# Chapter 2: Deductive Reasoning (page 32) p q

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 2: Deductive Reasoning (page 32) 2-1: If - Then (page 33) IF - THEN STATEMENT: a statement whose basic form is If, then. also known as statements or. If it is snowing, then it is cold. Conditional statements are either or. HYPOTHESIS (p): a statement that follows the in an If - then statement. CONCLUSION (q): a statement that follows the in an If - then statement. Forms for Conditional : p q If it is snowing, then it is cold. If p, then q. It is snowing implies it is cold. p implies q. It is snowing only if it is cold. p only if q. It is cold if it is snowing. q if p. Circle one: TRUE or FALSE NOTE: If, then, implies, & only if are part of the hypothesis or the conclusion.

2 If angle X is acute, then the measure of angle X equals 60 degrees. implies only if if Circle one: TRUE or FALSE CONVERSE (of a conditional statement): is formed by interchanging the and the conclusion. Converses to conditional statements are either or. Conditional: If it is snowing, then it is cold. If p, then q. Converse: If, then. If, then. Circle one: TRUE or FALSE Conditional: If angle X is acute, then the measure of angle X equals 60 degrees. Converse: If, then. Circle one: TRUE or FALSE You can not assume a converse is just because the original statement is true.

3 COUNTEREXAMPLE: an example used to prove that an if-then statement is. The hypothesis is and the conclusion is. NOTE: only counterexample is needed to prove a statement false! Two angles are adjacent if they have a common vertex. Conditional: If, then. TRUE or FALSE - Converse: If, then. TRUE or FALSE - BICONDITIONAL: a statement that combines a with the words if and only if. and its Conditional: If two angles are congruent, then their measures are equal. p q Biconditional: if and only if. p q Assignment: Written Exercises, page 35: 3,5,7,9,12,15,16,18,21,24,27,30,31

4 2-2: Properties from Algebra (page 37) Properties of Equality (=) Addition Property: Subtraction Property: Multiplication Property: Division Property: Substitution Property: Reflexive Property: Symmetric Property: Transitive Property: Distributive Property: Properties of Congruence (!) Reflexive Property: Symmetric Property: Transitive Property:

5 Statement Justification a. If AB = CD and BC = BC, then AB + BC = CD + BC. b. If 2 + YZ = 8, then YZ = 6. c. If 2 m 1 = 72º, then m 1 = 36º. d. If Pt.B is between A and C, then AB + BC = AC. e. If m A = m X and m X = m B, then m A = m B. f. If AB! CD and CD! EF, then AB! EF. g. If A! B, then B! A. h. If m K = 90º, then K is a right angle. Solve for x and supply reasons for each step: Steps 1. 5 ( 3 x - 4 ) = 5 x 1.

6 Complete each of the following proofs. Given: m 1 = m 3 D E Prove: m ABE = m DBC A B C Given 4. m ABE = + 4. m DBC = + Given: KP = ST ; PR = TV Prove: KR = SV K P R S T V Given 3. KP + PR = 3. ST + TV = Assignment: Written Exercises, pages 41 & 42: 1 to 13 odd numbers

7 2-3: Proving Theorems (page 43) What is a theorem? THEOREM 2-1 MIDPOINT THEOREM If M is the midpoint of AB, then AM = AB and MB = AB. Given: M is the midpoint of AB Prove: A M B Proof: Given R is the midpoint of SQ. Give the reason that justifies each statement. (a) SR! RQ (b) SR = 1 /2 SQ (c) SR + RQ = SQ _ S R (d) PR bisects SQ P Q

8 THEOREM 2-2 ANGLE BISECTOR THEOREM!!!" If BX is the bisector of ABC, then: m ABX = m ABC!!!" Given: BX is the bisector of ABC. Prove: and m XBC = m ABC. A X Proof: B C Given: FD!!!" bisects CFE. Give the reason that justifies each statement. C (a) m CFD = ½ m CFE D (b) (c) m CFD = m DFE CD + DE = CE F E Used in Proofs: (1) Given information (2) Definitions (3) Postulates (including properties from algebra) (4) Theorems - only ones that have already been proved!

9 DEDUCTIVE REASONING: proving statements by reasoning from accepted postulates,,, and given information. NOTE: Definitions can be written as biconditionals (combine conditional and converse),ie. the conditional and converse are both. Conditional: If an angle is a right angle,then its measure is 90º. Converse: If the measure of an angle is 90º, then the angle is a right angle. Biconditional: An angle is a right angle its measure is 90º. Given: M is the midpoint of PQ N is the midpoint of RS P M Q PQ = RS Prove: PM = RN R N S Proof: Assignment: Written Exercises, pages 46 & 47: 1-14 all, 19 & 20 Worksheet on Lesson 2-3 Prepare for Quiz on Lessons 2-1 to 2-3: Using Deductive Reasoning

10 2-4: Special Pairs of Angles (page 50) COMPLEMENTARY ANGLES: two angles whose measures have the sum degrees. SUPPLEMENTARY ANGLES: two angles whose measures have the sum degrees. examples: (1) In the diagram, CXD is a right angle. Name another right angle: B A X C E D Name complementary angles: Name 2 congruent supplementary angles: Name 2 noncongruent supplementary angles: (2) C and D are complementary, m C = 3 x - 5 and m D = x Find the value of x, m C, and m D. x = m C = m D = (3) P and K are suppplementary, m P = 4 x + 10 and m K = x Find the value of x, m P, and m K. x = m P = m K =

11 (4) A supplement of an angle is seven times a complement of the angle. Find the measures of the angle, its complement, and its supplement. measure of angle = = measure of comp. = = measure of supp. = = (5) A complement of an angle is 15 less than twice the measure of the angle. Find the measures of the angle, its complement, and its supplement. measure of angle = = measure of comp. = = measure of supp. = =

12 VERTICAL ANGLES: two angles whose sides form two pairs of rays THEOREM 2-3 Vertical angles are congruent. Given: 1 and 2 are vertical angles Prove: Proof: 6. 6.

13 examples: Find the value of x. (4) (5) 35º (2x-5)º xº 35º x = x = (6) (7) (4x)º (x+30)º (2x+30)º (x+y)º (4y)º 120º x = x = y = (8) Find the measure of each angle. C D 60º A B E G F Assignment: Written Exercises, pages 52 to 54: 1-31 odd # s, Worksheet on Lesson 2-4 Prepare for Quiz on Lesson 2-4: Special Pairs of Angles

14 2-5: Perpendicular Lines (page 56) PERPENDICULAR LINES ( lines): two lines that intersect to form angles m n If m n, then,,, and are right angles. How many angles must be right angles in order for the lines to be perpendicular? THEOREM 2-4 If two lines are perpendicular, then they form adjacent angles. Given: l n l 2 1 Prove:,,, & 3 4 n are congruent angles. Proof:

15 THEOREM 2-5 If two lines form congruent adjacent angles, then they are. Given: 1 2 l Prove: l n 2 1 n Proof: THEOREM 2-6 If the exterior sides of two adjacent acute angles are!!!"!!!" Given: OA! OC A, then the angles are complementary. Prove: B Proof: O C

16 Name the definition or theorem that B justifies each statement about the diagram. 1 2 A C 7 8 D (a) If AB! BC, then ABC is a right angle. (b) If BD! AC, then 3 4. (c) If CD! AD, then 7 and 8 are complementary. (d) If 7 & 8 are complementary, then m 7 + m 8 = 90º. (e) If 4 6, then AC! BD. (f) 4 5. (g) If ABC is a right angle, then m ABC = 90º. If ZW!!!"! ZY!!! ", m 1 = 5 x, and m 2 = 2 x - 1, find the value of x. W V x = 1 2 Z Y Assignment: Written Exercises, pages 58 & 59: 3-11 odd # s, odd # s Prepare for Quiz on Lessons 2-2 to 2-5

17 2-6: Planning a Proof (page 60) A proof of a theorem consists of five (5) parts: 1. of the theorem. 2. A that illustrates the given information. 3. A list, in terms of the figure, of what is. 4. A list, in terms of the figure, of what you are to. 5. A series of and that lead from the information to the statement that is to be. Methods for Writing Proofs: A. as much information as you can. Sometimes what you can see will show you a plan. Reread the given. What does it tell you? Look at the diagram. What other information can you conclude? B. Work. Go to the conclusion, the part you would like to prove. Think: This conclusion would be true if?. And? would be true if?. And so on, until you have a plan. Suggestions for Writing Proofs: (1) Follow one of the suggested methods. (2) Study proofs. (3) Use a pencil. (4) TRY, TRY, TRY!!! NOTES There is usually more than one way to write a proof of a statement. Be sure that your steps flow logically from one step to the next. Some steps are more important than others. Your proof should have enough steps to allow the reader to follow your argument and to see that the statement is indeed true.

18 THEOREM 2-7 If two angles are of congruent angles (or of the same angle), then the two angles are congruent. Given: 1 and 2 are supplementary; 3 and 4 are supplementary; Prove: Proof: 3 4 Given: 2 is supplementary to 3 Prove: Proof:

19 THEOREM 2-8 If two angles are of congruent angles (or of the same angle), then the two angles are congruent. Given: 1 and 2 are complementary; 3 and 4 are complementary; Prove: Proof: 3 4 Given: LM! MN and KN! MN M N a. Name a complement of 2: b. Name a complement of 3: c. What theorem justifies the answers to a & b? L K d. If 2 3, what can be concluded and why? Assignment: Written Exercises, pages 63 & 64: 1-21 odd # s Prepare for Quiz on Lessons 2-4 to 2-6 Prepare for Test on Chapter 2: Deductive Reasoning

### Chapter Two. Deductive Reasoning

Chapter Two Deductive Reasoning Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply

### Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

### Ex 1: For points A, B, and C, AB = 10, BC = 8, and AC = 5. Make a conjecture and draw a figure to illustrate your conjecture.

Geometry 2-1 Inductive Reasoning and Conjecturing A. Definitions 1. A conjecture is an guess. 2. Looking at several specific situations to arrive at a is called inductive reasoning. Ex 1: For points A,

### Find the measure of each numbered angle, and name the theorems that justify your work.

Find the measure of each numbered angle, and name the theorems that justify your work. 1. The angles 2 and 3 are complementary, or adjacent angles that form a right angle. So, m 2 + m 3 = 90. Substitute.

### 2.) 5000, 1000, 200, 40, 3.) 1, 12, 123, 1234, 4.) 1, 4, 9, 16, 25, Draw the next figure in the sequence. 5.)

Chapter 2 Geometry Notes 2.1/2.2 Patterns and Inductive Reasoning and Conditional Statements Inductive reasoning: looking at numbers and determining the next one Conjecture: sometimes thought of as an

### Chapter 1. Foundations of Geometry: Points, Lines, and Planes

Chapter 1 Foundations of Geometry: Points, Lines, and Planes Objectives(Goals) Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in

### Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning:

Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning: Conjecture: Advantages: can draw conclusions from limited information helps us to organize

### Geometry Unit 1. Basics of Geometry

Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### 1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

### Algebraic Properties and Proofs

Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

### Statements Goals Identify and evaluate conditional statements. Identify converses and biconditionals. Drafting, Sports, Geography

3-6 Conditional Statements Goals Identify and evaluate conditional statements. Identify converses and biconditionals. Applications Drafting, Sports, Geography Do you think each statement is true or false?

### 4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

### Theorem Prove Given. Dates, assignments, and quizzes subject to change without advance notice.

Name Period GP GOTRI PROOFS 1) I can define, identify and illustrate the following terms onjecture Inductive eductive onclusion Proof Postulate Theorem Prove Given ates, assignments, and quizzes subject

### Chapter 1 Line and Angle Relationships

Chapter 1 Line and Angle Relationships SECTION 1.1: Sets, Statements, and Reasoning 1. a. Not a statement. b. Statement; true c. Statement; true d. Statement; false. a. Statement; true b. Not a statement.

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### 14 add 3 to preceding number 35 add 2, then 4, then 6,...

Geometry Definitions, Postulates, and Theorems hapter 2: Reasoning and Proof Section 2.1: Use Inductive Reasoning Standards: 1.0 Students demonstrate understanding by identifying and giving examples of

### **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

### Geometry Chapter 2 Study Guide

Geometry Chapter 2 Study Guide Short Answer ( 2 Points Each) 1. (1 point) Name the Property of Equality that justifies the statement: If g = h, then. 2. (1 point) Name the Property of Congruence that justifies

### Geometry - Chapter 2 Review

Name: Class: Date: Geometry - Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.

### Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

### Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

### This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

### PROVING STATEMENTS IN GEOMETRY

CHAPTER PROVING STATEMENTS IN GEOMETRY After proposing 23 definitions, Euclid listed five postulates and five common notions. These definitions, postulates, and common notions provided the foundation for

### Chapter Three. Parallel Lines and Planes

Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### Foundations of Geometry 1: Points, Lines, Segments, Angles

Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.

### Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

### Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### NCERT. not to be republished LINES AND ANGLES UNIT 5. (A) Main Concepts and Results

UNIT 5 LINES AND ANGLES (A) Main Concepts and Results An angle is formed when two lines or rays or line segments meet or intersect. When the sum of the measures of two angles is 90, the angles are called

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:

Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

### Geometry Sample Problems

Geometry Sample Problems Sample Proofs Below are examples of some typical proofs covered in Jesuit Geometry classes. Shown first are blank proofs that can be used as sample problems, with the solutions

Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: 10 th Grade Geometry Theorems 1. Given: g h Prove: 1 and 2 are supplementary

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

### #2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

### 1.2 Informal Geometry

1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior

### Testing for Congruent Triangles Examples

Testing for Congruent Triangles Examples 1. Why is congruency important? In 1913, Henry Ford began producing automobiles using an assembly line. When products are mass-produced, each piece must be interchangeable,

### Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

### 5-1 Perpendicular and Angle Bisectors

5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and

### ASSIGNMENTS FOR PART 1 OF UNIT 2 LINES AND ANGLES

ASSIGNMENTS FOR PART 1 OF UNIT 2 LINES AND ANGLES Part 1 of Unit 2 includes sections 1-4, 1-5, and 2-8 from our textbook. Due Number Description Topics 2A 2B 2C p. 41-42 # 9, 10, 12, 18, 20 23 all, 43

### CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

CHAPTER 6 LINES AND ANGLES 6.1 Introduction In Chapter 5, you have studied that a minimum of two points are required to draw a line. You have also studied some axioms and, with the help of these axioms,

### GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

### 4.3 Congruent Triangles Quiz

Name: Class: Date: ID: A 4.3 Congruent Triangles Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given: ABC MNO Identify all pairs of congruent corresponding

### Geometry Essential Curriculum

Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### In the examples above, you used a process called inductive reasoning to continue the pattern. Inductive reasoning is.

Lesson 7 Inductive ing 1. I CAN understand what inductive reasoning is and its importance in geometry 3. I CAN show that a conditional statement is false by finding a counterexample Can you find the next

### Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 1. measures less than By the Exterior Angle Inequality Theorem, the exterior angle ( ) is larger than

### Int. Geometry Unit 2 Quiz Review (Lessons 1-4) 1

Int. Geometry Unit Quiz Review (Lessons -4) Match the examples on the left with each property, definition, postulate, and theorem on the left PROPRTIS:. ddition Property of = a. GH = GH. Subtraction Property

### Chapter One. Points, Lines, Planes, and Angles

Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

### Geometry Topic 5: Conditional statements and converses page 1 Student Activity Sheet 5.1; use with Overview

Geometry Topic 5: Conditional statements and converses page 1 Student Activity Sheet 5.1; use with Overview 1. REVIEW Complete this geometric proof by writing a reason to justify each statement. Given:

### 10-4 Inscribed Angles. Find each measure. 1.

Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### How Do You Measure a Triangle? Examples

How Do You Measure a Triangle? Examples 1. A triangle is a three-sided polygon. A polygon is a closed figure in a plane that is made up of segments called sides that intersect only at their endpoints,

### Proof Case #1 CD AE. AE is the altitude to BC. Given: CD is the altitude to AB. Prove: ABC is isosceles

Proof Case #1 B Given: CD is the altitude to AB AE is the altitude to BC CD AE Prove: ABC is isosceles D E A C Proof Case # 2 Given: AB CD DC bisects ADE Prove: ABD is isosceles Proof Case #3 Given: 1

### Angles Formed by Intersecting Lines

COMMON CORE 1 3 Locker LESSON Common Core Math Standards The student is expected to: COMMON CORE G-CO.C.9 Prove theorems about lines and angles. Mathematical Practices COMMON CORE 4.1 Angles Formed by

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem

Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems

### GEOMETRY - QUARTER 1 BENCHMARK

Name: Class: _ Date: _ GEOMETRY - QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name

### 4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240.

ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

### Geometry: 2.1-2.3 Notes

Geometry: 2.1-2.3 Notes NAME 2.1 Be able to write all types of conditional statements. Date: Define Vocabulary: conditional statement if-then form hypothesis conclusion negation converse inverse contrapositive

### NCERT. not to be republished TRIANGLES UNIT 6. (A) Main Concepts and Results

UNIT 6 TRIANGLES (A) Main Concepts and Results The six elements of a triangle are its three angles and the three sides. The line segment joining a vertex of a triangle to the mid point of its opposite

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### 7-3 Parallel and Perpendicular Lines

Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 7-3 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### Formal Geometry S1 (#2215)

Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the Course Guides for the following course: Formal Geometry S1 (#2215)

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### Determining Angle Measure with Parallel Lines Examples

Determining Angle Measure with Parallel Lines Examples 1. Using the figure at the right, review with students the following angles: corresponding, alternate interior, alternate exterior and consecutive

### 4 BASIC GEOMETRICAL IDEAS

4 BASIC GEOMETRICAL IDEAS Q.1. Use the figure to name. (a) Five points (b) A line (c) Four rays (d) Five line segments Ans. (a) O, B, C, D and E. (b) DB, OB etc. (c) OB, OC, OD and ED Exercise 4.1 (d)

### PARALLEL LINES CHAPTER

HPTR 9 HPTR TL OF ONTNTS 9-1 Proving Lines Parallel 9-2 Properties of Parallel Lines 9-3 Parallel Lines in the oordinate Plane 9-4 The Sum of the Measures of the ngles of a Triangle 9-5 Proving Triangles

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### In the statement, each side is the same "XY = XY". The Reflexive Property justifies this statement.

State the property that justifies each statement. 1. If m 1 = m 2 and m 2 = m 3, then m 1 = m 3. There are two parts to the hypotheses. "If m 1 = m 2 and m 2 = m 3, then m 1 = m 3. "The end of the first

### Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. One angle of the triangle measures 90, so it is a right angle. Since the triangle has a

### QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

### State the assumption you would make to start an indirect proof of each statement.

1. State the assumption you would make to start an indirect proof of each statement. Identify the conclusion you wish to prove. The assumption is that this conclusion is false. 2. is a scalene triangle.

### Math 3372-College Geometry

Math 3372-College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### Deductive Proof in Geometry William Glover Academic Setting Cibola High School Environment Cibola High School serves a large and diverse student

Deductive Proof in Geometry William Glover Academic Setting Cibola High School Environment Cibola High School serves a large and diverse student population. The student body is mostly made up of children

### Lesson 13: Proofs in Geometry

211 Lesson 13: Proofs in Geometry Beginning with this lesson and continuing for the next few lessons, we will explore the role of proofs and counterexamples in geometry. To begin, recall the Pythagorean

### Year 10 Term 1 Homework

Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 10 Year 10 Term 1 Week 10 Homework 1 10.1 Deductive geometry.................................... 1 10.1.1 Basic

### Geometry: 1-1 Day 1 Points, Lines and Planes

Geometry: 1-1 Day 1 Points, Lines and Planes What are the Undefined Terms? The Undefined Terms are: What is a Point? How is a point named? Example: What is a Line? A line is named two ways. What are the

### Parallelogram Bisectors Geometry Final Part B Problem 7

Parallelogram Bisectors Geometry Final Part B Problem 7 By: Douglas A. Ruby Date: 11/10/2002 Class: Geometry Grades: 11/12 Problem 7: When the bisectors of two consecutive angles of a parallelogram intersect

### Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Test to see if ΔFEG is a right triangle.

1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest