1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

Size: px
Start display at page:

Download "1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time"

Transcription

1 PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine in what direction an object is going, how fast it is moving, how far it traveled, and whether it is speeding up or slowing down. In this experiment, you will use a Motion Detector to determine this information by plotting a real time graph of your motion as you move across the classroom. The Motion Detector measures the time it takes for a high frequency sound pulse to travel from the detector to an object and back. Using this round-trip time and the speed of sound, you can determine the distance to the object; that is, its position. Logger Pro will perform this calculation for you. It can then use the change in position to calculate the object s velocity and acceleration. All of this information can be displayed either as a table or a graph. A qualitative analysis of the graphs of your motion will help you develop an understanding of the concepts of kinematics. walk back and forth in front of Motion Detector OBJECTIVES Analyze the motion of a student walking across the room. Predict, sketch, and test distance vs. time kinematics graphs. Predict, sketch, and test velocity vs. time kinematics graphs. MATERIALS Power Macintosh or Windows PC LabPro or Universal Lab Interface Logger Pro Vernier Motion Detector meter stick masking tape Physics with Computers 1-1

2 Experiment 1 PRELIMINARY QUESTIONS 1. Sketch the distance vs. time and velocity vs. time graphs for each of the following situations: An object at rest An object moving in the positive direction with a constant speed An object moving in the negative direction with a constant speed An object that is accelerating in the positive direction, starting from rest 2. Have me come by and initial your sketches. You will need to include this sheet with your report. PROCEDURE Part l Preliminary Experiments 1. Connect the Motion Detector to DIG/SONIC 2 of the interface. 2. Place the Motion Detector so that it points toward an open space at least 4 m long. Use meter sticks to mark the 1 m, 2 m, and 3 m distances from the Motion Detector. 3. Inside the folder Physics with Vernier, open the experiment file 01a Graph Matching. One graph will appear on the screen. The vertical axis has distance scaled from 0 to 4 meters. The horizontal axis has time scaled from 0 to 10 seconds. 4. Using Logger Pro, produce a graph of your motion when you walk away from the detector with constant velocity. To do this, stand about 1 m from the Motion Detector and have your lab partner click Collect. Walk slowly away from the Motion Detector when you hear it begin to click. 5. Try to match the shape of the distance vs. time graphs that you sketched in the Preliminary Questions section by walking in front of the Motion Detector. Do they match? 6. You do not need to save any of this data. When you are satisfied that the equipment is working properly, move on to part II. Part Il Distance vs. Time Graph Matching 7. Open the experiment file 01b Graph Matching. The distance vs. time graph shown will appear. 1-2 Physics with Computers

3 Graph Matching 8. Before you start, think about how you should walk to produce this target graph. Analyze each type of motion separately, for example, for the previous graph you have the following intervals to analyze: [0 to 1 s], [1 s to 3 s], [3 s to 6 s], [6 s to 7.5 s] (approximately), and [7.5 s to 10 s]. All these intervals of time represent different types of motion. For each of these intervals, you must know the distance covered and what was the average velocity in that interval of time. 9. To test your prediction, choose a starting position and stand at that point. Start data collection by clicking Collect. When you hear the Motion Detector begin to click, walk in such a way that the graph of your motion matches the target graph on the computer screen. 10. If you were not successful, repeat the process until your motion closely matches the graph on the screen. Save your best attempt on your floppy disk, or a memory stick. You will need to include a printout with your report. A good strategy is to save each reasonable attempt; you can always delete the bad files later. 11. Open the experiment file 01c Graph Matching and repeat Steps 8 10, using a new target graph. 12. Answer the following questions. These questions need to be answered in your lab report. Interval (a) Describe how you walked to match each graph by completing the table below. You will need to be very organized and specific with regards to time intervals, distances covered, velocities, and directions! Divide the plots in time intervals first. Each time interval should refer to a type of motion, until that motion was changed. Therefore, time intervals are not necessarily equal to 1 s or 2 s, etc, it depends on how long a certain type of motion lasted. Initial time t 1 (s) Final time t 2 (s) t (s) Initial position x 1 (m) Final position x 2 (m) x (m) Velocity v (m/s) (b) What type of motion is occurring when the slope of a distance vs. time graph is zero? (c) What type of motion is occurring when the slope of a distance vs. time graph is constant? (d) What type of motion is occurring when the slope of a distance vs. time graph is -3 m/s? (e) What type of motion is occurring when the slope of a distance vs. time graph is +5 m/s? Physics with Computers 1-3

4 Experiment 1 Part IlI Velocity vs. Time Graph Matching 13. Open the experiment file 01d Graph Matching. You will see the following velocity vs. time graph. 14. Before you start, think about how you should walk to produce this target graph. Analyze each type of motion separately, for example, for the previous graph you have the following intervals to analyze: [0 to 2 s], [2 s to 5 s], [5 s to 7 s], [7 s to 10 s]. All these intervals of time represent different types of motion. For each of these intervals, you must know the distance covered, what were the velocities, and what was the ACCELERATION in that interval of time 15. To test your prediction, choose a starting position and stand at that point. Start Logger Pro by clicking Collect. When you hear the Motion Detector begin to click, walk in such a way that the graph of your motion matches the target graph on the screen. It will be more difficult to match the velocity graph than it was for the distance graph. 16. Save your best attempt on your floppy disk, or a memory stick. You will need to include a printout with your report. A good strategy is to save each reasonable attempt; you can always delete the bad files later. 17. Open the experiment file 01e Graph Matching. Repeat Steps to match this graph. 1-4 Physics with Computers

5 Graph Matching 18. Answer the following questions. These questions need to be answered in your lab report. (a) Describe how you walked to match each graph by completing the table below. You will need to be very organized and specific with regards to time intervals, distances covered, velocities, directions and ACCELERATIONS! I want you to tell me exactly the distance covered, the velocity and acceleration for each time interval. Divide the plots in time intervals first. Each time interval should refer to a type of motion, until that motion was changed. Therefore, time intervals are not necessarily equal to 1 s or 2 s, etc, it depends on how long a certain type of motion lasted. Interval Initial time t 1 (s) Final time t 2 (s) t (s) Initial velocity v 1 (m/s) Final velocity v 2 (m/s) v (m/s) Acceleration a (m/s 2 ) Displacement x (m) (b) Using the velocity vs. time graphs, sketch the corresponding distance vs. time graph for each of the graphs that you matched. (c) What does the area under the velocity vs. time graph represent? (d) What type of motion is occurring when the slope of a velocity vs. time graph is zero? (e) What type of motion is occurring when the slope of a velocity vs. time graph is +5 m/s 2? REPORT For this experiment, your report should include the following, in this order: 1) Cover sheet with title of the experiment, number of the experiment, date, your name, instructor s name, course number, section number. 2) Preliminary sketches initialed by me. 3) Printouts of your best attempt at matching the graphs 01b, 01c, 01d, 01e (choose only ONE example for each!). LABEL your printouts, i.e., give them a title. Every time you refer to your two printouts, refer to their title. Every graph or printout should always have a title, or label. 4) Answers to questions in step 12. Question 12a needs to be answered for graphs 01b and 01c. 5) Answers to questions in step 18. Questions 18a and 18b need to be answered for graphs 01d and 01e. Physics with Computers 1-5

Graph Matching. walk back and forth in front of Motion Detector

Graph Matching. walk back and forth in front of Motion Detector Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine

More information

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Velocity Test: Interpreting Velocity Graphs

Velocity Test: Interpreting Velocity Graphs Velocity Test: Interpreting Velocity Graphs Activity 3 When you walk, ride a bike, or travel in a car, you are often interested in the distance traveled, the time it took, and the speed or velocity of

More information

Physics 1050 Experiment 2. Acceleration Due to Gravity

Physics 1050 Experiment 2. Acceleration Due to Gravity Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape

More information

WEEK 2: INTRODUCTION TO MOTION

WEEK 2: INTRODUCTION TO MOTION Names Date OBJECTIVES WEEK 2: INTRODUCTION TO MOTION To discover how to use a motion detector. To explore how various motions are represented on a distance (position) time graph. To explore how various

More information

Evaluation copy. Centripetal Acceleration on a Turntable. computer OBJECTIVES MATERIALS

Evaluation copy. Centripetal Acceleration on a Turntable. computer OBJECTIVES MATERIALS Computer 20 Centripetal Acceleration on a Turntable As a child, you may remember the challenge of spinning a playground merry-go-round so you could scare the unfortunate riders as they traveled around

More information

Measuring Motion. walk back and forth in front of Motion Detector

Measuring Motion. walk back and forth in front of Motion Detector Measuring Motion walk back and forth in front of Motion Detector Objective: To understand the relationship between Distance, Velocity and Acceleration. To gain familiarity with collecting position data

More information

Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here.

Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here. Kinematics 1D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Graphing

More information

The Magnetic Field of a Permanent Magnet

The Magnetic Field of a Permanent Magnet Introduction The of a Permanent Magnet A bar magnet is called a dipole since it has two poles, commonly labeled North and South. Breaking a magnet in two does not produce two isolated poles; each fragment

More information

Static and Kinetic Friction

Static and Kinetic Friction Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the

More information

PHYSICS 220 LAB #2: PROJECTILE MOTION

PHYSICS 220 LAB #2: PROJECTILE MOTION Name: Partners: PHYSICS 220 LAB #2: PROJECTILE MOTION As a dolphin leaps out of the water, it experiences a change in velocity that is the same as that of any other mass moving freely close to the surface

More information

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

Meet You at the Intersection: Solving a System of Linear Equations

Meet You at the Intersection: Solving a System of Linear Equations Meet You at the Intersection: Solving a System of Linear Equations Activity 30 Many times, the solution to a real-life problem involves solving more than one mathematical equation at the same time. The

More information

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension 14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a

More information

Experiment: Series and Parallel Circuits

Experiment: Series and Parallel Circuits Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

More information

Dynamics Track. Mechanical Force, Impulse and Momentum

Dynamics Track. Mechanical Force, Impulse and Momentum Dynamics Track Mechanical Force, Impulse and Momentum An object subjected to unbalanced forces undergoes acceleration, which changes the velocity of the object in question. This change in motion can be

More information

Physics P150A Labs Experimental Lab #3 Newton s 3 rd Law (Rev A 9/21/12) Activity #1 Rocket Balloons

Physics P150A Labs Experimental Lab #3 Newton s 3 rd Law (Rev A 9/21/12) Activity #1 Rocket Balloons Activity #1 Rocket Balloons In this activity, you will learn about Newton s Third Law of Motion: how do the actions and reactions in a moving system relate to forces and acceleration? In this experiment

More information

Picket Fence Free Fall

Picket Fence Free Fall Picket Fence Free Fall Experiment 5 We say an object is in free fall when the only force acting on it is the earth s gravitational force. No other forces can be acting; in particular, air resistance must

More information

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

More information

Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

More information

Learning to Use a Magnetic Field Sensor

Learning to Use a Magnetic Field Sensor Learning to Use a Magnetic Field Sensor Have you ever played with magnets? One reason why they are fun and interesting is that they can have an effect on objects around them. This is because magnets are

More information

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum

More information

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an

More information

LAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X'- by R.E.Tremblay

LAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X'- by R.E.Tremblay Purpose: To learn how to make position and velocity verses time graphs when given the position of an object at various times. You will also learn how to determine initial velocity and acceleration from

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

More information

Acceleration of Gravity

Acceleration of Gravity Acceleration of Gravity Introduction: In this experiment, several objects' motion are studied by making several measurements of the objects position (or displacement) at different times. Since the objects

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Lab 3 - Projectile Motion Scientific Data Collection and Analysis (with some experimental design)

Lab 3 - Projectile Motion Scientific Data Collection and Analysis (with some experimental design) Partner 1: Lab 3 - Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data

More information

Introduction to the Vernier Photogate Using LabQuest App

Introduction to the Vernier Photogate Using LabQuest App Introduction to the Vernier Photogate Using LabQuest App The purpose of this document is to provide a tutorial on the use of Vernier Photogates with LabQuest App data-collection software. This combination

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Motion 1. 1 Introduction. 2 The Motion Sensor

Motion 1. 1 Introduction. 2 The Motion Sensor Motion 1 Equipment: DataStudio, motion sensor mounted about 25 cm above lab bench, Data studio files mot1.ds and mot2.ds. Lab Report: Describe procedures not given in the write up. Submit data graphs where

More information

WEEK 6: FORCE, MASS, AND ACCELERATION

WEEK 6: FORCE, MASS, AND ACCELERATION Name Date Partners WEEK 6: FORCE, MASS, AND ACCELERATION OBJECTIVES To develop a definition of mass in terms of an object s acceleration under the influence of a force. To find a mathematical relationship

More information

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer. Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact

More information

Physics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009

Physics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009 Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY ACCELERATION DUE TO GRAVITY Objective: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: Computer with Logger Pro, green Vernier interface box, picket fence

More information

Acceleration Due to Gravity

Acceleration Due to Gravity Activity 5 PS-2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

More information

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface. Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

Centripetal Acceleration on a Turntable

Centripetal Acceleration on a Turntable Experiment 17 Centripetal Acceleration on a Turntable As a child, you may remember the challenge of spinning a playground merry-go-round so you could scare the unfortunate riders as they traveled around

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

Introduction to the Vernier Photogate: Part 1 Gate Timing

Introduction to the Vernier Photogate: Part 1 Gate Timing PHY 7a Introduction to the Vernier Photogate: Part 1 Gate Timing The Vernier Photogate is a general sensor used for measuring speeds, accelerations, and periods of moving objects. It can also be used for

More information

Newton s Second Law. Evaluation copy

Newton s Second Law. Evaluation copy Newton s Second Law Experiment 4 INTRODUCTION In your discussion of Newton s first law, you learned that when the sum of the forces acting on an object is zero, its velocity does not change. However, when

More information

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? AS 101 Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage

More information

Buggy Car Lab Questions to be investigated Objectives Materials Teacher Notes Experimental Design:

Buggy Car Lab Questions to be investigated Objectives Materials Teacher Notes Experimental Design: Buggy Car Lab Questions to be investigated 1. How do we describe the motion of an object? 2. What characterizes constant velocity? 3. What type of graph best illustrates constant velocity? 4. What does

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

: Lab 1: Measurement and Uncertainty Pendulum Period

: Lab 1: Measurement and Uncertainty Pendulum Period Introduction : Lab 1: Measurement and Uncertainty Pendulum Period Physics is primarily an experimental science. Physics theories are tested and refined and are only retained when they are proven to be

More information

Time hours. 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped?

Time hours. 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped? Time hours 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped? b. At what time did the car have the greatest velocity?

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

More information

Run! 8. Suggested Grade Range: Approximate Time: 1 hour. State of California Content Standards:

Run! 8. Suggested Grade Range: Approximate Time: 1 hour. State of California Content Standards: 8 Students will practice creating and analyzing distance-time graphs by engaging in timed runs and using their collected data to plot distance-time graphs. They will recognize the slope of a line on a

More information

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

More information

Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8

Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8 Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8 Speed, Velocity, and Acceleration Major Topic and SOL: Science SOL Length of Unit: Speed, Velocity, and

More information

Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

More information

Examples of Data Representation using Tables, Graphs and Charts

Examples of Data Representation using Tables, Graphs and Charts Examples of Data Representation using Tables, Graphs and Charts This document discusses how to properly display numerical data. It discusses the differences between tables and graphs and it discusses various

More information

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction

Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction Chapter 4 Kinematics - Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.

More information

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

More information

The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:

The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo: Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of

More information

Experiment 4 Analysis by Gas Chromatography

Experiment 4 Analysis by Gas Chromatography Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has.

More information

Evaluation copy. Stream Flow. Computer INTRODUCTION

Evaluation copy. Stream Flow. Computer INTRODUCTION Stream Flow Computer 16 INTRODUCTION Stream flow or discharge is the volume of water that moves through a specific point in a stream during a given period of time. Discharge is usually measured in units

More information

Sound Waves and Beats

Sound Waves and Beats Sound Waves and Beats Sound waves consist of a series of air pressure variations. A Microphone diaphragm records these variations by moving in response to the pressure changes. The diaphragm motion is

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

SERIES AND PARALELL CIRCUITS

SERIES AND PARALELL CIRCUITS SERES AND PARALELL CRCUTS LAB ELEC 2.COMP From Physics with Computers, Vernier Software & Technology, 2003 NTRODUCTON Components in an electrical circuit are in series when they are connected one after

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Walk the Line: Straight Line Distance Graphs

Walk the Line: Straight Line Distance Graphs Walk the Line: Straight Line Distance Graphs Activity When one quantity changes at a constant rate with respect to another, we say they are linearly related. Mathematically, we describe this relationship

More information

Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever.

Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever. Lift the Load! Computer 28 The Greek philosopher Archimedes said, "Give me a lever long enough, and a place to stand and I can move the world." What did he mean by this? In this activity, you will get

More information

Motion in One-Dimension

Motion in One-Dimension This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released

More information

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

More information

EXPERIMENT 2: FREE FALL and PROJECTILE MOTION

EXPERIMENT 2: FREE FALL and PROJECTILE MOTION TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 2: FREE FALL and PROJECTILE MOTION ONE AND TWO-DIMENSIONAL KINEMATICS WITH GRAVITY 117 Textbook Reference:

More information

Resonance and the Speed of Sound

Resonance and the Speed of Sound Name: Partner(s): Date: Resonance and the Speed of Sound 1. Purpose Sound is a common type of mechanical wave that can be heard but not seen. In today s lab, you will investigate the nature of sound waves

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

Dependence of central force on angular velocity, track radius and mass with PC interface

Dependence of central force on angular velocity, track radius and mass with PC interface Related topics Centripetal force, rotary motion, angular velocity, apparent force, use of an interface. Principle and task As an object moves on a circular path with a certain angular velocity, it is constantly

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Introduction Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Falling Objects

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems SHM Lab 1 Introduction PHYS 202 Laboratory #4 Oscillations and Simple Harmonic Motion In this laboratory, we examine three simple oscillatory systems: a mass on a spring, a pendulum, and a mass on a rubber

More information

STAAR Tutorial: Motion, Speed, Velocity and Acceleration

STAAR Tutorial: Motion, Speed, Velocity and Acceleration Name: Teacher: Period: Date: STAAR Tutorial: Motion, Speed, Velocity and Acceleration TEK 6.8C (Supporting): Calculate average speed using distance and time measurements. TEK 6.8D (Supporting: Measure

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

More information

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students

More information

Pulleys, Work, and Energy

Pulleys, Work, and Energy Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triple-pulley assemblies apparatus from

More information

LAB 06: Impulse, Momentum and Conservation

LAB 06: Impulse, Momentum and Conservation LAB 06: Impulse, Momentum and Conservation PURPOSE Investigate the relation between applied force and the change in momentum Investigate how the momentum of objects change during collisions BACKGROUND

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion OBJECTIVES to validate Newton s Laws of Motion EQUIPMENT horizontal dynamic track and safety stopper on one end PASCO carts with a small reflector motion detector connected to the

More information

Focused Learning Lesson Science Grades 9-12 PS-H-E2

Focused Learning Lesson Science Grades 9-12 PS-H-E2 Focused Learning Lesson Science Grades 9-12 PS-H-E2 Overview: This lesson is designed to review the basic relationships of speed, velocity, and acceleration. During the lesson, students will review the

More information

Quick Reference Manual

Quick Reference Manual Quick Reference Manual ii TABLE OF CONTENTS This guide first leads you through the basics of Logger Pro, including software installation procedures. You will learn how to collect data, manually enter data,

More information

Newton s Third Law, Momentum, Center of Mass

Newton s Third Law, Momentum, Center of Mass Team: Newton s Third Law, Momentum, Center of Mass Part I. Newton s Third Law Atomic Springs When you push against a wall, you feel a force in the opposite direction. The harder you push, the harder the

More information

Equations of Motion Introduction: Objectives: Methods:

Equations of Motion Introduction: Objectives: Methods: Equations of Motion Introduction: The equations of motion are used to describe various components of a moving object. Displacement, velocity, time and acceleration are the kinematic variables that can

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Capacitors. Evaluation copy

Capacitors. Evaluation copy Capacitors Computer 24 The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this relationship with q V =, C where C is a proportionality constant

More information

Experiment 2: Conservation of Momentum

Experiment 2: Conservation of Momentum Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations

More information

Visual Physics 218 Projectile Motion [Lab 2]

Visual Physics 218 Projectile Motion [Lab 2] In this experiment, you will be using your video equipment to evaluate two-dimensional motion. It will be necessary to plot the data in an xy-coordinate system and separate the data into x and y components.

More information

Evaluation copy. Ohm s Law. Computer

Evaluation copy. Ohm s Law. Computer Ohm s Law Computer 22 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical

More information

Lab 3: The Force Plate and Vertical Jump

Lab 3: The Force Plate and Vertical Jump 3 Lab 3: The Force Plate and Vertical Jump I. Introduction A. In this lab, you'll explore Newtonian mechanics of an extended, non-rigid object: your own body. Whenever your center of mass accelerates,

More information