# Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Size: px
Start display at page:

Download "Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions."

Transcription

1 Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method of half-reactions. Sketch a voltaic cell and identify its cathode, anode, and the directions that electrons and ions move. Calculate standard emfs (cell potentials), E o cell, from standard reduction potentials. Use reduction potentials to predict whether a redox reaction is spontaneous Relate E o cell to G o and equilibrium constants. Calculate emf under nonstandard conditions Describe to reactions in electrolytic cells Relate the amounts of products and reactants in redox reactions to electrical charge. Review redox reactions: assigning oxidation numbers To keep track of what species loses electrons and what species gains them, we assign oxidation numbers. Assigning oxidation numbers How to determine oxidation numbers 1. Elemental form, each atom has ox. # = 0. Zn O 2 O 3 I 2 S 8 P 4 2. In simple ions, ox. # = charge on ion. -1 for Cl - +2 for Mg The ox. # of F is ALWAYS -1 with all other elements. FeF 3 PF 5 SF 6 OF 2 1

2 Assigning oxidation numbers 4. The ox. # of O is normally -2 (except in the peroxide ion, which has an oxidation number of 1) and the ox. # of H is +1 (except with metals). O is -2 in NO H is +1 in CH 4 O is -1 in Na 2 O 2 H is -1 in CaH 2 5. Algebraic sum of oxidation numbers = 0 for a compound = overall charge for an ion Example Assign the oxidation numbers to each element: SiBr 4 K 3 PO 4 Cu(NO 3 ) 3 Redox reactions ELECTRON TRANSFERS between an electron donor and electron acceptor. Transfer leads to 1. increase in oxidation number = OXIDATION 2. decrease in oxidation number = REDUCTION Oxidizing agent or oxidant: causes the oxidation Reducing agent or reductant: causes the reduction 2

3 Example Label the species that undergo oxidation and reduction. Also identify the oxidizing agent and reducing agent. Cu (s) + 2 AgNO 3 (aq) Cu(NO 3 ) 2 (aq) + 2 Ag (s) Example Label the species that undergo oxidation and reduction. Also identify the oxidizing agent and reducing agent. Reduction Oxidation Cu (s) + 2 AgNO 3 (aq) Cu(NO 3 ) 2 (aq) + 2 Ag (s) Oxidizing agent: Ag in AgNO 3 ; Reducing agent: Cu Electron transfer reactions Essential features: one reactant is oxidized one reactant is reduced the oxidizing agent is reduced the reducing agent is oxidized an element is oxidized if its ox # increases; it is reduced if its ox # decreases. the extent of oxidation and reduction must balance All redox reactions must be balanced for both mass and charge. 3

4 Steps for balancing equations by the method of half-reactions 1. Assign oxidation states. 2. Divide the equation into two half-reactions. 3. Balance each half-reaction as follows: a. Balance elements other than O and H b. Balance O by adding H 2 O c. Balance H by adding H + d. Balance charge by adding e - to the more positive side 4. Multiply by factors so that e - lost = e - gained 5. Add and cancel (check mass & check charge). 6. If in a basic solution, add OH - to neutralize. Balancing redox reactions: using half-reactions Cu (s) + AgNO 3 (aq) Cu(NO 3 ) 2 (aq) + Ag (s) In the above unbalanced reaction, the spectator ion (NO 3- ) is unimportant to the net equation, so let s write the unbalanced net equation. Cu (s) + Ag + (aq) Cu 2+ (aq) + Ag (s) Balancing redox reactions: using half-reactions Cu (s) + Ag + (aq) Cu 2+ (aq) + Ag (s) There are two halves of the reaction: the oxidation half and the reduction half. Cu (s) Cu 2+ (aq) + 2 e - Ag + (aq) + e - Ag (s) 4

5 Balancing redox reactions: using half-reactions Balance the charges and masses to make the full redox reaction Cu (s) Cu 2+ (aq) + 2 e - 2 Ag + (aq) + 2 e - 2 Ag (s) Cu (s) + 2 Ag + (aq) Cu 2+ (aq) + 2 Ag (s) Sometimes it s necessary to add H 2 O and either H + or OH -. Half-Reaction Method Example Consider the reaction between MnO 4 and C 2 O 2 4 : MnO 4 (aq) + C 2 O 2 4 (aq) Mn 2+ (aq) + CO 2 (g) First, we assign oxidation numbers MnO 4 + C 2 O 4 2- Mn 2+ + CO 2 Since the manganese goes from +7 to +2, it is reduced. Since the carbon goes from +3 to +4, it is oxidized. Oxidation Half-Reaction C 2 O 4 2 CO 2 To balance the carbon, we add a coefficient of 2: C 2 O CO 2 The oxygen is now balanced as well. To balance the charge, we must add 2 electrons to the right side. C 2 O CO e 5

6 Reduction Half-Reaction MnO 4 Mn 2+ The manganese is balanced; to balance the oxygen, we must add 4 waters to the right side. MnO 4 Mn H 2 O To balance the hydrogen, we add 8 H + to the left side. 8 H + + MnO 4 Mn H 2 O To balance the charge, we add 5 e to the left side. 5 e + 8 H + + MnO 4 Mn H 2 O Combining the Half-Reactions Now we evaluate the two half-reactions together: C 2 O CO e 5 e + 8 H + + MnO 4 Mn H 2 O To attain the same number of electrons on each side, we will multiply the first reaction by 5 and the second by 2. 5 C 2 O CO e 10 e + 16 H MnO 4 2 Mn H 2 O When we add these together, we get: 10 e + 16 H MnO C 2 O Mn H 2 O + 10 CO e 16 H MnO C 2 O Mn H 2 O + 10 CO 2 Example Iodide will react with permanganate ions to form iodine and manganese (IV) oxide. Write the balanced net ionic equation if the reaction occurs in an acidic solution. 6 I - (aq) + 2 MnO 4- (aq) + 8 H + (aq) 3 I 2 (aq) + 2 MnO 2 (aq) + 4 H 2 O(l) 6

7 Example Do the previous example in a basic solution. Iodide will react with permanganate ions to form iodine and manganese (IV) oxide. If a reaction occurs in basic solution, one can balance it as if it occurred in acid. Once the equation is balanced, add OH to each side to neutralize the H + in the equation and create water in its place. If this produces water on both sides, you might have to subtract water from each side. Two types of electrical cells Voltaic/galvanic cell spontaneous chemical reaction that produces electrical energy Electrolytic cell electrical energy is used for a nonspontaneous chemical reaction Voltaic cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy is released. We can use that energy to do work if we make the electrons flow through an external device. 7

8 Voltaic cells The oxidation occurs at the anode. The reduction occurs at the cathode. Voltaic cells description When electrons flow from the anode to the cathode, the charges in each beaker would not be balanced and the flow of electrons would stop. Voltaic Cells Therefore, we use a salt bridge, usually a U-shaped tube that contains a salt solution, to keep the charges balanced. Cations move toward the cathode. Anions move toward the anode. 8

9 Voltaic Cells In the cell, electrons leave the anode and flow through the wire to the cathode. As the electrons leave the anode, the cations formed dissolve into the solution in the anode compartment. As the electrons reach the cathode, cations in the cathode are attracted to the now negative cathode. The electrons are taken by the cation, and the neutral metal is deposited on the cathode. anode (oxidation) Zn (s) Zn 2+ (aq) cathode (reduction) Cu 2+ (aq) Cu (s) Electromotive force (emf) Water spontaneously flows one way in a waterfall. Likewise, electrons only spontaneously flow one way in a redox reaction from higher to lower potential energy. Electromotive force (emf) The potential difference between the anode and cathode in a cell is called the electromotive force (emf). It is also called the cell potential (E cell ). Cell potential is measured in volts (V) and it is often called the cell voltage. 1 V = 1 J C 9

10 Standard cell potentials The cell potential at standard conditions can be found through this equation: E cell = E red (cathode) E red (anode) Because cell potential is based on the potential energy per unit of charge, it is an intensive property. Standard Hydrogen Electrode 2 H + (aq, 1M) + 2 e H 2 (g, 1 atm) By definition, the reduction potential for hydrogen is 0 V: Using a SHE 10

11 Cell Potentials For the oxidation in this cell, E red = 0.76 V For the reduction, E red = V E cell = E red (cathode) E red (anode) = V ( 0.76 V) = V Standard reduction potentials Cr 3+ (aq) + 3e - Cr(s) Standard reduction potentials 11

12 Oxidizing and reducing agents The greater the difference between the two, the greater the voltage of the cell. E cell > 0 product favored E cell < 0 reactant favored Standard reduction potentials 1. All potentials are for reduction reactions. 2. The more positive E, the better the oxidizing ability. 3. The more negative E, the more likely the reverse (oxidation) reaction will occur. 4. When the reaction is reversed, the sign changes. 5. NW-SE rule: reaction of the upper left with the lower right is product favored. 6. The sign of the half-reaction potential is in reference to the SHE (H 2 (g, 1 bar) /H + (aq, 1 M) standard cell). 7. Potentials depend on the nature of reactants and products and NOT on the amounts. Example Draw the voltaic cell, use cell notation to describe the voltaic cell, and calculate the standard EMF for a cell containing cadmium and silver electrodes. Ag + (aq) + e - Ag(s) Cd 2+ (aq) + 2 e - Cd(s) E = V E = V 12

13 Free Energy G for a redox reaction: G = nfe Under standard conditions, G = nfe where n is the number of moles of electrons transferred, and F is the Faraday constant. 1 F = 96,485 C/mol = 96,485 J/V-mol Calculate G for Example 2 Cr (s) + 3 Pb 2+ (aq) 2 Cr 3+ (aq) + 3 Pb (s) from Appendix E and supplemental sources Cr 3+ (aq) + 3 e - Cr (s) E = V Pb 2+ (aq) + 2 e - Pb (s) E = V Nernst Equation G = G + RT lnq This means nfe = nfe + RT lnq Dividing both sides by nf, we get the Nernst equation: E = E RT nf ln Q 13

14 Nernst equation: cell potentials at nonstandard conditions E = E RT nf ln Q E = E RT nf log Q at 25 C E = E n log Q Example Calculate the emf for the following cell at 25 C. Cr (s) Cr 3+ (aq, 1.00 M) Pb 2+ (aq, M) Pb (s) Example Calculate the emf for the following reaction at 25 C. 4 Fe 2+ (aq) + O 2 (g) + 4H + (aq) 4 Fe 3+ (aq) + 2H 2 O(l) a) Under standard conditions b) When [Fe 2+ ] = 1.3 M, [Fe 3+ ] = M, P O2 = 0.50 atm, and the ph in the cathode half-cell is

15 Concentration cells A cell could be created that has the same substance at both electrodes. E cell would be 0, but Q would not be. E will not be 0 as long as the concentrations are different. Applications Hydrogen fuel cells 15

16 Hydrogen fuel cell Adsorbing H 2 onto a metal or metal alloy. Example Determine the amount of voltage that is necessary to convert water into hydrogen and oxygen gas. 2 H 2 O (l) + 2 e - H 2 (g) + 2 OH - (aq) E red = V O 2 (g) + 2 H 2 O (l) + 4 e - 4 OH - (aq) E red = V Corrosion and 16

17 Corrosion Prevention Corrosion Prevention Electrolytic cells inert electrode inert electrode 17

18 Stoichiometry of Electrolysis 2 mol e - : 1 mol Cu 1 A = 1 C/s Current(C/s) time(s) = charge(c) 96,485 C F = - mole e A voltaic/galvanic cell: spontaneous + cathode - anode An electrolytic cell: nonspontaneous + anode - cathode 18

### Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

### Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

### Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

### K + Cl - Metal M. Zinc 1.0 M M(NO

Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question

### 1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

### Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.

Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I Friday, October 15 Chem 462 T. Hughbanks Preliminary Concepts Electrochemistry: the electrical generation of, or electrical exploitation of

### CHM1 Review Exam 12. Topics REDOX

CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages

### Electrochemistry Worksheet

Electrochemistry Worksheet 1. Assign oxidation numbers to each atom in the following: a. P 4 O 6 b. BiO 3 c. N 2 H 4 d. Mg(BrO 4 ) 2 e. MnSO 4 f. Mn(SO 4 ) 2 2. For each of the reactions below identify

### CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions

Electrons move from anode to cathode in the wire. Anions & cations move thru the salt bridge. Terms Used for Galvanic Cells Galvanic Cell We can calculate the potential of a Galvanic cell using one of

### Electrochemistry Voltaic Cells

Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains

### Name AP CHEM / / Collected Essays Chapter 17 Answers

Name AP CHEM / / Collected Essays Chapter 17 Answers 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the

Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

### Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a

### Discovering Electrochemical Cells

Discovering Electrochemical Cells Part I Electrolytic Cells Many important industrial processes PGCC CHM 102 Cell Construction e e power conductive medium What chemical species would be present in a vessel

### Redox and Electrochemistry

Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+

### Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011

Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit

### Name Electrochemical Cells Practice Exam Date:

Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical

### Galvanic cell and Nernst equation

Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When

### ELECTROCHEMICAL CELLS

1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together

### Useful charge on one mole of electrons: 9.64 x 10 4 coulombs/mol e - = F F is the Faraday constant

Electrochemistry II: Cell voltage and Gibbs Free energy Reading: Moore chapter 19, sections 15.6-15.12 Questions for Review and Thought: 36, 40, 42, 44, 50, 54, 60, 64, 70 Key Concepts and Skills: definition

### AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States

AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States Chemical reactions in which the oxidation state of a substance changes are called oxidation-reduction reactions (redox reactions). Oxidation

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chemistry 1C-Dr. Larson Chapter 20 Review Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) is reduced in the following reaction: Cr2O7

### 2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

### AP* Chemistry ELECTROCHEMISTRY

Terms to Know: AP* Chemistry ELECTROCHEMISTRY the study of the interchange of chemical and electrical energy OIL RIG oxidation is loss, reduction is gain (of electrons) Oxidation the loss of electrons,

### Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions

John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 18 Electrochemistry and Its Applications Stephen C. Foster Mississippi State University Electrochemistry

### CHAPTER 13: Electrochemistry and Cell Voltage

CHAPTER 13: Electrochemistry and Cell Voltage In this chapter: More about redox reactions Cells, standard states, voltages, half-cell potentials Relationship between G and voltage and electrical work Equilibrium

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture

### Building Electrochemical Cells

Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages

### Experiment 9 Electrochemistry I Galvanic Cell

9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.

### Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.

Voltaic Cells Introduction In this lab you will first prepare a set of simple standard half-cells and then measure the voltage between the half-cells with a voltmeter. From this data you will be able to

### Electrochemical Half Cells and Reactions

Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various

### CHAPTER 21 ELECTROCHEMISTRY

Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged

### o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

REDOX REACTION EQUATIONS AND APPLICATIONS Overview of Redox Reactions: o Change in Oxidation State: Loses Electrons = Oxidized (Oxidation number increases) Gains Electrons = Reduced (Oxidation Number Reduced)

### Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

### Chapter 20. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 20 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The gain of electrons by an element is called. A) oxidation B) reduction C) sublimation

### Electrochemistry. Pre-Lab Assignment. Purpose. Background. Experiment 12

Experiment 12 Electrochemistry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered

### Potassium ion charge would be +1, so oxidation number is +1. Chloride ion charge would be 1, so each chlorine has an ox # of -1

Chapter 18-1 1. Assign oxidation numbers to each atom in: Ni Nickel ion charge would be +2, so oxidation number is +2 Chloride ion charge would be 1, so each chlorine has an ox # of -1 Mg 2 Ti 4 Magnesium

### Galvanic Cells and the Nernst Equation

Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO

### Chapter 12: Oxidation and Reduction.

207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following

### Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

### ELECTROCHEMICAL CELLS LAB

ELECTROCHEMICAL CELLS LAB Purpose: The purpose of this lab is to demonstrate the ability of chemistry to make electric current using oxidation/reduction (REDOX) reactions, and to measure the electric current

3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.

### 1. Oxidation number is 0 for atoms in an element. 3. In compounds, alkalis have oxidation number +1; alkaline earths have oxidation number +2.

à xidation numbers In the Lewis model of bonding, when nonidentical atoms are bonded together, an important consideration is how the bonding electrons are apportioned between the atoms. There are two different

### 12. REDOX EQUILIBRIA

12. REDOX EQUILIBRIA The electrochemical series (reference table) 12.1. Redox reactions 12.2. Standard electrode potentials 12.3. Calculations involving electrochemical cells 12.4. Using Eʅ values to predict

### 4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean?

HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of liquid water or one mole of water vapor (b) One mole of dry ice or one mole of carbon dioxide at 1 atm

### The Electrical Control of Chemical Reactions E3-1

Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and

### Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

### Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions OCN 623 Chemical Oceanography Balanced chemical reactions are the math of chemistry They show the relationship between the reactants

### AP Chemistry 2010 Scoring Guidelines Form B

AP Chemistry 2010 Scoring Guidelines Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

### stoichiometry = the numerical relationships between chemical amounts in a reaction.

1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

### NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants

### Determining Equivalent Weight by Copper Electrolysis

Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

### 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

### Electrochemistry Revised 04/29/15

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, BATTERIES, & THE NERNST EQUATION Experiment partially adapted from J. Chem. Educ., 2008, 85 (8), p 1116 Introduction Electrochemical cell In this experiment,

### Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure

### PROCEDURE: Part A. Activity Series and Simple Galvanic Cells

Experiment 21G ELECTROCHEMISTRY: GALVANIC CELLS AND BATTERIES FV 2/8/11 MATERIALS: Ag, Cu, Zn strips; sandpaper; 20d bright common nails (2); 0.25 M solutions of AgNO 3, Cu(NO 3 ) 2, Zn(NO 3 ) 2 ; 1.0

### Chapter 21a Electrochemistry: The Electrolytic Cell

Electrochemistry Chapter 21a Electrochemistry: The Electrolytic Cell Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated. The oxidation reaction

### Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum

Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum Unit 5 Organic Chemistry General Outcomes Students will: 1. explore organic compounds as a common form of matter

### EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical

### OXIDATION REDUCTION. Section I. Cl 2 + 2e. 2. The oxidation number of group II A is always (+) 2.

OXIDATION REDUCTION Section I Example 1: Na Example 2: 2C1 Example 3: K + + e Na + + e Cl 2 + 2e K Example 4: C1 2 + 2e 2Cl 1. The oxidation number of group I A is always (+) 1. 2. The oxidation number

### Question Bank Electrolysis

Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

### 4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes

Chapter 4 Reactions in Aqueous Solution 4.1 Aqueous Solutions Solution homogeneous mixture of 2 or more substances Solute the substance present in a smaller amount (usually solid in Chap. 4) Solvent the

### 6 Reactions in Aqueous Solutions

6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface

### AP Chemistry 2009 Free-Response Questions Form B

AP Chemistry 009 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

### The Galvanic Cell Game

The Galvanic Cell Game Author: Kiana Guerrero Date Created: 2009 Subject: Chemistry Level: High School Standards: New York State-Physical Setting/Chemistry Standard: 3.1i Each electron in an atom has its

### Summer 2003 CHEMISTRY 115 EXAM 3(A)

Summer 2003 CHEMISTRY 115 EXAM 3(A) 1. In which of the following solutions would you expect AgCl to have the lowest solubility? A. 0.02 M BaCl 2 B. pure water C. 0.02 M NaCl D. 0.02 M KCl 2. Calculate

### Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

### Chapter 4 Chemical Reactions

Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser

### A Review of the Construction of Electrochemical Cells

CHEM331 Physical Chemistry Revision 2.0 A Review of the Construction of Electrochemical Cells Electrochemical cells provide us with our first real example of a system which performs non-pv work. The work

### Oxidation / Reduction Handout Chem 2 WS11

Oxidation / Reduction Handout Chem 2 WS11 The original concept of oxidation applied to reactions where there was a union with oxygen. The oxygen was either furnished by elemental oxygen or by compounds

### AP Chemistry 2010 Free-Response Questions Form B

AP Chemistry 010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

### Word Equations and Balancing Equations. Video Notes

Word Equations and Balancing Equations Video Notes In this lesson, you will: Use the law of conservation of mass and provide standard rules for writing and balancing equations. Write and balance equations

### Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

### Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

### Galvanic and electrolytic cells

Galvanic and electrolytic cells Electrochemical reactions In Grade 11, you carried out an experiment to see what happens when zinc granules are added to a solution of copper(ii) sulfate. Figure 1: When

### Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

### Module Four Balancing Chemical Reactions. Chem 170. Stoichiometric Calculations. Module Four. Balancing Chemical Reactions

Chem 170 Stoichiometric Calculations Module Four Balancing Chemical Reactions DePauw University Department of Chemistry and Biochemistry Page 1 Introduction to Module Four When making a cheeseburger you

### General Chemistry II Chapter 20

1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water

### (b) As the mass of the Sn electrode decreases, where does the mass go?

A student is given a standard galvanic cell, represented above, that has a Cu electrode and a Sn electrode. As current flows through the cell, the student determines that the Cu electrode increases in

### Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

### SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction

SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS OxidationReduction Oxidation is loss of electrons. (Oxygen is EN enough to grab e away from most elements, so the term originally meant

### Introduction to electrolysis - electrolytes and non-electrolytes

Introduction to electrolysis - electrolytes and non-electrolytes Electrolysis is the process of electrically inducing chemical changes in a conducting melt or solution e.g. splitting an ionic compound

### 2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )

TYPES OF CHEMICAL REACTIONS Most reactions can be classified into one of five categories by examining the types of reactants and products involved in the reaction. Knowing the types of reactions can help

### Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,

### CHEMICAL REACTIONS. Chemistry 51 Chapter 6

CHEMICAL REACTIONS A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures. In a chemical reaction,

### Chem101: General Chemistry Lecture 9 Acids and Bases

: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

### Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

### Writing and Balancing Chemical Equations

Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

### Redox Chemistry Handout

Redox Chemistry Handout This handout is intended as a brief introduction to redox chemistry. For further reading, consult an introductory chemistry or microbiology textbook. Redox reactions involve the

### Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

### Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H

### PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students

### Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

### CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of

### Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

### Formulae, stoichiometry and the mole concept

3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be