FLUME AREA CALCULATION
|
|
|
- Brianna Sullivan
- 9 years ago
- Views:
Transcription
1 FLUME AREA CALCULATION 1. Introduction The models used at Pelaez Ranch are trapezoidal shape flumes. The sizes of flumes are different due to the volume of water passing from them. This SOP explains how to measure the amount of water, area (volume of water) inside the flumes in a specific time. Flume model - 3 feet 60 V is used in stations 1, 2, 3 and 4. Model 2 ft SRCRC is used in station 5. Here is the description table of both models: Station Description B1 B2 a B W D H1 1, 2, 3, 4 3 feet60º V / ½ 5 2 ft SRCRC Table 1. Dimensions of the flumes The first model-3 feet 60 V can operate up to gpm (gallons per minute), and the second-2 ft SRCRC, can operate from 21 to gpm. The dimensions in table 1 refers to the sketches below: Figure 1. Plan view related to table 1.
2 Figure 2. End and Section view related to table 1. Measuring the water depth (upstream is taken as a base) in inches with a ruler at the field, we can calculate the area using the equations studied in this SOP. So we can find the flow as Q = V (velocity ) x A (area) All the data and the consequent conclusions are from 25-July-05. On that day only station 4 velocity was measured and taken as a pattern. Flow, Q can be calculated just with velocity >0. More information can be reached from
3 Here is a resume of the information needed to do the calculations of the flume areas. Figure 3. Measurements of the area equation. The depth is measured upstream from the throat a distance of 3 to 4 times the maximum expected head. This location is somewhat arbitrary because the head does not vary too much with position. It is important to note that head is measured from the top of the hump rather than from the bottom of the approach channel. Regarding analysis of flumes, flumes (like weirs) are designed to force a transition from sub-critical to super-critical flow. In the case of flumes, the transition is caused by designing flumes to have a narrowing at the throat, raising of the channel bottom, or both. Such a transition causes flow to pass through critical depth at the flume throat. At the critical depth, energy is minimized and there is a direct relationship between water depth and velocity (and flowrate). However, it is physically very difficult to measure critical depth in a flume because its exact location is difficult to determine and may vary with flowrate. Through mass conservation, the upstream depth is related to the critical depth. Therefore, flowrate can be determined by measuring the upstream depth, which is a highly reliable measurement.
4 2. Equations and Methodology Till now, we have been using just the area equations, but others may be useful for the future equations based on ISO 4359, 1983: [2] Let H=h and obtain C s from the graph below. Note that the graph is only valid for 0.02 < mh/b < 5. Then, C v from numerical solution of:
5 C v can only be computed if hbc s /A<0.93. Since C s and C v are functions of both H and h, re-compute H=h C v 2/3, C s, C v, and Q. ISO 4359 suggests re-computing Q three times, but we re-compute Q until there are at least four significant digits of accuracy. Then, V and F are computed from the final Q. 3. Variables m- meters, s- seconds A- Cross-sectional area of approach channel [m 2 ]. B - Bottom width of flume throat [m]. B - Bottom width of approach channel [m]. C - C d - Coefficient of discharge for rectangular, trapezoidal and U flumes [unit-less]. C s - Shape coefficient for trapezoidal flume [unit-less]. C v - Coefficient of approach velocity for rectangular, trapezoidal, and U flumes [unitless]. F - Froude number of flow in approach channel [unit-less]. F<1 is slow or sub-critical flow. F>1 is fast or super-critical flow. g - Acceleration due to gravity, m/s 2. h - Measured head [m]. If there is a hump, then it is the vertical distance between the top of the hump and the water surface. H - Total head [m]. Measured head plus velocity head. H=h C v 2/3 k - Constant used in trapezoidal flume computation [unit-less]. L - Length of flume throat [m]. m - Side slope of trapezoidal flume throat. Horizontal to vertical (H:V). M - Side slope of trapezoidal flume approach channel. Horizontal to vertical (H:V). P - Hump height [m]. Q - Flowrate through flume [m 3 /s]. T - Top width of approach channel [m]. V - Velocity in approach channel [m/s]. 4. Data analysis Based on the equation of the area, it is done a excel page. Almost all the values are constants based on the flume description from the top.
6 The values that need to be change each time are: Velocity, it should be calculated. Also the P+ H, it is what we measure in the flumes with the ruler. Since my concern P is always equals 0, to understand what is P and all the abbreviations check the introduction. The other values are constant. See below an example of the results given by the excel model. This results are the ones achieved on Station area ( inches 2 ) area (feets 2 ) Velocity (f/s) q (cfs) station (inches) P H B M P + H area
Configuring the HydroRanger 200 to measure open channel flow. Specific parameter setting to configure the following primary measurement devices:
Flow Application Configuration AG040308 Configuring the HydroRanger 200 to measure open channel flow Objective: Specific parameter setting to configure the following primary measurement devices: exponential
2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT
2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number
EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR
EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR Mohd Adib Mohd Razi, Dwi Tjahjanto, Wan Afnizan Wan Mohamed, Siti Norashikin Binti Husin Department of Water Resource and Environmental
...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)
. Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The
Module 9: Basics of Pumps and Hydraulics Instructor Guide
Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine
Open Channel Flow Measurement Weirs and Flumes
Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of
CEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:
What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)
OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure
Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:
Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel
Experiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
Exercise (4): Open Channel Flow - Gradually Varied Flow
Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches
Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.
Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated
Broad Crested Weirs. I. Introduction
Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp
Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?
Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming
CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow
CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented
APPENDIX B DESIGN GUIDELINES FOR APPROVED TREATMENT METHODS
APPENDIX B DESIGN GUIDELINES FOR APPROVED TREATMENT METHODS PLANTER BOXES 1. Determine the impervious area contributing flow to the planter box (see Chapter 4.2). 2. Assumption: Typical soil infiltration
Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:
Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is
Appendix 4-C. Open Channel Theory
4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic
Lecture 25 Design Example for a Channel Transition. I. Introduction
Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design
Open channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
Flow Measurement Options for Pipeline and Open Channel Flow
Flow Measurement Options for Pipeline and Open Channel Flow October 2013 Presented by Molly Skorpik - 2013 Montana Association of Dam and Canal Systems Conference Irrigation Training and Research Center
CE415L Applied Fluid Mechanics Laboratory. Experiment: No. 5 Open Channel Flow Measurements and Grade Lines
CE415L pplied Fluid Mechanics Laborator Experiment: No. 5 Open Channel Flow Measurements and Grade Lines Learning Objective Following the completion of this experiment and the analsis of the data, ou should
FLOW RATE MEASUREMENTS BY FLUMES
Fourteenth International Water Technology Conference, IWTC 14 010, Cairo, Egypt 1 FLOW RATE MEASUREMENTS BY FLUMES W. Dbrowski 1 and U. Polak 1 Department of Environmental Engineering, Cracow University
Chapter 9. Steady Flow in Open channels
Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows
Flow Measurement Calibration and Measurement
Calibration and Measurement Flow Measurement Flow measurement for agricultural irrigation delivery can be accomplished with four general approaches. These categories are generalized below. I. Standard
Gertrudys B. Adkins, Ph.D. Division of Water Rights 2006
FLOW MEASUREMENT DEVICES By Gertrudys B. Adkins, Ph.D. Division of Water Rights 2006 TABLE OF CONTENT INTRODUCTION...1 FLOW MEASUREMENT DEVICES...1 FLOW MEASUREMENT BASICS...2 OPEN CHANNEL FLOW METHODS...3
OPEN-CHANNEL FLOW. Free surface. P atm
OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface
Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: [email protected] Landline: +98 21 77240391 Fall 2013 Introduction
Design Charts for Open-Channel Flow HDS 3 August 1961
Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic
Steven R. McManus Environmental Product Support Teledyne Isco
Steven R. McManus Environmental Product Support Teledyne Isco Flow Measurement Applications and Technologies. Methods of flow measurement Technologies of flow measurement Flow Rate Applications Channel
2O-1 Channel Types and Structures
Iowa Stormwater Management Manual O-1 O-1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.
Centre d expertise en analyse environnementale du Québec
Centre d expertise en analyse environnementale du Québec Sampling Guide for Environmental Analysis BOOKLET 7 FLOW MEASUREMENT METHODS IN OPEN CHANNELS English Version of The Original Publishing EDITION
Storm Drainage Systems 11.9-1
Storm Drainage Systems 11.9-1 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of
Equipment for Engineering Education
Equipment for Engineering Education Instruction Manual Venturi Flume G.U.N.T. Gerätebau GmbH Fahrenberg 4 D-885 Barsbüttel Germany Phone: ++49 (40) 670854.0 Fax: ++49 (40) 670854.4 E-mail: [email protected]
ESTIMATING DISCHARGE AND STREAM FLOWS
ESTIMATING DISCHARGE AND STREAM FLOWS A Guide for Sand and Gravel Operators Prepared by: Joy P. Michaud and Marlies Wierenga, EnviroVision Art and design by: S. Noel, Noel Design, LLC July 2005 Ecology
21. Channel flow III (8.10 8.11)
21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Non-uniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs
Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations:
Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations: Quadratic Equations form Parabolas: Typically there are two types of problems:
Sanitary Sewer Overflow (SSO) Incident Report Form
Submit completed form to EHS. Date of SSO spill: Sanitary Sewer Overflow (SSO) Incident Report Form Identify the SSO category (check one): Category 1 SSO Spills of any volume that reach surface water Category
LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number
LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric
M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)
M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity
Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP
Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP HENING HUANG, RD Instruments, 9855 Businesspark Avenue, San Diego,
1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.
Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this
Riprap-lined Swale (RS)
Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This
Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow
Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The
Topic 8: Open Channel Flow
3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,
Emergency Spillways (Sediment basins)
Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]
Smart Electromagnetic Flowmeter Open channel Flowmeter Detector
Magne3000 PLUS Smart Electromagnetic Flowmeter Open channel Flowmeter Detector Model NNK150/951 OVERVIE The Magne3000 PLUS Electromagnetic Flowmeter is submersible type of flowmeter mainly used for flow
Spreadsheet Use for Partially Full Pipe Flow Calculations
Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02-037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY
Practice Tests Answer Keys
Practice Tests Answer Keys COURSE OUTLINE: Module # Name Practice Test included Module 1: Basic Math Refresher Module 2: Fractions, Decimals and Percents Module 3: Measurement Conversions Module 4: Linear,
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)
Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the
Peeling the Onion of Meter Accuracy Two Steps to Evaluating Flow Meter Data
Peeling the Onion of Meter Accuracy Two Steps to Evaluating Flow Meter Data ABSTRACT Patrick L. Stevens, PE ADS Environmental Services 9 S. Cloverdale St., Suite B Seattle, WA 988 It is a natural desire
EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives
EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity
Characteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
CIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics
CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...
Chapter 10. Open- Channel Flow
Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open- Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables
Design of open channel
Design of open channel Manning s n Sides slope Seepage losses Evaporation losses Free board Data ssumptions Two unknowns b & Flow rate Q Tpe of soil Longitudinal slope S Meterlogical data (temp., wind...etc.
CITY UTILITIES DESIGN STANDARDS MANUAL
CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.
HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long
HYDRAULICS H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long 1. General The series of channels H91.8D has been designed by Didacta Italia to study the hydrodynamic
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
Chapter 13 OPEN-CHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required
2-1 Position, Displacement, and Distance
2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA
STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1
Hydraulics Laboratory Experiment Report
Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients
ABC & C 2 EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams
ABC & C EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams Alkalinity, as mg CaCO 3 /L = (Titrant, ml) (Acid Normality)(50,000) Sample, ml Volts Amps = Ohms * of Circle =
Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
2Digital tablets or computer scanners can
Appendix A Measuring Lake Surface Area Lake surface area can be measured with a bathymetric map using any of the following techniques: 1One of the most accurate methods is to use a planimeter to trace
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
Open Channel Diffusers
Open Channel Diffusers Application Information: Open channel diffusers are used to increase mixing and absorbance efficiency of a chemical solution into the process water. Specifically designed penetrations
SPCC Plan - Calculation Guidance
SPCC Plan - Calculation Guidance The following example compares two different design criteria: one based on the volume of the tank and one based on precipitation. Scenario: A 20,000-gallon horizontal tank
Section 6.4: Work. We illustrate with an example.
Section 6.4: Work 1. Work Performed by a Constant Force Riemann sums are useful in many aspects of mathematics and the physical sciences than just geometry. To illustrate one of its major uses in physics,
APPENDIX D INLET CAPACITY AND SPACING. The capacity and spacing design of storm drainage inlets are presented in detail in this Appendix.
Storm Drainage 3-D- PPENDIX D INET CPCITY ND SPCING.0 Introduction The capacity and spacing design of storm drainage inlets are presented in detail in this ppendix. 2.0 Design Recurrence Interval and Spread
Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.
Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact
Flow Over Weirs. By John Fuller. Fluid Mechanics Lab. Wednesday(1-345pm) Group member: Abdur Rahaman
Flow Over Weirs By John Fuller Fluid Mechanics Lab Wednesday(1-345pm) Group member: Abdur Rahaman Abstract The objective of this lab is to determine the characteristics of open-channel flow over, firstly,
** Pressure represents energy when a. pressure difference is available.
4 * ** Pressure represents energy when a pressure difference is available. Potential Energy Datum Potential Energy Datum Pressure Energy Pressure Energy Kinetic Energy Kinetic Energy Kinetic Energy Dividing
The GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,
Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
CHAPTER 3 STORM DRAINAGE SYSTEMS
CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next
A Simple Flow Measuring Device for Farms
SR-IWM-6 AUBURN UNIVERSITY ALABAMA A&M UNIVERSITY UNIVERSITY OF ARKANSAS UNIVERSITY OF ARKANSAS PINE BLUFF UNIVERSITY OF FLORIDA FLORIDA A&M UNIVERSITY UNIVERSITY OF GEORGIA UNIVERSITY OF KENTUCKY LOUISIANA
Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29
_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the
N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to
Determining the Area and Volume of Your Pond
Determining the Area and Volume of Your Pond Michael A. Davis, Ph.D. UF/IFAS Baker County Extension Service Tim Wilson, M.S. UF/IFAS Bradford County Extension Service Basil Bactawar, M.S. UF/IFAS Union
Calculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical
European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru
Basic Math for the Small Public Water Systems Operator
Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
Summer Math Exercises. For students who are entering. Pre-Calculus
Summer Math Eercises For students who are entering Pre-Calculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn
Flow Like An Egyptian: The Basics of Open channel flow
Flow Like An Egyptian: The Basics of Open channel flow Walt Boyes,as ISA Life Fellow, Fellow of InstMC, Chartered Measurement and Control Technologist, Editor of Control and ControlGlobal.com and principal
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
Perimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
CHAPTER 5 OPEN CHANNEL HYDROLOGY
5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal
