Transfer of heat energy often occurs during chemical reactions. A reaction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Transfer of heat energy often occurs during chemical reactions. A reaction"

Transcription

1 Chemistry 111 Lab: Thermochemistry Page I-3 THERMOCHEMISTRY Heats of Reaction The Enthalpy of Formation of Magnesium Oxide Transfer of heat energy often occurs during chemical reactions. A reaction may transfer heat to its surroundings it is exothermic. Alternatively, heat may be transferred from the surroundings to the reaction system it is endothermic. In this experiment, you will explore some exothermic reactions with two objectives in mind: To discover the relationship between the quantity of material undergoing reaction and the quantity of heat evolved. To determine the molar enthalpy of formation of a compound, MgO, using calorimetry and Hess s Law. MOLAR ENTHALPY OF FORMATION The heat absorbed when a mole of compound in its standard state is formed at a given temperature from the appropriate elements, also in their standard states, is the molar enthalpy of formation, ΔH f, of the compound at that temperature. The molar enthalpy of formation is positive if heat is absorbed when the compound is formed under these conditions (an endothermic reaction) and negative if heat is released (an exothermic reaction). In this experiment, the molar enthalpy of formation of solid magnesium oxide, MgO(s), will be determined by calorimetry. The molar enthalpy of formation of MgO(s) is simply the enthalpy of the reaction (1) Mg(s) + 1/2 O 2 (g, 1 atm) MgO(s) H 1 Unfortunately, the enthalpy change for this reaction cannot be measured directly in a simple experiment. Therefore, we take advantage of the following sequence of reactions, whose sum is equivalent to reaction 1. (2) Mg(s) + 2 H + (aq) Mg 2+ (aq) + H 2 (g, 1 atm) H 2 (3) Mg 2+ (aq) + H 2 O(l) MgO(s) + 2 H + (aq) H 3 (4) 1/2 O 2 (g, 1 atm) + H 2 (g, 1 atm) H 2 O(l) H 4 Applying Hess's law to these equations, we see that H f [MgO(s)] = H 1 = H 2 + H 3 + H 4 Thus, to determine the enthalpy of formation of MgO(s) (reaction 1) we shall have to determine the enthalpies for reactions 2, 3, and 4. This is really quite straightforward, since ΔH 2 can be measured directly in a simple experiment (Part 1 of the Experiment). Reaction 3 normally proceeds in the direction opposite to the way it is written above, so it is convenient to measure the enthalpy of the reaction Structure of magnesium oxide. MgO has a solid state structure that consists of a lattice of oxide ions with Mg 2+ ions in the holes in the lattice. See the Models folder on the General ChemistryNow CD-ROM. (5) MgO(s) + 2 H + (aq) Mg 2+ (aq) + H 2 O(l) H 5 The enthalpy of reaction 5 is the negative of that for reaction 3 (ΔH 5 = ΔH 3 ), and it is measured in Part 2 of the experiment. Finally, ΔH 4 is the enthalpy of Revised: June 2003

2 Page I-4 Chemistry 111 Lab: Thermochemistry Consult your textbook for the value of the enthalpy of formation of liquid water. formation of liquid water and is obtained from tables of standard enthalpies. Consult your textbook for this value. An excellent way to prepare for this laboratory is to visit the Dartmouth College web site for their Chemistry Labs. The figure at the bottom of the page shows you a screen from a tool that allows you to piece together the data needed to calculate the molar enthalpy of formation of magnesium oxide. CALORIMETRY The enthalpy change, ΔH, for a chemical reaction can be measured conveniently at a constant pressure under conditions where virtually no heat is exchanged with the surroundings. For a reaction that takes place in aqueous solution, the measurement is made by observing the increase or decrease in temperature that accompanies the reaction when it is carried out in a special type of vessel (called a calorimeter) that keeps the exchange of heat with the surroundings to a negligible amount. (In this experiment your calorimeter consists of two styrofoam cups, nested one inside the other. Styrofoam is an excellent insulator.) Thus, there is no heat transferred to or from the surroundings when the reaction takes place in this way. However, the desired enthalpy change applies to the reaction when it is carried out in such a way that the products end up at the same temperature that the reactants had to begin with. Thus, it is necessary to find out how much heat would be absorbed or released if the solution containing the reaction products were returned to the original temperature. This amount of heat is the only heat transferred in the entire process and, therefore, is the same as the enthalpy of the reaction. And how is this quantity of heat obtained? It is See the Dartmouth College Chemistry Department web site at a) edu/~chemlab/techniques/ calorimeter.html b) edu/~chemlab/chem3-5/ calor1/overview /start.html Figure This is a screen shot of an interactive module that allows you to experiment with the chemistry of this experiment. Please use it to examine the reactions you need to use to determine the enthalpy of formation of MgO. You can find it at

3 Chemistry 111 Lab: Thermochemistry Page I-5 calculated from the relationship q = (mass of solution) (specific heat of solution) ( T) where ΔT is the observed change in temperature. That is, T = final temperature original temperature The specific heat of the solution is the heat required to raise the temperature of 1.00 gram of the solution 1.00 degree Celsius. It is a positive quantity. Finally, be sure to notice the negative sign in the equation above. It is there for the following reason: If the temperature of the solution is observed to increase (i.e, T is positive), the reaction is exothermic, and so q (= H) must be negative. On the other hand, if the temperature is observed to decrease in the reaction (i.e., T is negative), then the reaction is endothermic, and q (= H) is positive. Finally, the heat calculated, as above, corresponds to the specific number of grams of the reactant that you actually use (in this experiment, either Mg or MgO). In order to convert this measured value of the heat into molar enthalpy, it is only necessary to divide the measured heat by the number of moles of the reactant. ΔH (per mol) = q q (per mol) = measured quantity of reactant (mol) EXPERIMENTAL PROCEDURE PART I The Relation Between the Quantity of Material Reacting and the Heat Transferred In this portion of the experiment we want to explore the relationship between the quantity of magnesium metal reacting with hydrochloric acid and the heat evolved by the reaction. (a) (b) Mg(s) + 2 HCl(aq) MgCl 2 (aq) + H 2 (g) Set up your coffee-cup calorimeter and support it in a ring stand or beaker as illustrated by your instructor and in the Figure. Weigh out, to the nearest g, three different portions of magnesium metal, say about 0.2 g, about 0.4 g, and about 0.5 g. Record the masses in the data table on the report form. (c) Place one of the magnesium samples in a clean, dry coffee-cup calorimeter. (d) Using a graduated cylinder, measure out as accurately as possible 100. ml of 1.0 M HCl. Measure the temperature of the HCl solution and record this initial temperature on the report form. Replace the thermometer in the calorimeter setup. (e) (f) Add the HCl solution to the calorimeter and swirl gently but steadily. At 30 second intervals record the temperature (to the nearest 0.5 C) until the temperature has held constant or decreased for three consecutive readings. Repeat the steps above with another sample of Mg. Do all three sam- Although it is possible for an individual student to perform this experiment satisfactorily, it is easier if students work in pairs.

4 Page I-6 Chemistry 111 Lab: Thermochemistry (a) Calorimeter consists of thermometer, two styrofoam cups, paper cover, and beaker. (b) Two cups together, supported in a beaker. Cover in place with thermometer through the hole in the cover. (c) Diagram of the experimental setup for the thermochemistry experiment. Figure Equipment and setup for the thermochemistry experiment. (g) ples, making sure the calorimeter is clean and dry each time. In each case, determine ΔT, the change in temperature between the temperature of the HCl solution before adding it to the magnesium and the maximum temperature of the reacting system. If you were to plot the temperature of the reacting system versus time, you would see something like that illustrated here.

5 Chemistry 111 Lab: Thermochemistry Page I-7 PART II: Heat of Reaction of Magnesium Oxide with Hydrochloric Acid (a) Set up the calorimeter as in PART I. Make sure it is clean and dry. (b) (c) Weigh out 0.7 g of MgO to the nearest g and place the powder in the calorimeter. Repeat steps (d) and (e) as in PART I above with another sample of magnesium oxide. Note: One problem here is that the MgO tends to stick on the paper. The best way to avoid an error is to weigh the MgO on a small piece of paper on the balance in such a way that you know the net weight of the MgO. Place both the paper and the MgO powder in the calorimeter.

6 Page I-8 Chemistry 111 Lab: Thermochemistry Revised: June 2003

Calorimetry Experiments

Calorimetry Experiments Calorimetry Experiments Pre-Lab: Today s laboratory period will include a variety of activities designed to re-familiarize you with safe practices for chemistry laboratory, the space and equipment you

More information

Experiment 14 - Heats of Reactions

Experiment 14 - Heats of Reactions Experiment 14 - Heats of Reactions If a chemical reaction is carried out inside a calorimeter, the heat evolved or absorbed by the reaction can be determined. A calorimeter is an insulated container, and

More information

Thermochemistry: Enthalpy of Reaction Hess s Law

Thermochemistry: Enthalpy of Reaction Hess s Law Thermochemistry: Enthalpy of Reaction Hess s Law Objective Demonstrate Hess s Law for determining the enthalpy of formation for MgO by measuring temperature change for several reactions. Introduction The

More information

EXPERIMENT 9. Thermochemistry: Hess Law and the Heat of Formation of MgO

EXPERIMENT 9. Thermochemistry: Hess Law and the Heat of Formation of MgO Outcomes EXPERIMENT 9 Thermochemistry: Hess Law and the Heat of Formation of MgO After completing this experiment, the student should be able to: 1. Differentiate between exothermic and endothermic reactions.

More information

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

Experiment 7: Enthalpy of Formation of Magnesium Oxide

Experiment 7: Enthalpy of Formation of Magnesium Oxide Experiment 7: Enthalpy of Formation of Magnesium Oxide Objective: In this experiment, a simple calorimeter will be constructed and calibrated, and Hess' law of constant heat summation will be used to determine

More information

Prelab attached (p 8-9) (g)! MgO (s) + heat (1)

Prelab attached (p 8-9) (g)! MgO (s) + heat (1) CHEM 151 ENTHALPY OF FORMATION OF MgO FALL 2008 Fill-in Prelab attached (p 8-9) Stamp Here Name Partner Lecture instructor Date INTRODUCTION Chemical reactions either produce heat as they proceed (exothermic)

More information

Lab 9. Hess s Law. Reaction B. NaOH (s) + HCl (aq) NaCl (aq) + H 2 O (l) Reaction C. NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

Lab 9. Hess s Law. Reaction B. NaOH (s) + HCl (aq) NaCl (aq) + H 2 O (l) Reaction C. NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) Lab 9. Hess s Law Prelab Assignment Before coming to lab: This exercise does not require a report in your lab notebook. Use a pen to record your data, observations, calculations and analysis in the spaces

More information

HEATS OF REACTION. Name: Chemistry 117 Laboratory University of Massachusetts Boston LEARNING GOALS

HEATS OF REACTION. Name: Chemistry 117 Laboratory University of Massachusetts Boston LEARNING GOALS Name: Chemistry 117 Laboratory University of Massachusetts Boston HEATS OF REACTION LEARNING GOALS 1. Become familiar the technique of calorimetry to measure heats of reaction 2. Become familiar with the

More information

L q + w. CHM 1041 Thermochemistry Heats of Solution (Reaction) J. Bieber. Section: Date:

L q + w. CHM 1041 Thermochemistry Heats of Solution (Reaction) J. Bieber. Section: Date: CHM 1041 Thermochemistry Heats of Solution (Reaction) J. Bieber Name: Partner: Section: Date: To study quantitatively the heat of solution when (1) a salt dissolves in water and (2) to study the heats

More information

By adding Equations 1, 2, and 3, the Overall Equation is obtained. Summation of their enthalpies gives the enthalpy of formation for MgO.

By adding Equations 1, 2, and 3, the Overall Equation is obtained. Summation of their enthalpies gives the enthalpy of formation for MgO. The standard enthalpy of formation of a compound, Hf o, is the heat change accompanying the formation of one mole of compound from the elements at standard state. The standard state of a substance is the

More information

Additivity of Heats of Reaction: Hess s Law

Additivity of Heats of Reaction: Hess s Law Additivity of Heats of Reaction: Hess s Law Computer 18 In this experiment, you will use a Styrofoam-cup calorimeter to measure the heat released by three reactions. One of the reactions is the same as

More information

q = (mass) x (specific heat) x T = m c T (1)

q = (mass) x (specific heat) x T = m c T (1) Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

More information

Thermochemistry I: Endothermic & Exothermic Reactions

Thermochemistry I: Endothermic & Exothermic Reactions THERMOCHEMISTRY I 77 Thermochemistry I: Endothermic & Exothermic Reactions OBJECTIVES: Learn elementary concepts of calorimetry and thermochemistry Practice techniques of careful temperature, mass, and

More information

CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM

CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM Experiment 12J FV 7/16/06 CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM MATERIALS: Styrofoam coffee cup and lid, thermometer, magnetic stirrer, magnetic stir bar, 50-mL and 100-

More information

CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric

CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric Name Team Name CHM111 Lab Enthalpy of Hydration of Sodium Acetate Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper

More information

Enthalpy of Neutralization. Introduction

Enthalpy of Neutralization. Introduction Enthalpy of Neutralization Introduction Energy changes always accompany chemical reactions. If energy, in the form of heat, is liberated the reaction is exothermic and if energy is absorbed the reaction

More information

Heat of Neutralization

Heat of Neutralization Cautions HCl and NaOH are corrosive and toxic Purpose The purpose of this experiment is to determine the heat of neutralization for a reaction between a strong acid and a strong base. Introduction Chemical

More information

Unit 27 Heat of Neutralization Calorimetry

Unit 27 Heat of Neutralization Calorimetry Unit 27 Heat of Neutralization Calorimetry When reactions occur, energy is always involved. Reactions that absorb energy are called "endothermic" reactions. Reactions that give off energy are called "exothermic"

More information

EXPERIMENT 12N CALORIMETRY

EXPERIMENT 12N CALORIMETRY EXPERIMENT 12N CALORIMETRY FV 7/28/2016 MATERIALS: PURPOSE: OBJECTIVES: Styrofoam cup and lid, stir bar, magnetic stir plate, digital thermometer, 250 ml beaker, two 100 ml graduated cylinders, aluminum

More information

Experiment 9: Enthalpy of Formation of Magnesium Oxide

Experiment 9: Enthalpy of Formation of Magnesium Oxide 1 Experiment 9: Enthalpy of Formation of Magnesium Oxide Objective: In this experiment, a simple calorimeter will be constructed and calibrated, and Hess law of constant heat summation will be used to

More information

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry The Relationships Between Internal Energy, Heat, Enthalpy, and Calorimetry Recap of Last Class Last class, we began our discussion about energy changes that accompany chemical reactions Chapter 5 discusses:

More information

HEAT OF FORMATION OF AMMONIUM NITRATE

HEAT OF FORMATION OF AMMONIUM NITRATE 303 HEAT OF FORMATION OF AMMONIUM NITRATE OBJECTIVES FOR THE EXPERIMENT The student will be able to do the following: 1. Calculate the change in enthalpy (heat of reaction) using the Law of Hess. 2. Find

More information

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the Thermochemistry Readin assinment: Chan, Chemistry 10 th edition, pp. 249-258. Goals We will become familiar with the principles of calorimetry in order to determine the heats of reaction for endothermic

More information

2 To use calorimetry results to calculate the specific heat of an unknown metal. 3 To determine heat of reaction ( H) from calorimetry measurements.

2 To use calorimetry results to calculate the specific heat of an unknown metal. 3 To determine heat of reaction ( H) from calorimetry measurements. Calorimetry PURPOSE To determine if a Styrofoam cup calorimeter provides adequate insulation for heat transfer measurements, to identify an unknown metal by means of its heat capacity and to determine

More information

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Specific heat is an intensive property of a single phase (solid, liquid or gas) sample that describes how the temperature of the sample changes

More information

Chemistry 1215 Make up Lab Enthalpy of Neutralization

Chemistry 1215 Make up Lab Enthalpy of Neutralization hemistry 1215 Make up Lab Enthalpy of Neutralization Objective In this experiment you will determine the molar enthalpy of neutralization of an acid. Introduction The study of energy and its transformations

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Dena K. Leggett, Ph.D. and Jon H. Hardesty, Ph.D. Collin County Community College Dept. of Chemistry 1. Introduction: One of the

More information

CHEMISTRY 110 Assignment #3 - answers 2011.

CHEMISTRY 110 Assignment #3 - answers 2011. 1. Titanium metal is used as a structural material in many high tech applications such as in jet engines. What is the specific heat of titanium in J/() if it takes 89.7 J to raise the temperature of a

More information

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter. Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

More information

3A Energy. What is chemical energy?

3A Energy. What is chemical energy? 3A Energy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

I. CALORIMETRY CALORIMETRY

I. CALORIMETRY CALORIMETRY CALORIMETRY I. CALORIMETRY If the process (e.g. chemical reaction, phase conversion) requires heat to proceed, it is said to be endothermic. For endothermic process, q > 0. If the process (e.g. chemical

More information

7 THERMOCHEMISTRY: HEAT OF REACTION

7 THERMOCHEMISTRY: HEAT OF REACTION 7 THERMOCHEMISTRY: HEAT OF REACTION Name: Date: Section: Objectives Measure the enthalpy of reaction for the decomposition of hydrogen peroxide Measure the heat capacity of a Styrofoam cup calorimeter

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

Calorimeter: A device in which the heat associated with a specific process is measured.

Calorimeter: A device in which the heat associated with a specific process is measured. 1 CALORIMETRY p. 661-667 (simple), 673-675 (bomb) Calorimeter: A device in which the heat associated with a specific process is measured. There are two basic types of calorimeters: 1. Constant-pressure

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy. Chapter 5.2 Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

More information

hij Teacher Resource Bank GCE Chemistry PSA4: AS Physical Chemistry Measure an Enthalpy Change

hij Teacher Resource Bank GCE Chemistry PSA4: AS Physical Chemistry Measure an Enthalpy Change hij Teacher Resource Bank GCE Chemistry : AS Physical Chemistry Measure an Enthalpy Change The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Chapter Six. Energy Relationships in Chemical Reactions

Chapter Six. Energy Relationships in Chemical Reactions Chapter Six Energy Relationships in Chemical Reactions 1 Energy (U): Capacity to Do Work Radiant energy Energy from the sun Nuclear energy Energy stored in the nucleus of an atom Thermal energy Energy

More information

ENDOTHERMIC AND EXOTHERMIC REACTIONS

ENDOTHERMIC AND EXOTHERMIC REACTIONS ENDOTHERMIC AND EXOTHERMIC REACTIONS LAB THC 2.PALM INTRODUCTION Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions

More information

5.2. Determining Enthalpy of Reaction by Experiment. Specific Heat Capacity. 234 MHR Unit 3 Energy Changes and Rates of Reaction

5.2. Determining Enthalpy of Reaction by Experiment. Specific Heat Capacity. 234 MHR Unit 3 Energy Changes and Rates of Reaction In this section, you will 5.2 Section Preview/ Specific Expectations determine the heat that is produced by a reaction using a calorimeter, and use the data obtained to calculate the enthalpy change for

More information

Chapter 7 Energy and Chemical Change: Breaking and Making Bonds

Chapter 7 Energy and Chemical Change: Breaking and Making Bonds Multiple Choice Chapter 7 Energy and Chemical Change: Breaking and Making Bonds Section 7.1 1. Which one of the following is a unit of energy, but not an SI unit of energy? a. joule b. newton c. pascal

More information

Calorimetry and Thermochemistry

Calorimetry and Thermochemistry CHEM 121L General Chemistry Laboratory Revision 1.3 Calorimetry and Thermochemistry Learn how to measure Heat flow. Learn about the Specific Heat of substances. Learn about Exothermic and Endothermic chemical

More information

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics Unit-7 Thermodynamics Introduction: The term Thermo means heat and dynamics means flow or movement.. So thermodynamics is concerned with the flow of heat. The different forms of the energy are interconvertible

More information

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work. ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

More information

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Determining the Effectiveness of Container Lids on Heat Absorption: Measuring Heat of Reaction for NaOH(aq) and HCl(aq)

Determining the Effectiveness of Container Lids on Heat Absorption: Measuring Heat of Reaction for NaOH(aq) and HCl(aq) SCHOLARS DAY REVIEW 27 SCHOLARS DAY REVIEW VOLUME 2 Determining the Effectiveness of Container Lids on Heat Absorption: Measuring Heat of Reaction for NaOH(aq) and HCl(aq) Christine L. Burton Faculty Sponsor:

More information

Chemistry Guide

Chemistry Guide 551534 - Chemistry Guide 1- Contents Question Item Objective Type Skill 1 0102 M03.02.04 Multiple-choice answer Mastery of Problem Solving 2 0099 M03.03.02 Multiple-choice answer Mastery of Concepts 3

More information

SOLUTION CALORIMETRY

SOLUTION CALORIMETRY Experiment 7 SOLUTION CALORIMETRY Prepared by Stephen E. Schullery and Ross S. Nord, Eastern Michigan University PURPOSE Measure the heats of two simple reactions and use Hess's Law to theoretically predict

More information

Name Lab # 3: Gases Percent Yield of Hydrogen Gas from Magnesium and Hydrochloric Acid

Name Lab # 3: Gases Percent Yield of Hydrogen Gas from Magnesium and Hydrochloric Acid Name Lab # 3: Gases Percent Yield of Hydrogen Gas from Magnesium and Hydrochloric Acid Introduction For chemical reactions involving gases, gas volume measurements provide a convenient means of determining

More information

Heats of Reaction lab. Enthalpy

Heats of Reaction lab. Enthalpy Heats of Reaction lab tonight s QuestiONs Is the amount of heat given off or absorbed, q sys, by a chemical reaction an intensive or extensive property? For an acid-base reaction, does the heat of reaction

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

CHAPTER 6 THERMOCHEMISTRY

CHAPTER 6 THERMOCHEMISTRY Chapter 6 Thermochemistry Page 1 CHAPTER 6 THERMOCHEMISTRY 6-1. The standard state of an element or compound is determined at a pressure of and a temperature of. (a) 760 atm, 0 o C (b) 1 mmhg, 273 o C

More information

Gas Laws. E k = ½ (mass)(speed) 2. v101613_10am

Gas Laws. E k = ½ (mass)(speed) 2. v101613_10am Gas Laws v101613_10am Objective: In this lab you will become familiar with the Ideal Gas Law and Dalton s Law of Partial Pressures. You will be able to use the information collected along with stoichiometry

More information

Chemistry 101 Generating Hydrogen Gas

Chemistry 101 Generating Hydrogen Gas Chemistry 101 Generating Hydrogen Gas Objectives To experimentally verify the molar volume of hydrogen gas at STP To gain experience in collecting gas over water Discussion The molar volume of a gas is

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5. Thermochemistry THERMODYNAMICS - study of energy and its transformations Thermochemistry - study of energy changes associated with chemical reactions Energy - capacity to do work or to transfer

More information

Chemistry 1215 Experiment #10 The Reaction of Zinc and Iodine: The Combination of Two Elements

Chemistry 1215 Experiment #10 The Reaction of Zinc and Iodine: The Combination of Two Elements Chemistry 1215 Experiment #10 The Reaction of Zinc and Iodine: The Combination of Two Elements Objective The objective of this experiment is to perform a combination reaction by reacting elemental zinc

More information

CALORIMETRY EXPERIMENT A ENTHALPY OF FORMATION OF MAGNESIUM OXIDE

CALORIMETRY EXPERIMENT A ENTHALPY OF FORMATION OF MAGNESIUM OXIDE A-1 CALORIMETRY EXPERIMENT A ENTHALPY OF FORMATION OF MAGNESIUM OXIDE INTRODUCTION This experiment has three primary objectives: 1. Find the heat capacity (Cp) of a calorimeter and contents (calibration).

More information

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory. Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.

More information

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself

Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them?

More information

Name: Introduction to Calorimetry

Name: Introduction to Calorimetry Name: Introduction to Calorimetry Purpose: The goal of this experiment is to gain experience in the practice of calorimetry; the main method by which chemists measure the energy changes in chemical reactions.

More information

LAB FOUR. Name. Lab Partner(s) Section Date. In this experiment you will use calorimetry to determine the specific heat of a metal.

LAB FOUR. Name. Lab Partner(s) Section Date. In this experiment you will use calorimetry to determine the specific heat of a metal. Name Lab Partner(s) Section Date Specific Heat of a Metal Objective In this experiment you will use calorimetry to determine the specific heat of a metal. Introduction When a substance is heated, the motion

More information

Energy and Chemical Reactions. Characterizing Energy:

Energy and Chemical Reactions. Characterizing Energy: Energy and Chemical Reactions Energy: Critical for virtually all aspects of chemistry Defined as: We focus on energy transfer. We observe energy changes in: Heat Transfer: How much energy can a material

More information

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq)

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq) Endothermic and Exothermic Reactions Computer 1 Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions absorb energy and

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry 1. The ΔE of a system that releases 14.4 J of heat and does 4.8 J of work on the surroundings is J. (a). 19.2 J (b). 14.4 J (c). 4.8 J (d). - 19.2 J Explanation: The ΔE can be

More information

Endothermic & Exothermic Reactions

Endothermic & Exothermic Reactions Written by Chris Papadopoulos Endothermic & Exothermic Reactions This lesson focuses on the use of technology to collect, graph and analyze data from an exothermic and an endothermic reaction. Hypothesis

More information

CHEMISTRY Practice exam #4 answer key October 16, 2007

CHEMISTRY Practice exam #4 answer key October 16, 2007 CHEMISTRY 123-01 Practice exam #4 answer key October 16, 2007 1. An endothermic reaction causes the surroundings to a. warm up. b. become acidic. c. condense. 2. Which of the following is an example of

More information

Experiment 25: Calorimetry

Experiment 25: Calorimetry Aaron Bunch CHEM 111 Morning Lab 27 October 2014 Experiment 25: Calorimetry Conclusion: The unknown metal #14 has a specific heat of 0.36 J/g C; the heat of neutralization of HCl and NaOH is -53.0 kj/mol

More information

Determination of an Empirical Formula and % Composition

Determination of an Empirical Formula and % Composition Chem 110 Lab Clark College Determination of an Empirical Formula and % Composition Percent composition will be discussed in your text, lecture and in lab. This concept is often used to determine how many

More information

Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

More information

Thermochemical equations allow stoichiometric calculations.

Thermochemical equations allow stoichiometric calculations. CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Chapter 6 Quantities in Chemical Reactions

Chapter 6 Quantities in Chemical Reactions Chapter 6 Quantities in Chemical Reactions The Meaning of a Balanced Chemical Equation Mole-Mole Conversions Mass-Mass Conversions Limiting Reactants Percent Yield Energy Changes Copyright The McGraw-Hill

More information

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point.

Example. c. Calculate the amount of heat (in kj) required to heat 1.00 kg (~1 L) of water at 25 C to its boiling point. Example When consuming an ice-cold drink, one must raise the temperature of the beverage to 37.0 C (normal body temperature). Can one lose weight by drinking ice-cold beverages if the body uses up about

More information

Chapter 3 Test Practice DO NOT WRITE ON THIS PRACTICE EXAM

Chapter 3 Test Practice DO NOT WRITE ON THIS PRACTICE EXAM Chapter 3 Test Practice MOORE DO NOT WRITE ON THIS PRACTICE EXAM 1. A sample of an element has a mass of 34.261 grams and a volume of 3.8 cubic centimeters. To which number of significant figures should

More information

Chapter 5: thermochemstry. Internal Energy: E

Chapter 5: thermochemstry. Internal Energy: E Chapter 5: thermochemstry tonight s goals Energy and Enthalpy Review Enthalpies of Reaction Calorimetry Hess Law Enthalpies of Formation Internal Energy: E E = The sum of all kinetic and potential energies

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

Experiment #8 - Types of Reactions and Conservation of Mass

Experiment #8 - Types of Reactions and Conservation of Mass Experiment #8 - Types of Reactions and Conservation of Mass Objectives: To become familiar with several different types of reactions. To study the law of conservation of mass. Safety glasses are required

More information

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume 6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

Exploring Energy Changes: Endothermic and Exothermic Reactions. Introduction

Exploring Energy Changes: Endothermic and Exothermic Reactions. Introduction Exploring Energy Changes: Endothermic and Exothermic Reactions Introduction The story of chemistry is the story of change physical change, chemical change, and energy change. Energy in the form of heat

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two.

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two. Energy Changes in Chemical Reactions Most reactions give off or absorb energy Energy is the capacity to do work or supply heat. Heat: transfer of thermal (kinetic) energy between two systems at different

More information

The Physical Sciences Initiative. Chemistry Inservice D A T A L O G G I N G. Heat of Reaction. for. Graphic Calculator & Computer

The Physical Sciences Initiative. Chemistry Inservice D A T A L O G G I N G. Heat of Reaction. for. Graphic Calculator & Computer The Physical Sciences Initiative Chemistry Inservice D A T A L O G G I N G Heat of Reaction for Graphic Calculator & Computer Nov 2001 1 Heat of Reaction. A Styrofoam cup calorimeter is used in this experiment

More information

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2

3. Of energy, work, enthalpy, and heat, how many are state functions? a) 0 b) 1 c) 2 d) 3 e) 4 ANS: c) 2 PAGE: 6.1, 6.2 1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is a) 24.8 J b) 14.8 J c) 55.2 J d) 15.2 J ANS: d) 15.2 J PAGE: 6.1 2. Calculate the work for the

More information

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics is the study of the transformation of energy into heat and for doing

More information

1. 4 Which particle has two neutrons? 1.

1. 4 Which particle has two neutrons? 1. 1. 4 Which particle has two neutrons? 1. 2. 3. 4. 2. 1 Which electron configuration represents an atom of magnesium in an excited state? 1. 2 7 3 3. 2 8 2 2. 2 7 6 4. 2 8 5 3. 2 Which conclusion was drawn

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

Determining Equivalent Weight by Copper Electrolysis

Determining Equivalent Weight by Copper Electrolysis Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

More information

Molar Mass and the Ideal Gas Law Prelab

Molar Mass and the Ideal Gas Law Prelab Molar Mass and the Ideal Gas Law Prelab Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Determine the mass (in grams) of magnesium metal required to produce

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information