Centripetal Motion and Conservation of Energy

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Centripetal Motion and Conservation of Energy"

Transcription

1 Lab #5 Centripetal Motion/Conservation of Energy page 1 Centripetal Motion and Conservation of Energy Reading: Giambatista, Richardson, and Richardson Chapters 5 (5.1, 5.2) and Chapter 6. Summary: The physics in this lab is actually used in the design of roller coasters. Some of the new ones use only gravity and centripetal forces to keep the roller coaster car on the track, even when the car is upside down. The equipment in this lab has been designed to simulate the standard roller coaster incline before and after the loop-the-loops. You will use a ball to simulate the roller coaster car. The car will be launched on one incline and must attain a certain critical velocity in order to loop around the track without falling off it. In this lab you will use your physics knowledge to calculate how high the car must start in order to complete the loop and then experimentally check your results. Also from experimental measurements with the car on the track, you will calculate how high up the other incline the car will rise. This is critical in designing roller coaster tracks, because you don t want the cars to fall off the track due to not planning for enough track after the loop-the-loop. Note: This is Pre-Lab long, so start it early! Prelab Analysis: Figure 1 shows a schematic of the equipment you will use in the lab. You will release a ball at position A and, if A is high A L D enough, the ball will loop around, eventually rising to position E. The whole trick of this lab is to figure out how high A has to be in ha B order for the ball to roll all the way around the loop without falling off at D. To solve this Lab bench top C problem, we will need two physics principles: Figure 1. The loop-the-loop roller coaster. centripetal force and conservation of energy. v First you will calculate what velocity the ball must have to stay on the circular part of the track and then from that you will R work backward to determine how high A needs to be. Figure 2 a shows the velocity and acceleration vectors for a ball traversing the vertical loop in a counterclockwise direction. E 1. Write an expression for the centripetal acceleration a of the ball in terms of the ball s speed v and radius of motion R. [2 pts] 1 Figure 2. Circular motion. This centripetal acceleration is supplied by a combination of gravity and the normal force the track exerts on the ball. If the ball is traveling fast enough, the track supplies most of the force required to make the ball change direction and travel in a circle. If the ball is traveling too slowly, gravity will supply too much downward force and the ball will fall off the track. The slowest velocity at which the ball will go all the way around is when the track exerts no force on the ball at the top of the vertical loop. Then gravity supplies all of the centripetal force.

2 Lab #5 Centripetal Motion/Conservation of Energy page 2 2. a.) For this slowest velocity, show that v D = gr. To do this, begin by relating the force of gravity on the ball to the centripetal force the ball experiences when going around the loop. Then solve for vd from this equation. [4 pts] 2 b.) If the diameter of the loop is 30cm, how fast is this slowest velocity? [4 pts] 3 Next we need to find how high up the initial incline the ball has to start (point A) in order to attain this speed at the top of the vertical loop. For this, we use the conservation of energy law, which states that the ball s total energy at the release point (A) must be the same as its total energy at the top of the vertical loop, iiff there are no non-conservative forces acting (like friction). 3. What is the ball s total energy at: a.) the release point (A), if A is a height ha above the top of the lab bench and the ball is released with no initial speed? Leave your answer in terms of the ball s mass m, the acceleration due to gravity g, and the height ha. [2 pts] 4 b.) the top of the vertical loop (D), if only conservative forces act on the ball? Express your answer in terms of m, the ball s centripetal velocity (vd), and the loop s radius R. Don t forget that at the top of the vertical loop (height = 2R above the bottom of the incline), the ball has both kinetic and potential energy. [3 pts] 5 4. In reality, friction is present between the ball and the track, which means the ball rolls down the incline and around the vertical loop. This rolling motion has kinetic energy associated with it, meaning another term needs to be added to the kinetic energy. As you will learn later in the semester, this rotational kinetic energy is a( 1 /2)mv 2, where a 0.4 for the solid ball in this experiment. a.) Rewrite the total energy at point D (Question 3b) to include a. [3 pts] 6 b.) Since for now we are going to assume only conservative forces act between points A and B, use the conservation of energy law between these two points to show that the minimum height (hmin) required to make the ball go all the way around the loop is: h min = 2R a 2 ( ) Ê ( R) = Á 5 + a Hint: Set the two energy formulas from Questions 3a and 4a equal to each other and use the velocity at B from Question 2. [7 pts] 7 In this lab, the whole apparatus will be mounted on a stand that will be a height hstand above the top of the lab bench. Therefore the point A will be hmin + hstand above the lab bench top. Setting a = 0.4 is only approximate and ignoring friction is fine only in theory, but in the lab it cannot be disregarded. Thus you will need to determine experimentally both a and the amount of energy lost due to friction on the track. The a can be found from applying conservation of energy to points A and B on the left-hand incline. Ë 2 ˆ R

3 Lab #5 Centripetal Motion/Conservation of Energy page 3 D 5. This question takes you through the A L derivation of the equations you will B E need in the lab to experimentally determine a. Assume the ball starts ha at a height ha above the table and hb with no initial velocity at A. At Lab C point B, the ball has a velocity of vb Bench Top and is at a height hb above the table Figure 3. The apparatus showing the starting positions. (see Figure 3). a.) Write the total energy of the ball at points A and B. (Hint: Don t forget that the ball rolls down the incline, so the kinetic energy of the ball at point B has an additional term of ( 1 /2)mav 2.) [4 pts] 8 b.) If points A and B are close together, friction can be ignored, and energy will be conserved between these two points, making the experimental determination of a much simpler. Use energy conservation between A and B, to each show that: [6 pts] 9 2 2g v B = ( ) 1 + a ( ) h A - h B 6. In the lab, you will use the motion sensor to measure the final velocity of the ball as it passes point B for six different positions of B, to obtain a more accurate a. The table to the right contains such data. The track made a 15º angle with the lab bench top and the ball started with no initial velocity at point A. a.) Draw only the inclined part of the track and from the geometry come up with an equation that relates the height difference (ha hb) to the distance between points A and B ( L). [4 pts] 10 b.) Using your formula from (a) and Excel, calculate these heights (in m) for each distance given in the table. [9 pts] 11 v (m/s) L(cm) c.) Plot v B 2 vs (h A hb); fit a linear Trendline to it; print your data table and plot. [9 pts] 12 d.) From the slope of this line, determine a using the equation in Question 5b. [5 pts] 13 Lastly, if friction could be ignored over the whole length of the track, then when the ball reached point E it would rise to exactly the same height it started at (ha). However experimentally, the ball s highest final position is always lower than its starting position. Thus energy is not conserved over the whole track, as we assumed over the short distance from A to B. To determine the starting position that will allow the ball to just barely make it all the way around the loop without falling off the track at point D, we need to estimate the energy loss due to friction. Measuring the height difference between points A and E gives a reasonable estimate of these losses. If this height difference is hloss, total = ha he, then the ball will need to be started hloss, total/2 higher than the minimum position (Question 4b), assuming the frictional energy losses from A to D are approximately half those from A to E. 7. As an example of this, suppose the ball is released at 30 cm above the lab bench top (at A) and rises to a final height of 24 cm above the bench top (at E). How much above the

4 Lab #5 Centripetal Motion/Conservation of Energy page 4 minimum height distance (without losses) should you release the ball, for the ball to just make it all the way around the loop without falling off? (Hint: this is a very simple problem, so don t make it harder than it is.) [3 pts] Outline the lab following the format of Outline Format posted on the Electronic Reserves web page. (20 pts total) 15 Equipment to be used in this lab: r Aluminum loop-the-loop track r 1 plastic ball check this out from your TA (you are responsible for returning it) r 2 motion sensors attached to top of the track on its right and left sides. Experimental Procedure: 1. Safety r This lab is fairly benign, but the track does have sharp edges at about eye level. Keep an eye on (or rather off) the track. 2. Setup r Check that the left-hand motion sensor is connected to port 2 and that both sensors are mounted securely to the track. If they are not, notify your TA. r Double click on the Lab05Centripetal icon. A velocity (on y) versus distance (on x) graph should appear. Check that the Experiment Length is set to 4 seconds and the Sampling Speed is set to 20 samples/sec. 3. Determining a a.) Characterizing the Apparatus r Sketch the apparatus in your notebook. [1 pt] 16 r Choose a point A more than 0.4m along the track from the motion sensor (this is the minimum detection distance of the detector). Mark the side of the track with a small piece of tape. Make sure the tape does not overlap the groove where the ball will roll or it will slow the ball and all your measurements will be off. r Measure the height at A (ha) and record it on the sketch in your notebook. [2 pts] 17 r Place a piece of tape on the track 5cm down from A and the motion sensor. b.) Motion Sensor data collection between Points A and B r Place the ball at A. Hold a pen or pencil across the groove of the apparatus to prevent the ball from rolling down the incline. It is important that your hands and other body parts are not within range of the sensor when you release the ball or the motion sensor may not take data on the ball s motion. r In LoggerPro click on Collect and let go of the ball after you hear the second click from the motion sensor. r Click on Stop when the ball has passed the 5cm tape mark.

5 Lab #5 Centripetal Motion/Conservation of Energy page 5 r Print the velocity versus distance curve that appears on the screen and attach it to your notebook. [3 pts] 18 r Using the X = icon at the top of the LoggerPro screen and the pointer, find the velocities corresponding to three different B distances starting approximately 1cm from A and roughly 1cm apart. Record these velocities in a data table labeled Data for determining a. Label these velocities vb. [9 pts] 19 r Mark with tape the precise position of each of the three B points on the track. These will be the different B points you will use to determine a, as you did in Prelab Question 6. r Measure the height of each B with respect to the lab bench top and record it in the data table in your notebook. [6 pts] 20 r Your data table should now contain columns for the height at point A, the height at each point B, and the velocity of the ball as it passes each point B. [6 pts] 21 c.) Calculating a in Excel r Open Excel and copy your data into the worksheet. Use Excel to calculate vb 2. Copy the results into a new column in your notebook data table. r Plot your data in such a way that you obtain a straight line, the slope of which is related to a. Don t forget to label the axes (include units) and title your graph. (Hint: look at Question 6c.) r Fit a linear Trendline to the data and print the plot and Trendline equation. [9 pts] 22 r From the slope of the Trendline and your answer to Prelab Question 6d, determine a. Show all your work. [7 pts] Frictional Losses a.) Computer Setup r Quit the LoggerPro program. r Disconnect the first sensor from port 2 on the ULI box and connect the other sensor to the same port. r Click on the Lab05Centripetal icon and a velocity versus distance graph should appear as before, but this time the data will be coming from the other sensor. b.) Taking the Frictional Data r Sketch this experimental setup. [1 pt] 24 r Release the ball from point A and, as it enters the loop, click on Collect. r Data will appear on the computer screen once the ball has completed the loop and starts up the final incline. Click on Stop after the ball has reached its highest point and begins to descend down the track again. r Print this curve and attach it to your notebook. [3 pts] 25 If your data looks weird in any way, retake it until you get a nice smooth curve. r What is the speed of the ball when it has reached its final maximum height? (Your answer must be in a full sentence to receive any credit.) [3 pts] 26 r Using LoggerPro s X= icon, determine the distance between the motion sensor and the ball, just as the ball begins to roll back down the track. Record this distance in a new data table in your notebook. Title the data table appropriately. [4 pts] 27

6 Lab #5 Centripetal Motion/Conservation of Energy page 6 r Measure this stopping distance on the track and mark it with a piece of tape. r Measure the vertical distance between this stopping point and the top of the lab bench. Record this height (he) in your data table. [2 pts] 28 r Repeat these measurements two more times for two different A starting positions, recording each ha. Make sure you choose heights that are within 3 cm of each other (stay less than 80 cm). [20 pts] 29 r Calculate hloss,total = ha he and record them in your data table. [8 pts] 30 r Find the average value of hloss,total. [5 pts] 31 r The frictional energy loss in the track from A to D is roughly half the loss from A to E. Thus you will need to start the ball hloss, total/2 higher than the minimum height without friction, for the ball to make it all the way around the loop. You will determine this minimum height in the next section. r Calculate the average hloss,total/2, using the average hloss,total. Circle this number (label it and include units) in your notebook. [4 pts] Minimum Height Determination for Ball to go all the way around the Loop a.) Minimum Height with No Frictional Losses r Measure the loop diameter to determine its radius R. Show all work. [7 pts] 33 r Assuming (for now) there are no frictional losses, use your answer to Prelab Question 4b and the a you experimentally found in Part 1c, to determine the minimum height (hmin,no friction) needed for the ball to barely go around the loop. Don t forget to add in the height of the stand on which the apparatus is held. Show all your work; label and circle your answer. [6 pts] 34 b.) Minimum Height taking Frictional Losses into account r Now add to this hmin,no friction the extra height you found in Part 2b above (because of friction). This is the height at which you will need to release the ball, with friction present, for the ball to stay on the track all the way around the loop. [4 pts] 35 c.) Checking your Results r Try the ball from this height. Raise or lower the height as necessary until the ball barely goes all the way around on the track. Repeat this measurement 2 more times and measure the height of these points. Record the different heights in an appropriately labeled data table in your notebook. [6 pts] 36 r Find the mean of these new ha s. Explain how you did this; label your answer and circle it. [6 pts] 37 r Find the 99% confidence level of the standard deviation of the mean. Explain how you did this; label your answer and circle it. [6 pts] 38 r Calculate the % difference between your average measured value and your calculated value. How does your experimental value compare to your calculated value? [3 pts] 39

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Physics Lab Report Guidelines

Physics Lab Report Guidelines Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed

More information

Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track L-9 Conseration of Energy, Friction and Circular Motion Kinetic energy, potential energy and conseration of energy What is friction and what determines how big it is? Friction is what keeps our cars moing

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

The Bullet-Block Mystery

The Bullet-Block Mystery LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Introduction Assignment

Introduction Assignment Physics 11 Introduction Assignment This assignment is intended to familiarize you with some of the basic concepts and skills related to Physics 11. This is the first meaningful assignment for Physics 11,

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Accelerometers: Theory and Operation

Accelerometers: Theory and Operation 12-3776C Accelerometers: Theory and Operation The Vertical Accelerometer Accelerometers measure accelerations by measuring forces. The vertical accelerometer in this kit consists of a lead sinker hung

More information

0 Introduction to Data Analysis Using an Excel Spreadsheet

0 Introduction to Data Analysis Using an Excel Spreadsheet Experiment 0 Introduction to Data Analysis Using an Excel Spreadsheet I. Purpose The purpose of this introductory lab is to teach you a few basic things about how to use an EXCEL 2010 spreadsheet to do

More information

Proving the Law of Conservation of Energy

Proving the Law of Conservation of Energy Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s

I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s Author: Sarah Roberts Interacting - Making Ellipticals - Teacher Notes Making Ellipticals Making Ellipticals - Changing

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

6. Block and Tackle* Block and tackle

6. Block and Tackle* Block and tackle 6. Block and Tackle* A block and tackle is a combination of pulleys and ropes often used for lifting. Pulleys grouped together in a single frame make up what is called a pulley block. The tackle refers

More information

Potential vs. Kinetic Energy

Potential vs. Kinetic Energy Potential vs. Kinetic Energy Subject Area(s) Associated Unit Associated Lesson Activity Title measurement, number & operations, reasoning & proof, and science & technology None None Is it Potential or

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Proof of the conservation of momentum and kinetic energy

Proof of the conservation of momentum and kinetic energy Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)

More information

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Friday, September 28 2012 Happy

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007

3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007 3rd/4th Grade Science Unit: Forces and Motion Melissa Gucker TE 804 Spring 2007 Part I: Learning Goals Documentation Unit Title: Forces and Motion Grade Level: 3 rd Designer: Melissa Gucker The Main Idea(s)/Importance

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Microsoft Excel Tutorial

Microsoft Excel Tutorial Microsoft Excel Tutorial by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright August, 2000 by James

More information

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT) Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram

More information

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students

More information

ELASTIC FORCES and HOOKE S LAW

ELASTIC FORCES and HOOKE S LAW PHYS-101 LAB-03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described

More information

ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES

ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES INSTRUCTIONS The Entrance Examination consists of three parts: Problem Solving (Part 1), Questions on Motivation (Part ), English

More information

Potential / Kinetic Energy Remedial Exercise

Potential / Kinetic Energy Remedial Exercise Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry. Make sure you

More information

Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron.

Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron. Physics 241 Lab: Cathode Ray Tube http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html NAME: Section 1: 1.1. A cathode ray tube works by boiling electrons off a cathode heating element

More information

1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.

1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names. Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1-.

More information

Harmonic oscillations of spiral springs Springs linked in parallel and in series

Harmonic oscillations of spiral springs Springs linked in parallel and in series .3.26 Related topics Spring constant, Hooke s Law, oscillations, limit of elasticity, parallel springs, serial springs, use of an interface. Principle and task The spring constant D is determined for different

More information

Buoyant Force. Goals and Introduction

Buoyant Force. Goals and Introduction Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

AP Physics: Rotational Dynamics 2

AP Physics: Rotational Dynamics 2 Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

More information

Amusement Park Project

Amusement Park Project Amusement Park Project Introduction Astroworld has recently received state and local approval to add two new rollercoasters to their amusement park. The new rides will demonstrate some of the basic laws

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment Welcome to AP Physics 1. This course and the AP exam will be challenging. AP classes are taught as college courses not just college-level courses,

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended.

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended. Name: Johanna Goergen Section: 05 Date: 10/28/14 Partner: Lydia Barit Introduction: Bungee Constant per Unit Length & Bungees in Parallel Skipping school to bungee jump will get you suspended. The purpose

More information

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2 Mechanics Translational motions of a mass point One-dimensional motions on the linear air track LD Physics Leaflets P1.3.3.8 Uniformly accelerated motion with reversal of direction Recording and evaluating

More information

AP Physics 1 Investigation 1: 1D and 2D Kinematics

AP Physics 1 Investigation 1: 1D and 2D Kinematics AP Physics 1 Investigation 1: 1D and 2D Kinematics How is the translational motion of a ball described by kinematics? Central Challenge Students observe a steel ball rolling down an inclined ramp, then

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

Uniform Circular Motion III. Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout)

Uniform Circular Motion III. Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout) Double Date: Objective: Uniform Circular Motion II Uniform Circular Motion III Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout) AP Physics B

More information

RETURN TO THE MOON. Lesson Plan

RETURN TO THE MOON. Lesson Plan RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

Energy - Key Vocabulary

Energy - Key Vocabulary Energy - Key Vocabulary Term Potential Energy Kinetic Energy Joules Gravity Definition The energy an object possesses due to its position. PE = mgh The energy an object possesses when it is in motion.

More information

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

More information

Fundamental Mechanics: Supplementary Exercises

Fundamental Mechanics: Supplementary Exercises Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

More information

The Kinetics of Enzyme Reactions

The Kinetics of Enzyme Reactions The Kinetics of Enzyme Reactions This activity will introduce you to the chemical kinetics of enzyme-mediated biochemical reactions using an interactive Excel spreadsheet or Excelet. A summarized chemical

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4. Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. (Use g = 9.8 m/s2.) 1) A 21 kg box must be slid across the floor. If

More information

Roller Coaster Mania!

Roller Coaster Mania! Overview Roller Coaster Mania! This series of educational programs was designed to simultaneously entertain and challenge gifted youth in their time outside of the school setting; however, the activities

More information

Sample lab procedure and report. The Simple Pendulum

Sample lab procedure and report. The Simple Pendulum Sample lab procedure and report The Simple Pendulum In this laboratory, you will investigate the effects of a few different physical variables on the period of a simple pendulum. The variables we consider

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

2. To set the number of data points that will be collected, type n.

2. To set the number of data points that will be collected, type n. Force and Motion In this experiment, you will explore the relationship between force and motion. You are given a car with tabs, a string, a pully, a weight hanger, some weights, and the laser gate you

More information

SURFACE TENSION. Definition

SURFACE TENSION. Definition SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting

More information

Excel -- Creating Charts

Excel -- Creating Charts Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel

More information