Lecture 16: 3D Potentials and the Hydrogen Atom

Size: px
Start display at page:

Download "Lecture 16: 3D Potentials and the Hydrogen Atom"

Transcription

1 ectue 6, p ectue 6: 3D Potentials and the Hydogen Atom 4.5 g( ) x 4 x P() 4a = a z x 8 z y x n n n n n n m h E z y x ) ( ) ( ) ( ),, ( z y x z y x o a / 3 o e a ) ( 3 6 n ev. E n

2 Oveview of the Couse Up to now: Geneal popeties and equations of quantum mechanics Time-independent Schodinge s Equation (SEQ) and eigenstates. Time-dependent SEQ, supeposition of eigenstates, time dependence. Collapse of the wave function, Schodinge s cat Tunneling This week: 3 dimensions, angula momentum, electon spin, H atom Next week: Exclusion pinciple, peiodic table of atoms Molecules and solids, consequences of Q.M. Metals, insulatos, semiconductos, supeconductos, lases,.. ectue 6, p

3 Today 3-Dimensional Potential Well: Poduct Wave Functions Degeneacy Schödinge s Equation fo the Hydogen Atom: Semi-quantitative pictue fom uncetainty pinciple Gound state solution* Spheically-symmetic excited states ( s-states )* *contains details beyond what we expect you to know on exams. ectue 6, p 3

4 ectue 6, p 4

5 Quantum Paticles in 3D Potentials A eal (D) quantum dot So fa, we have consideed quantum paticles bound in one-dimensional potentials. This situation can be applicable to cetain physical systems but it lacks some of the featues of most eal 3D quantum systems, such as atoms and atificial stuctues. One consequence of confining a quantum paticle in two o thee dimensions is degeneacy -- the existence of seveal quantum states at the same enegy. To illustate this impotant point in a simple system, let s extend ou favoite potential - the infinite squae well - to thee dimensions. ectue 6, p 5

6 Paticle in a 3D Box () The extension of the Schödinge Equation (SEQ) to 3D is staightfowad in Catesian (x,y,z) coodinates: U( x, y, z) E m x y z m Kinetic enegy tem: px py pz whee et s solve this SEQ fo the paticle in a 3D cubical box: ( x, y, z) z x U(x,y,z) = outside box, x o y o z < inside box outside box, x o y o z > y This U(x,y,z) can be sepaated : U(x,y,z) = U(x) + U(y) + U(z) U = if any of the thee tems =. ectue 6, p 6

7 Paticle in a 3D Box () Wheneve U(x,y,z) can be witten as the sum of functions of the individual coodinates, we can wite some wave functions as poducts of functions of the individual coodinates: (see the supplementay slides) ( x, y, z) f ( x) g( y) h( z) Fo the 3D squae well, each function is simply the solution to the D squae well poblem: nx h nx nx fn ( x) N sin x x E m Similaly fo y and z. D wave functions: n sin x n x sin y y (n x,n y ) = (,) (n x,n y ) = (,) y y x x Each function contibutes to the enegy. The total enegy is the sum: Etotal = E x + E y + E z y (n x,n y ) = (,) x y (n x,n y ) = (,) x ectue 6, p 7

8 ectue 6, p 8

9 Paticle in a 3D Box (3) The enegy eigenstates and enegy values in a 3D cubical box ae: nx ny nz Nsin x sin y sin z h E n n n x y z 8m n n n x y z whee n x,n y, and n z can each have values,,3,. y z x This poblem illustates two impotant points: Thee quantum numbes (n x,n y,n z ) ae needed to identify the state of this thee-dimensional system. That is tue fo evey 3D system. Moe than one state can have the same enegy: Degeneacy. Degeneacy eflects an undelying symmety in the poblem. 3 equivalent diections, because it s a cube, not a ectangle. ectue 6, p 9

10 Cubical Box Execise z Conside a 3D cubic box: Show enegies and label (n x,n y,n z ) fo the fist states of the paticle in the 3D box, and wite the degeneacy, D, fo each allowed enegy. Define E o = h /8m. y x E (n x,n y n z ) Degeneacy 6E o (,,) (,,) (,,) D=3 3E o (,,) D= ectue 6, p

11 Act Fo a cubical box, we just saw that the 5 th enegy level is at E, with a degeneacy of and quantum numbes (,,).. What is the enegy of the next enegy level? a. 3E b. 4E c. 5E. What is the degeneacy of this enegy level? a. b. 4 c. 6 ectue 6, p

12 ectue 6, p

13 Anothe 3D System: The Atom -electons confined in Coulomb field of a nucleus Ealy hints of the quantum natue of atoms: Discete Emission and Absoption specta When excited in an electical dischage, atoms emit adiation only at discete wavelengths Diffeent emission specta fo diffeent atoms Atomic hydogen (nm) Geige-Masden (Ruthefod) Expeiment (9): Measued angula dependence of a paticles (He ions) scatteed fom gold foil. Mostly scatteing at small angles suppoted the plum pudding model. But Occasional scatteings at lage angles Something massive in thee! v Au Conclusion: Most of atomic mass is concentated in a small egion of the atom a nucleus!

14 Atoms: Classical Planetay Model (An ealy model of the atom) Classical pictue: negatively chaged objects (electons) obit positively chaged nucleus due to Coulomb foce. F -e Thee is a BIG PROBEM with this: +Ze As the electon moves in its cicula obit, it is ACCEERATING. As you leaned in Physics, acceleating chages adiate electomagnetic enegy. Consequently, an electon would continuously lose enegy and spial into the nucleus in about -9 sec. The planetay model doesn t lead to stable atoms.

15 Hydogen Atom - Qualitative Why doesn t the electon collapse into the nucleus, whee its potential enegy is lowest? We must balance two effects: As the electon moves close to the nucleus, its potential enegy deceases (moe negative): e U Howeve, as it becomes moe and moe confined, its kinetic enegy inceases: p KE m Theefoe, the total enegy is: e E KE PE m E has a minimum at: m e a.53 nm The Boh adius of the H atom. At this adius, E 4 m e 3.6 ev The gound state enegy of the hydogen atom. Heisenbeg s uncetainty pinciple pevents the atom s collapse. One facto of e o e comes fom the poton chage, and one fom the electon. ectue 6, p 5

16 ectue 6, p 6

17 Potential Enegy in the Hydogen Atom To solve this poblem, we must specify the potential enegy of the electon. In an atom, the Coulomb foce binds the electon to the nucleus. U() This poblem does not sepaate in Catesian coodinates, because we cannot wite U(x,y,z) = U x (x)+u y (y)+u z (z). Howeve, we can sepaate the potential in spheical coodinates (,,f), because: U ( ) e U(,,f) = U () + U () + U f (f) e Theefoe, we will be able to wite:,, R f f 9 Nm /C 4 9 Question: How many quantum numbes will be needed to descibe the hydogen wave function? ectue 6, p 7

18 Wave Function in Spheical Coodinates We saw that because U depends only on the adius, the poblem is sepaable. The hydogen SEQ can be solved analytically (but not by us). We will show you the solutions and discuss thei physical significance. We can wite:,, R Y, f f nlm nl lm x f y z Thee ae thee quantum numbes: n pincipal (n ) l obital ( l < n-) m magnetic (-l m +l) What befoe we called f The Y lm ae called spheical hamonics. Today, we will only conside l = and m =. These ae called s-states. This simplifies the poblem, because Y (,f) is a constant and the wave function has no angula dependence: (,, f) R ( ) n n These ae states in which the electon has no obital angula momentum. This is not possible in Newtonian physics. (Why?) Note: Some of this nomenclatue dates back to the 9 th centuy, and has no physical significance. ectue 6, p 8

19 Radial Eigenstates of Hydogen Hee ae gaphs of the s-state wave functions, R no (), fo the electon in the Coulomb potential of the poton. The zeos in the subscipts ae a eminde that these ae states with l = (zeo angula momentum!). E ev x).5 R h( x).5 R d4( x) R ev 4 x R e () / a, 4a 4. 5 R e x /a,( ) a a.5 5 5a x 5 R e /3a 3,( ) 3 a 3 a a.53 nm m e e You can pove these ae solutions by plugging into the adial SEQ (Appendix). E n 3.6 ev n You will not need to memoize these functions ev ectue 6, p 9

20 ectue 6, p

21 ACT : Optical Tansitions in Hydogen An electon, initially excited to the n = 3 enegy level of the hydogen atom, falls to the n = level, emitting a photon in the pocess. ) What is the enegy of the emitted photon? a).5 ev b).9 ev c) 3.4 ev ) What is the wavelength of the emitted photon? a) 87 nm b) 656 nm c) 365 nm ectue 6, p

22 Next week: aboatoy 4 Eyepiece Coss hais Focusing lens Gating ight shield Collimating lens Slit ight souce Deflected beam Undeflected beam E n 3.6eV n ectue 6, p

23 Pobability Density of Electons = Pobability density = Pobability pe unit volume The density of dots plotted below is popotional to. s state s state R n R n fo s-states. A node in the adial pobability distibution. f( x).5 R h( x).5 R 4 x 4a 4. 5 x a ectue 6, p 3

24 ectue 6, p 4

25 Radial Pobability Densities fo S-states Summay of wave functions and adial pobability densities fo some s-states. f( x).5 R g( x).5 P The adial pobability density has an exta facto of because thee is moe volume at lage. That is, P n (). R n ( x). 3 4a 4.5 x R 5 a x 4 4 4a x.5 h( x) x P a This means that: The most likely is not!!! Even though that s whee () is lagest. This is always a confusing point. See the supplementay slide fo moe detail. x) R 3 P a x 5 adial wave functions a adial pobability densities, P() ectue 6, p 5

26 Next ectues Angula momentum Spin Nuclea Magnetic Resonance ectue 6, p 6

27 Supplement: Sepaation of Vaiables () In the 3D box, the SEQ is: U( x) U( y) U( z) E m x y z et s see if sepaation of vaiables woks. Substitute this expession fo into the SEQ: ( x, y, z) f ( x) g( y) h( z) NOTE: Patial deivatives. d f d g d h gh fh fg U( x) U( y) U( z) fgh Efgh m dx dy dz NOTE: Total deivatives. Divide by fgh: d f d g d h U( x) U( y) U( z) E m f x g dy h dz ectue 6, p 7

28 ectue 6, p 8

29 Supplement: Sepaation of Vaiables () Regoup: d f d g d h ( ) ( ) ( ) U x U y U z E m f x m g dy m h dz A function of x A function of y A function of z We have thee functions, each depending on a diffeent vaiable, that must sum to a constant. Theefoe, each function must be a constant: df U( x) E m f x dg ( ) U y E m g dy dh ( ) U z E m h dz Ex Ey Ez E x y z Each function, f(x), g(y), and h(z) satisfies its own D SEQ. ectue 6, p 9

30 Supplement: Why Radial Pobability Isn t the Same as Volume Pobability et s look at the n=, l= state (the s state): (,,f) R () e -/a. So, P(,,f) = e -/a. This is the volume pobability density. f( x).5 P(,,f) If we want the adial pobability density, we must emembe that: 4 dv = x 4 d sin d df We e not inteested in the angula distibution, so to calculate P() we must integate ove and f. The s-state has no angula dependence, so the integal is just 4. Theefoe, P() e -/a. The facto of is due to the fact that thee is moe volume at lage. A spheical shell at lage has moe volume than one at small : Compae the volume of the two shells of the same thickness, d. g( x) 4a.5 P() 4 4a x 4 ectue 6, p 3

31 Appendix: Solving the Radial SEQ fo H --deiving a o and E e Substituting R( ) Ne into R( ) ER( ), we get: m d m e e e e Ee Fo this equation to hold fo all, we must have: e m AND m E m E a ma e Evaluating the gound state enegy: E ma mc c a (.5)( (97) 6 )(.53) 3.6eV

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Explicit, analytical solution of scaling quantum graphs. Abstract

Explicit, analytical solution of scaling quantum graphs. Abstract Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 06459-0155, USA E-mail: ydabaghian@wesleyan.edu (Januay 6, 2003)

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

NUCLEAR MAGNETIC RESONANCE

NUCLEAR MAGNETIC RESONANCE 19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic

More information

12.1. FÖRSTER RESONANCE ENERGY TRANSFER

12.1. FÖRSTER RESONANCE ENERGY TRANSFER ndei Tokmakoff, MIT epatment of Chemisty, 3/5/8 1-1 1.1. FÖRSTER RESONNCE ENERGY TRNSFER Föste esonance enegy tansfe (FR) efes to the nonadiative tansfe of an electonic excitation fom a dono molecule to

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Quantum Mechanics and Spectroscopy

Quantum Mechanics and Spectroscopy Quantum Mechanics and Spectoscopy Text book Engel: Quantum Chemisty and Spectoscopy (3 ed., QCS) o Engel and Reid: Physical Chemisty (3 ed.) Chapte 1. Basic Quantum Mechanics (Engel: QCS chaptes 1-6) The

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential Excitation enegies fo molecules by Time-Dependent Density-Functional Theoy based on Effective Exact Exchange Kohn-Sham potential Fabio Della Sala National Nanotechnology Laboatoies Lecce Italy A. Göling

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Magnetic Bearing with Radial Magnetized Permanent Magnets

Magnetic Bearing with Radial Magnetized Permanent Magnets Wold Applied Sciences Jounal 23 (4): 495-499, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.04.23080 Magnetic eaing with Radial Magnetized Pemanent Magnets Vyacheslav Evgenevich

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Classical Mechanics (CM):

Classical Mechanics (CM): Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w 1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Supplementary Material for EpiDiff

Supplementary Material for EpiDiff Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Chapte Relativistic Quantum Mechanics In this Chapte we will addess the issue that the laws of physics must be fomulated in a fom which is Loentz invaiant, i.e., the desciption should not allow one to

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

Software Engineering and Development

Software Engineering and Development I T H E A 67 Softwae Engineeing and Development SOFTWARE DEVELOPMENT PROCESS DYNAMICS MODELING AS STATE MACHINE Leonid Lyubchyk, Vasyl Soloshchuk Abstact: Softwae development pocess modeling is gaining

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics 4-1 Lagangian g and Euleian Desciptions 4-2 Fundamentals of Flow Visualization 4-3 Kinematic Desciption 4-4 Reynolds Tanspot Theoem (RTT) 4-1 Lagangian and Euleian Desciptions (1) Lagangian desciption

More information

CHAPTER 10 Aggregate Demand I

CHAPTER 10 Aggregate Demand I CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income

More information

Chapte 3 Is Gavitation A Results Of Asymmetic Coulomb Chage Inteactions? Jounal of Undegaduate Reseach èjurè Univesity of Utah è1992è, Vol. 3, No. 1, pp. 56í61. Jeæey F. Gold Depatment of Physics, Depatment

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Gravitation and Kepler s Laws

Gravitation and Kepler s Laws 3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente

More information

Lesson 8 Ampère s Law and Differential Operators

Lesson 8 Ampère s Law and Differential Operators Lesson 8 Ampèe s Law and Diffeential Opeatos Lawence Rees 7 You ma make a single cop of this document fo pesonal use without witten pemission 8 Intoduction Thee ae significant diffeences between the electic

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS

INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in

More information

CHAPTER 6 IDEAL DIATOMIC GAS

CHAPTER 6 IDEAL DIATOMIC GAS CHAPTER 6 IDEAL DIATOMIC GAS Monatomic gas: Has tanslational and electonic degees of feedom Nuclea patition function can be teated as a constant facto Diatomic gas: Has vibational and otational degees

More information

Instituto Superior Técnico Av. Rovisco Pais, 1 1049-001 Lisboa E-mail: virginia.infante@ist.utl.pt

Instituto Superior Técnico Av. Rovisco Pais, 1 1049-001 Lisboa E-mail: virginia.infante@ist.utl.pt FATIGUE LIFE TIME PREDICTIO OF POAF EPSILO TB-30 AIRCRAFT - PART I: IMPLEMETATIO OF DIFERET CYCLE COUTIG METHODS TO PREDICT THE ACCUMULATED DAMAGE B. A. S. Seano 1, V. I. M.. Infante 2, B. S. D. Maado

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

Molecular Dynamics Simulations and Neutron Scattering: Polymer Melt and Solution Dynamics

Molecular Dynamics Simulations and Neutron Scattering: Polymer Melt and Solution Dynamics Molecula Dynamics Simulations and Neuton Scatteing: Polyme Melt and Solution Dynamics Gant D. Smith Depatment of Mateials Science and Engineeing Univesity of Utah Polyme Dynamics and Relaxation Richad

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0 Poiseuille Flow Jean Louis Maie Poiseuille, a Fench physicist and physiologist, was inteested in human blood flow and aound 1840 he expeimentally deived a law fo flow though cylindical pipes. It s extemely

More information

YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH

YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH nd INTERNATIONAL TEXTILE, CLOTHING & ESIGN CONFERENCE Magic Wold of Textiles Octobe 03 d to 06 th 004, UBROVNIK, CROATIA YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH Jana VOBOROVA; Ashish GARG; Bohuslav

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

SELF-INDUCTANCE AND INDUCTORS

SELF-INDUCTANCE AND INDUCTORS MISN-0-144 SELF-INDUCTANCE AND INDUCTORS SELF-INDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. Self-Inductance L.........................................

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information

MATHEMATICAL SIMULATION OF MASS SPECTRUM

MATHEMATICAL SIMULATION OF MASS SPECTRUM MATHEMATICA SIMUATION OF MASS SPECTUM.Beánek, J.Knížek, Z. Pulpán 3, M. Hubálek 4, V. Novák Univesity of South Bohemia, Ceske Budejovice, Chales Univesity, Hadec Kalove, 3 Univesity of Hadec Kalove, Hadec

More information

Channel selection in e-commerce age: A strategic analysis of co-op advertising models

Channel selection in e-commerce age: A strategic analysis of co-op advertising models Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of

More information

Thank you for participating in Teach It First!

Thank you for participating in Teach It First! Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident

More information

Converting knowledge Into Practice

Converting knowledge Into Practice Conveting knowledge Into Pactice Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 2 0 1 0 C o p y i g h t s V l a d i m i R i b a k o v 1 Disclaime and Risk Wanings Tading

More information