low - always spontaneous high low + never spontaneous high low + not spontaneous (low T) high - spontaneous (high T) - - low - spontaneous (low T) high + not spontaneous (high T) Note: Since boiling and freezing are equilibrium processes ΔG =0. Setting ΔG =0 and solving for temperature in ΔG = ΔH - TΔS gives: normal BP = ΔH 0 vap ΔS 0 vap normal FP = ΔH 0 fus ΔS 0 fus

5 *The standard free energy change, ΔG 0 is defined as the change in free energy which results when all reactants and products are in their standard states and all solutions are at 1 M concentration. ΔG 0 rxn = [Σ G 0 (products))] - [ΣG 0 (reactants)] Another way to find ΔG 0 is from K (equ constant); Gases are at 1 atm and the reaction quotient (Q) will be equal to one. If values of K are > 1 will be spontaneous under standard conditions. ΔG 0 = -2.3 RT log K If K<1, ΔG 0 > 0 If K = 1, ΔG 0 =0 If K>1, ΔG 0 <1 The rxn will proceed toward the rxts and is nonspontaneous The rxn is already at equilibrium The rxn will proceed toward the products and is spontaneous To solve for the free energy change under nonstandard condition, you may use the equation below: ΔG = ΔG RT log Q Recall that for the reaction, aa + bb -----> cc + dd Q = [C] c [D] d [A] a [B] b Note = The units of concentration of gases should be in atm and aq solutions are in M. Pure solids and liquids do not appear in either Q or K. Third Law of Thermodynamics- The entropy of a pure perfect crystal at the absolute zero of temperature is 0.

### Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course?

Chapter 20 p. 811 842 Spontaneous process: Ex. Nonspontaneous process: Ex. Spontaneity What have we learned about spontaneity during this course? 1) Q vs. K? 2) So.. Spontaneous process occurs when a system

### The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

### AP Practice Questions

1) AP Practice Questions The tables above contain information for determining thermodynamic properties of the reaction below. C 2 H 5 Cl(g) + Cl 2 (g) C 2 H 4 Cl 2 (g) + HCl(g) (a) Calculate ΔH for

### Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

### AP CHEMISTRY 2008 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2008 SCORING GUIDELINES (Form B) Question 6 Use principles of thermodynamics to answer the following questions. (a) The gas N 2 O 4 decomposes to form the gas NO 2 according to the equation

### Spontaneity of a Chemical Reaction

Spontaneity of a Chemical Reaction We have learned that entropy is used to quantify the extent of disorder resulting from the dispersal of matter in a system. Also; entropy, like enthalpy and internal

### Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Unit 19 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The first law of thermodynamics can be given as. A) E = q + w B) =

Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

### Enthalpy changes and calorimetry. Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation

Enthalpy changes and calorimetry Enthalpy changes in reactions Calorimetry and heat measurement Hess s Law Heats of formation Learning objectives Describe the standard state for thermodynamic functions

### Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

### Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

### Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions Write the equilibrium expression for K c for the following reactions: Solution Analyze: We are given three equations and are asked to write

### Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

### ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

### Reading. Spontaneity. Monday, January 30 CHEM 102H T. Hughbanks

Thermo Notes #3 Entropy and 2nd Law of Thermodynamics Monday, January 30 CHEM 102H T. Hughbanks Reading You should reading Chapter 7. Some of this material is quite challenging, be sure to read this material

### Principles of Reactivity: Chemical Equilibria

Principles of Reactivity: Chemical Equilibria This chapter addresses the principle of equilibrium equilibrium What can you do to reestablish equilibrium? non-equilibrium Whose principle supports this?

### Chapter 5 Thermochemistry

Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

### Energy/Reaction Coordinate Diagrams Thermodynamics, Kinetics Dr. Ron Rusay. Entropy (ΔS) A Reaction Coordinate (Energy) Diagram

A Reaction Coordinate (Energy) Diagram Energy/Reaction Coordinate Diagrams Thermodynamics, Kinetics Dr. Ron Rusay Thermodynamic Quantities ΔG o = ΔH o - TΔS o ΔG,ΔH,ΔS, ΔE are state functions ΔE = q +

### K c = [C]c [D] d [A] a [B] b. k f [NO 2 ] = k r [N 2 O 4 ] = K eq = The Concept of Equilibrium. Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Learning goals and key skills: Understand what is meant by chemical equilibrium and how it relates to reaction rates Write the equilibrium-constant expression for any reaction

### Chemical Equilibrium

Chemical Equilibrium Chapter 14 1 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions

### Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C.

Chemical system a group of molecules that can react with one another. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C Reactant(s) Product(s)

Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

### Test Review # 9. Chemistry R: Form TR9.13A

Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

### Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chemical reactions can reach a state of dynamic equilibrium. Similar to the equilibrium states reached in evaporation of a liquid in a closed container or the dissolution

### Chemical Thermodynamics

Chemical Thermodynamics David A. Katz Department of Chemistry Pima Community College Tucson, AZ 85709, USA First Law of Thermodynamics The First Law of Thermodynamics was expressed in the study of thermochemistry.

### Mr. Bracken. Multiple Choice Review: Thermochemistry

Mr. Bracken AP Chemistry Name Period Multiple Choice Review: Thermochemistry 1. If this has a negative value for a process, then the process occurs spontaneously. 2. This is a measure of how the disorder

### Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Example of Equilibrium. !A(g) + "B(g)!

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 102H T. Hughbanks Example of Equilibrium N 2 + 3H 2! 2 NH 3 Reactions can occur, in principle, in either direction.

### CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

### CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric

Name Team Name CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper

### AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

### CHEMICAL EQUILIBRIUM

Chemistry 10 Chapter 14 CHEMICAL EQUILIBRIUM Reactions that can go in both directions are called reversible reactions. These reactions seem to stop before they go to completion. When the rate of the forward

### Equilibrium Notes Ch 14:

Equilibrium Notes Ch 14: Homework: E q u i l i b r i u m P a g e 1 Read Chapter 14 Work out sample/practice exercises in the sections, Bonus Chapter 14: 23, 27, 29, 31, 39, 41, 45, 51, 57, 63, 77, 83,

### Thermodynamics and Equilibrium

Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).

### Thermochemical equations allow stoichiometric calculations.

CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

### Equilibrium. Equilibrium 1. Examples of Different Equilibria. K p H 2 + N 2 NH 3 K a HC 2 H 3 O 2 H C 2 H 3 O 2 K sp SrCrO 4 Sr CrO 4

Equilibrium 1 Equilibrium Examples of Different Equilibria K p H 2 + N 2 NH 3 K a HC 2 H 3 O 2 H + - + C 2 H 3 O 2 K sp SrCrO 4 Sr 2+ 2- + CrO 4 Equilibrium deals with: What is the balance between products

### Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual

Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual 1. Predict the sign of entropy change in the following processes a) The process of carbonating water to make a soda

### THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

### Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

### Thermodynamics. Thermodynamics 1

Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

### Consider: N 2 (g) + 3H 2 (g) 2NH 3 (g) G = -32.90 kj/mol. conc. time

5.111 Lecture Summary #19 CHEMICAL EQUILIBRIUM (Chapter 9 Section 9.0-9.9) Topics Nature of Chemical Equilibrium Meaning of K Relationship between Equilibrium Expressions External Effects on K 19.1 Chemical

### 3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

### Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Forward reaction H 2 (g) + I 2 (g) 2HI(g) Reverse reaction 2HI(g) H 2 (g) + I 2 (g) At equilibrium H 2 (g) + I 2 (g) 2HI(g) Chemical equilibrium is reached when reactants

### Thermodynamics: First Law, Calorimetry, Enthalpy. Calorimetry. Calorimetry: constant volume. Monday, January 23 CHEM 102H T.

Thermodynamics: First Law, Calorimetry, Enthalpy Monday, January 23 CHEM 102H T. Hughbanks Calorimetry Reactions are usually done at either constant V (in a closed container) or constant P (open to the

### Answers: Given: No. [COCl 2 ] = K c [CO][Cl 2 ], but there are many possible values for [CO]=[Cl 2 ]

Chemical Equilibrium What are the concentrations of reactants and products at equilibrium? How do changes in pressure, volume, temperature, concentration and the use of catalysts affect the equilibrium

### Chapter 5. Thermochemistry

Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

### A k 1. At equilibrium there is no net change in [A] or [B], namely d[a] dt

Chapter 15: Chemical Equilibrium Key topics: Equilibrium Constant Calculating Equilibrium Concentrations The Concept of Equilibrium Consider the reaction A k 1 k 1 B At equilibrium there is no net change

### Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics 1_thermo_review AND Review of thermo Wksheet 2.1ch19_intro Optional: 1sc_thermo

### Gas Phase Equilibrium

Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

### = T T V V T = V. By using the relation given in the problem, we can write this as: ( P + T ( P/ T)V ) = T

hermodynamics: Examples for chapter 3. 1. Show that C / = 0 for a an ideal gas, b a van der Waals gas and c a gas following P = nr. Assume that the following result nb holds: U = P P Hint: In b and c,

### Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

### Advanced Higher Chemistry. THERMODYNAMICS (Reaction Feasibility) Learning Outcomes Questions & Answers

Advanced Higher Chemistry Unit 2 - Chemical Reactions THERMODYNAMICS (Reaction Feasibility) Learning Outcomes Questions & Answers KHS Chemistry Nov 2006 page 1 4. THERMODYNAMICS (Reaction Feasibility)

### CHEM 1332 CHAPTER 14

CHEM 1332 CHAPTER 14 1. Which is a proper description of chemical equilibrium? The frequencies of reactant and of product collisions are identical. The concentrations of products and reactants are identical.

### Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.

Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions

### CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM

CHAPTER 14 (MOORE) CHEMICAL EQUILIBRIUM This chapter deals with chemical equilibrium, or how far chemical reactions proceed. Some reactions convert reactants to products with near 100% efficiency but others

### Chapter 13. Chemical Equilibrium

Chapter 13 Chemical Equilibrium Chapter 13 Preview Chemical Equilibrium The Equilibrium condition and constant Chemical equilibrium, reactions, constant expression Equilibrium involving Pressure Chemical

### AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2

AP CHEMISTRY 2007 SCORING GUIDELINES Question 2 N 2 (g) + 3 F 2 (g) 2 NF 3 (g) ΔH 298 = 264 kj mol 1 ; ΔS 298 = 278 J K 1 mol 1 The following questions relate to the synthesis reaction represented by the

### Chemical reactions allow living things to grow, develop, reproduce, and adapt.

Section 2: Chemical reactions allow living things to grow, develop, reproduce, and adapt. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the parts of a chemical reaction?

### Spring 2009. kj mol 125 0-229 -92. H f. H rxn = Σ H f (products) - Σ H f (reactants)

Spring 2009 2. The reaction of an elemental halogen with an alkane is a very common reaction. The reaction between chlorine and butane is provided below. (NOTE: Questions a d and f pertain to this reaction.)

### Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes.

Thermochem 1 Thermochemistry Thermochemistry and Energy and Temperature Thermochemistry is study of changes in energy (heat) associated with physical or chemical changes. Force = push F= m a (mass x acceleration)

### Equilibrium Lecture #1. Schweitzer

Equilibrium Lecture #1 Schweitzer What is equilibrium? Remember Equilibrium process between to competing reactions. At equilibrium the forward process is equal to the reverse process. *** It appears that

### SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

### Chapter 13. Chemical Equilibrium

Chapter 13 Chemical Equilibrium Section 13.1 The Equilibrium Condition Section 13.1 The Equilibrium Condition Section 13.1 The Equilibrium Condition Section 13.1 The Equilibrium Condition Section 13.1

### Thermodynamics. S (reactants) S S (products) AP Chemistry. Period Date / / R e v i e w. 1. Consider the first ionization of sulfurous acid:

AP Chemistry Thermodynamics 1. Consider the first ionization of sulfurous acid: H 2SO 3(aq) H + (aq) + HSO 3 - (aq) Certain related thermodynamic data are provided below: H 2SO 3(aq) H + (aq) HSO 3 - (aq)

### Chemistry 433. The Third Law of Thermodynamics. Residual Entropy. CO: an Imperfect Crystal. Question. Question. Lecture 12 The Third Law

Chemistry 433 Lecture 12 he hird Law he hird Law of hermodynamics he third law of thermodynamics states that every substance has a positive entropy, but at zero Kelvin the entropy is zero for a perfectly

### Chemical Equilibrium

Chapter 13 Chemical Equilibrium Equilibrium Physical Equilibrium refers to the equilibrium between two or more states of matter (solid, liquid and gas) A great example of physical equilibrium is shown

### EQUILIBRIUM. Consider the reversible system initially consisting of reactants only.

EQUILIBRIUM When non reversible chemical reactions proceed to completion, the concentration of the reactants gradually decrease, until there is NO limiting reactant remaining. Most chemical reactions,

### Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

### CHEM1612 2014-N-2 November 2014

CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Le Châtelier s principle 1 Used to predict the effect of a change in the conditions on a reaction at equilibrium, this principle

EQUILIBRIUM Academic Success Center Definition Equilibrium is a state where the concentrations of the reactants and products no longer change with time. This doesn t mean there is no movement between the

### Energy Flow in Marine Ecosystem

Energy Flow in Marine Ecosystem Introduction Marin ecosystem is a functional system and consists of living groups and the surrounding environment It is composed of some groups and subgroups 1. The physical

### Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

### Chemistry 4th Edition McMurry/Fay

13 Ch a pt e r Chemical Equilibrium Chemistry 4th Edition McMurry/Fay Dr. Paul Charlesworth Michigan Technological University The Equilibrium State 01 Chemical Equilibrium: A state achieved when the rates

### 1. The graph below represents the potential energy changes that occur in a chemical reaction. Which letter represents the activated complex?

1. The graph below represents the potential energy changes that occur in a chemical reaction. Which letter represents the activated complex? 4. According to the potential energy diagram shown above, the

### Chapter 13 Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Characteristics of Chemical Equilibrium

Characteristics of Chemical Equilibrium John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 13 Chemical Equilibrium Many reactions fail to go to completion.

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### Guide to Chapter 13. Chemical Equilibrium

Guide to Chapter 13. Chemical Equilibrium We will spend five lecture days on this chapter. During the first class meeting we will focus on how kinetics makes a segue into equilibrium. We will learn how

### Optional Homework 6 do not turn in!!

Name: Date: Optional Homework 6 do not turn in!! 1.) What is the first thing you must do to a reaction in order to write an accurate equilibrium (K) expression? Give a real example of a K expression: You

### 1/7/2013. Chapter 10. Energy Changes in Chemical Reactions. Chemistry: Atoms First Julia Burdge & Jason Overby. Thermochemistry

/7/03 Chemistry: Atoms First Julia Burdge & Jason Overby 0 Thermochemistry Chapter 0 Energy Changes in Chemical Reactions Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright (c) The McGraw-Hill

### Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

### Name AP Chemistry / / Chapter 13 Collected AP Exam Free Response Questions 1980 2010 Answers

Name AP Chemistry / / Chapter 13 Collected AP Exam Free Response Questions 1980 2010 Answers 1980 - #6 NH 4 Cl(s) NH 3 (g) + HCl(g) ΔH = +42.1 kilocalories Suppose the substances in the reaction above

### Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

### AP* Chemistry CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

AP* Chemistry CHEMICAL EQUILIBRIA: GENERAL CONCEPTS THE NATURE OF THE EQUILIBRIUM STATE: Equilibrium is the state where the rate of the forward reaction is equal to the rate of the reverse reaction. At

### Chemical Equilibrium-A Dynamic Equilibrium

Chemical Equilibrium-A Dynamic Equilibrium Page 1 When compounds react, they eventually form a mixture of products and (unreacted) reactants, in a dynamic equilibrium Much like water in a U-shape tube,

### CH 223 Chapter Thirteen Concept Guide

CH 223 Chapter Thirteen Concept Guide 1. Writing Equilibrium Constant Expressions Write the equilibrium constant (K c ) expressions for each of the following reactions: (a) Cu(OH) 2 (s) (b) Cu(NH 3 ) 4

### Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point.

Example When consuming an ice-cold drink, one must raise the temperature of the beverage to 37.0 C (normal body temperature). Can one lose weight by drinking ice-cold beverages if the body uses up about

### Read the sections on Allotropy and Allotropes in your text (pages 464, 475, 871-2, 882-3) and answer the following:

Descriptive Chemistry Assignment 5 Thermodynamics and Allotropes Read the sections on Allotropy and Allotropes in your text (pages 464, 475, 871-2, 882-3) and answer the following: 1. Define the word allotrope

### Chapter 13 - Chemical Equilibrium

Chapter 1 - Chemical Equilibrium Intro A. Chemical Equilibrium 1. The state where the concentrations of all reactants and products remain constant with time. All reactions carried out in a closed vessel

### Chapter 5: thermochemstry. Internal Energy: E

Chapter 5: thermochemstry tonight s goals Energy and Enthalpy Review Enthalpies of Reaction Calorimetry Hess Law Enthalpies of Formation Internal Energy: E E = The sum of all kinetic and potential energies

### Chemistry 12 Worksheet 2-1 - Equilibrium, Enthalpy and Entropy

Chemistry 12 Worksheet 2-1 - Equilibrium, Enthalpy and Entropy 1. What do people mean when they say that a reaction is reversible? 2. Give four things which are true about a system at equilibrium: 1. _

### Thermodynamics explores the connection between energy and the EXTENT of a reaction but does not give information about reaction rates (Kinetics).

Thermodynamics explores the connection between energy and the EXTENT of a reaction but does not give information about reaction rates (Kinetics). Rates of chemical reactions are controlled by activation

### Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l

Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley

### Chapter 6 Thermodynamics: The First Law

Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

### Chemical Equilibrium - Chapter 14

Chemical Equilibrium - Chapter 14 1. Dynamic Equilibrium a A + b B c C + d D At Equilibrium: Reaction is proceeding in both directions at the same rate. There is no net change in concentrations of reactants

### Simple Mixtures. Atkins 7th: Sections ; Atkins 8th: The Properties of Solutions. Liquid Mixtures

The Properties of Solutions Simple Mixtures Atkins 7th: Sections 7.4-7.5; Atkins 8th: 5.4-5.5 Liquid Mixtures Colligative Properties Boiling point elevation Freezing point depression Solubility Osmosis

### 4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean?

HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of liquid water or one mole of water vapor (b) One mole of dry ice or one mole of carbon dioxide at 1 atm

### UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

### Entropy Changes & Processes

Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th edition Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas