Chapter 17: From Gene to Protein

Size: px
Start display at page:

Download "Chapter 17: From Gene to Protein"

Transcription

1 Name Period Chapter 17: From Gene to Protein This is going to be a very long journey, but it is crucial to your understanding of biology. Work on this chapter a single concept at a time, and expect to spend at least 6 hours to truly master the material. To give you an idea of the depth and time required, we spent over 5 hours writing this Reading Guide! You will need even longer to complete it and learn the information. Good luck, and take your time. Overview 1. What is gene expression? Gene expression is the process by which information encoded in DNA directs the synthesis of proteins or, in some cases, RNAs that are not translated into proteins and instead function as RNAs. Concept 17.1 Genes specify proteins via transcription and translation 2. What situation did Archibald Garrod suggest caused inborn errors of metabolism? A person s inability to make a particular enzyme 3. Describe one example Garrod used to illustrate his hypothesis. Garrod gave as one example the hereditary condition called alkaptonuria. In this disorder, the urine is black because it contains the chemical alkapton, which darkens upon exposure to air. Garrod reasoned that most people have an enzyme that metabolizes alkapton, whereas people with alkaptonuria have inherited an inability to make that enzyme. 4. State the hypothesis formulated by George Beadle while studying eye color mutations in Drosophila. The hypothesis stated that in Drosophila, each of the various mutations affecting eye color blocks pigment synthesis at a specific step by preventing production of the enzyme that catalyzes that step. 5. What strategy did Beadle and Tatum adopt to test this hypothesis? Beadle and Tatum bombarded the bread mold Neurospora with X-rays, and then looked among the survivors for mutants that differ in their nutritional needs from the wild-type bread mold. 6. Which organism did Beadle and Tatum use in their research? Neurospora. How did this organism s nutritional requirements facilitate this research? Wild-type Neurospora has modest food requirements. It can grow in the laboratory on a simple solution of inorganic salts, glucose, and the vitamin biotin, and incorporated into agar, a support medium. From this minimal medium, the mold cells use their metabolic pathways to produce all other molecules they need. Beadle and Tatum identified mutants that could not survive on minimal medium, apparently because they were unable to synthesize certain essential molecules Copyright 2011 Pearson Education, Inc

2 from the minimal ingredients. 7. How were Neurospora spores treated to increase the mutation rate? Neurospora spores were treated with X-rays to increase the mutation rate. 8. Study Figure 17.2 in your text carefully. On the following unlabeled figure, describe the technique used to identify and isolate mutant fungi. See page 327 in your text for the labeled figure. 9. Cite two significant findings that resulted from the research of Beadle and Tatum. One, that metabolic defects are linked to defective genes, and two, support for the one gene one enzyme hypothesis 10. What revision of detail (but not of basic principle) did this hypothesis undergo as more information was gained? Write this restatement and then box or highlight it. This is an important concept! Because not all proteins are enzymes, and because each protein consists of two or more different polypeptide chains, each specified by its own gene, the hypothesis was revised. Beadle and Tatum s idea was restated as the one gene one polypeptide hypothesis. Basic Principles of Transcription and Translation This section will introduce you to the processes and associated terminology in the form of an overview. Once you have the big picture, you will take a closer look in the next few concepts. 11. From the first paragraph in this section, find three ways in which RNA differs from DNA. 1. RNA contains ribose instead of deoxyribose as its sugar. 2. RNA has the nitrogenous base uracil rather than thymine. 3. An RNA molecule usually consists of a single strand rather than DNA s double strand 12. What are the monomers of DNA and RNA? The four types of nucleotides, which differ in their nitrogenous bases Of proteins? Amino acids 13. Define each of these processes that are essential to the formation of a protein: transcription: The synthesis of RNA using a DNA template translation: The synthesis of a polypeptide using the genetic information encoded in an mrna molecule. There is a change of language from nucleotides to amino acids. 14. Complete the following table to summarize each process. Copyright 2011 Pearson Education, Inc

3 Template Product Synthesized Location in Eukaryotic Cell Transcription DNA RNA Nucleus Translation mrna Polypeptide Cytoplasm 15. In eukaryotes, what is the pre-mrna called? Primary transcript 16. Write the central dogma of molecular genetics, as proclaimed by Francis Crick, in the box below. DNA RNA Protein 17. How many nucleotide bases are there? 4 How many amino acids? How many nucleotides are required to code for these 20 amino acids? So, the language of DNA is a triplet code. How many unique triplets exist? DNA is double-stranded, but for each protein, only one of these two strands is used to produce an mrna transcript. What is the coding strand called? Template strand 21. Here is a short DNA template. Below it, assemble the complementary mrna strand. 3'A C G A C C A G T A A A 5' 5' U G C U G G U C A U U U 3' 22. How many codons are there above? 4 Label one codon. Answers may vary; see page 329 in your text for the labeled figure. 23. Describe Nirenberg s experiment in which he identified the first codon. Nirenberg synthesized an artificial mrna by linking identical RNA nucleotides containing uracil as their base. 24. What was the first codon amino acid pair to be identified? UUU (poly-u)-phenylalanine 25. Of the 64 possible codons, how many code for amino acids? What event is coded for by UAA, UAG, and UGA? Stop 27. What is the start codon? AUG 28. Why is the genetic code said to be redundant but not ambiguous? Although more than one codon may specify a particular amino acid, neither codon specifies any Copyright 2011 Pearson Education, Inc

4 other amino acid. 29. Explain the concept of reading frame. On an mrna, the reading frame is the triplet grouping of ribonucleotides used by the translation machinery during polypeptide synthesis. 30. Now here is an important idea: DNA is DNA is DNA. By this we mean that the code is nearly universal, and because of this, jellyfish genes can be inserted into pigs, or firefly genes can make a tobacco plant glow. Enjoy a look at Figure 17.6 in your text... and no question to answer here! Concept 17.2 Transcription is the DNA-directed synthesis of RNA: A closer look 31. Name the enzyme that uses the DNA template strand to transcribe a new mrna strand. RNA polymerase 32. Recall from Chapter 16 that DNA polymerase III adds new nucleotides to the template DNA strand to assemble each new strand of DNA. Both enzymes can assemble a new polynucleotide only in the 5' direction. Which enzyme, DNA polymerase III or RNA polymerase, does not require a primer to begin synthesis? RNA polymerase 33. What is a transcription unit? A transcription unit is a region of DNA that is transcribed into an RNA molecule. 34. Figure 17.7 in your text will require a bit of study. Use it to label the following elements on the figure below: promoter, RNA polymerase, transcription unit, DNA template, nontemplate DNA, and RNA transcript. Then, to the right of the figure, name the three stages of transcription and briefly describe each stage. See page 332 in your text for the labeled figure and description of each stage. 35. Let s now take a closer look at initiation. Read the paragraph titled RNA Polymerase Binding and Initiation of Transcription carefully. List three important facts about the promoter here. 1. Promoter of a gene includes within it the transcription start point. 2. Promoter typically extends several dozen of more nucleotide pairs upstream from the start point. 3. RNA polymerase binds in a precise location and orientation on the promoter. 36. Use Figure 17.8 in your text to label the following elements of the figure that follows: TATA box, RNA polymerase II, transcription factors, template DNA strand, start point, 5' and 3', and mrna transcript. To the right of the figure, explain the three stages of initiation that are shown. Copyright 2011 Pearson Education, Inc

5 See page 333 of your text for the labeled figure and description of each stage. 37. What is the TATA box? How do you think it got this name? The TATA box is a DNA sequence in eukaryotic promoters crucial in forming the transcription initiation complex. The name TATA box is from the thymine (T) and adenine (A) that make it up. 38. What comprises a transcription initiation complex? The completed assembly of transcription factors and RNA polymerase bound to a promoter 39. Now it is time to put all of the elements of transcription together. Write an essay below to describe the process by which mrna is formed. Use these terms correctly in your essay, and highlight (or underline) each one: TATA box, gene, terminator, promoter, elongation, 5' to 3', termination, initiation RNA, polymerase RNA nucleotides, template, start point, termination signal, and transcription factors. This essay is typical of what you might be asked to write on the AP Biology exam. Answers will vary. Concept 17.3 Eukaryotic cells modify RNA after transcription 40. RNA processing occurs only in eukaryotic cells. The primary transcript is altered at both ends, and sections in the middle are removed. a. What happens at the 5' end? The 5' end is synthesized first; it receives a 5' cap, a modified form of a guanine (G) nucleotide added onto the 5' end after transcription of the first nucleotides. b. What happens at the 3' end? The 3' end of the pre-mrna molecule is also modified before the mrna exits the nucleus. An enzyme adds more adenine (A) nucleotides, forming a poly-a tail. 41. What are three important functions of the 5' cap and poly-a tail? 1. They seem to facilitate the export of mature mrna from the nucleus. 2. They help protect the mrna from degradation by hydrolytic enzymes. 3. They help ribosomes attach to the 5' end of the mrna once the mrna reaches the cytoplasm. 42. Distinguish between introns and exons. Perhaps it will help to remember this: Exons are expressed. Introns are the noncoding segments of nucleic acid that lie between coding regions, also called intervening sequences Exons are the segments of nucleic acid that are eventually expressed by being translated into amino acid sequences. Copyright 2011 Pearson Education, Inc

6 43. On the following figure label: pre-mrna, 5' cap, poly-a tail, introns, and exons. See page 335 of your text for the labeled figure. 44. What are snrnps? What two types of molecules make up a snurp? (We like the word snurp! It reminds us of little cartoon characters that wore blue hoods and were called smurfs.) snrnps are small nuclear ribonucleoproteins. snrnps are made up of RNA and protein molecules. 45. You will be introduced to a number of small RNAs in this course. What type is the RNA in a snrnp? Small nuclear RNA 46. Snurps band together in little snurp groups to form spliceosomes. How do spliceosomes work? The spliceosome interacts with certain sites along an intron, releasing the intron, which is rapidly degraded, and joining together two exons that flanked the intron. 47. On the figure below, label the following: pre-mrna, snrnps, snrna, protein, spliceosomes, intron, and other proteins. See page 335 of your text for the labeled figure. 48. Study the figure and text carefully to explain how the splice sites are recognized. snrnas, part of the spliceosome complex, recognize specific nucleotide sequences on the intron and catalyze the process of intron removal. This is an excellent example of catalytic function in snrna. 49. What is a ribozyme? An RNA molecule that functions as an enzyme, such as an intron that catalyzes its own removal during RNA splicing 50. What commonly held idea was rendered obsolete by the discovery of ribozymes? The idea that all biological catalysts are proteins 51. What are three properties of RNA that allow it to function as an enzyme? a. Because RNA is single-stranded, a region of an RNA molecule may base-pair with a complementary region elsewhere in the same molecule, which gives the molecule a particular three-dimensional structure. A specific structure is essential to the catalytic function of ribozymes, just as it is for enzymatic proteins. b. Like certain amino acids in an enzymatic protein, some of the bases in RNA contain functional groups that may participate in catalysis. Copyright 2011 Pearson Education, Inc

7 c. This ability of RNA to hydrogen-bond with other nucleic acid molecules (either RNA or DNA) adds specificity to its catalytic activity. 52. What is the consequence of alternative splicing of identical mrna transcripts? The number of different protein products an organism produces can be much greater than its number of genes. Concept 17.4 Translation is the RNA-directed synthesis of a polypeptide: A closer look 53. You may need to read on in this section in order to answer this question, as well as think back to earlier information about mrna. Come back to this question later if you wish. Three types of RNA are needed for protein synthesis. Complete the chart below. Type of RNA Description Function mrna Messenger RNA Single-stranded Carries genetic material from the DNA to the protein-synthesizing machinery of the cell trna Transfer RNA About 75 nucleotides long; folds into a Transfers amino acids from the cytoplasmic pool of amino acids to a growing polypeptide in a ribosome clover-leaf shape. rrna Ribosomal RNA Together with proteins, makes up ribosomes; the most abundant type of RNA 54. What is an anticodon? A nucleotide triplet at one end of a trna molecule that base-pairs with a particular complementary codon on an mrna molecule 55. Transfer RNA has two attachment sites. What binds at each site? Sketch trna to indicate the two attachment sites, and note where complementary base pairing and hydrogen bonding occur to give it shape. A specific anticodon binds at one end of trna, and a corresponding amino acid at the other end. See page 337 of your text for the labeled figure. 56. How many different aminoacyl-trna synthetases are there? 20 Copyright 2011 Pearson Education, Inc

8 57. Scientists expected to find one aminoacyl-trna synthetase per codon, but far fewer have been discovered. How does wobble explain this? Wobble is flexibility in the base-pairing rules in which the nucleotide at the 5' end of a trna anticodon can form hydrogen bonds with more than one kind of base in the third position (3' end) of a codon. This flexibility explains why there are only about 45 trnas. 58. Use the following figure to explain the process of a specific amino acid being joined to a trna. Also add these labels: aminoacyl-trna synthetase, ATP, amino acid, and trna. See page 338 of your text for the labeled figure. 59. Describe the structure of a eukaryotic ribosome. A ribosome consists of a large subunit and a small subunit, each made up of proteins and one or more rrnas. 60. How does a prokaryotic ribosome differ from a eukaryotic ribosome? What is the medical significance of this difference? Eukaryotic ribosomes are slightly larger in structure and differ somewhat from bacterial ribosomes in their molecular composition. Certain antibiotic drugs can inactivate bacterial ribosomes without inhibiting the ability of eukaryotic ribosomes to make proteins. These drugs, including tetracycline and streptomycin, are used to combat bacterial infections. 61. On the following figure, label the large subunit, small subunit, A, P, and E sites, mrna binding site. To the right of the figure, explain the functions of the A, P, and E sites. See page 339 of your text for the labeled figure. 62. Much like transcription, we can divide translation into three stages. List them. a. initiation b. elongation c. termination 63. Summarize the events of initiation. Include these components: small ribosomal subunit, large ribosomal subunit, mrna, initiator codon, trna, Met, initiation complex, P site, and GTP. The figure below may help you. See page 340 in your text for the labeled figure. A small ribosomal subunit binds to a molecule of mrna. In a bacterial cell, the mrna binding site on this subunit recognizes a specific nucleotide sequence on the mrna just upstream of the start codon. An initiator trna, within the anticodon UAC, base-pairs with the start codon, AUG. This trna carries the amino acid methionine (Met). The arrival of a large ribosomal subunit completes the initiative complex. Proteins called initiation factors are required to bring all the translation components together. Hydrolysis of GTP provides the Copyright 2011 Pearson Education, Inc

9 energy for the assembly. The initiator trna is in the P site; the A site is available to the trna bearing the next amino acid. 64. What is always the first amino acid in the new polypeptide? methionine 65. Now, summarize the events of elongation. Include these components: mrna, A site, trna, codon, anticodon, ribozyme, P site, and E site. Again, the figure may help you. See page 341 in your text for the labeled figure. The anticodon of an incoming aminoacyl trna base-pairs with the complementary mrna codon in the A site. Hydrolysis of GTP increases the accuracy and efficiency of this step. An rrna molecule of the large ribosomal subunit catalyzes the formation of a peptide bond between the amino group of the new amino acid in the A site and the carboxyl end of the growing polypeptide in the P site. This step removes the polypeptide from the trna in the P site and attaches it to the amino acid on the trna in the A site. The ribosome translocates the trna in the A site to the P site. At the same time, the empty trna in the P site is moved to the E site, where it is released. The mrna moves along with its bound trnas, bringing the next codon to be translated into the A site. 66. What is a release factor? By what mechanism is termination accomplished? A release factor is a protein shaped like an aminoacyl trna, which binds directly to the stop codon in the A site.hydrolyzation is the mechanism by which termination is accomplished, releasing the polypeptide through the exit tunnel of the ribosome s large subunit. 67. What is a polyribosome? A polyribosome is a group of several ribosomes attached to, and translating, the same messenger RNA molecule. 68. What are some of the things that will result in a final-form functional protein? Modifications of a protein after translation include protein folding, chemical modification of amino acids, enzymatic removal or rearrangement of amino acids, or the formation of quaternarylevel proteins as in the case of hemoglobin. 69. Describe at least three types of post-translational modifications. 1. Certain amino acids may be chemically modified by the attachment of sugars, lipids, phosphate groups, or other additions. 2. Enzymes may remove one or more amino acids from the leading (amino) end of the polypeptide chain. 3. Two or more polypeptides that are synthesized separately may come together, becoming the subunits of a protein that has quaternary structure. 70. Use the following figure to explain how proteins are targeted for the ER. See page 343 in your text for the labeled figure. Polypeptide synthesis begins on a free ribosome in the cytosol. An SRP binds to a receptor protein in the ER membrane. This receptor is part of a protein complex that has a membrane pore and a Copyright 2011 Pearson Education, Inc

10 signal-cleaving enzyme. The SRP leaves, and the polypeptide synthesis resumes, with simultaneous translocation across the membrane. The signal-cleaving enzyme cuts off the signal polypeptide. The rest of the completed polypeptide leaves the ribosome and folds into its final conformation. Concept 17.5 Mutations of one or a few nucleotides can affect protein structure and function 71. Define a mutation in terms of molecular genetics. A change in the nucleotide sequence of an organism s DNA or in the DNA or RNA of a virus 72. Define point mutations. A point mutation is a change in a single nucleotide pair of a gene. 73. What are frameshift mutations? A frameshift mutation is a mutation occurring when nucleotides are inserted in or deleted from a gene and the number inserted or deleted is not a multiple of three, resulting in the improper grouping of the subsequent nucleotides into codons. 74. Identify two mechanisms by which frameshifts may occur. Insertion and deletion 75. What is the difference between a nonsense and missense mutation? A nonsense mutation changes an amino acid codon to one of the three stop codons, resulting in a shorter and usually nonfunctional protein. A missense mutation is a nucleotide-pair substitution that results in a codon that codes for a different amino acid. 76. How can a nucleotide-pair substitution result in a silent mutation? A change in the nucleotide pair may transform one codon into another that is translated into the same amino acid. This mutation has no observable effect on the phenotype. 77. What are the two categories of mutagens? Physical and chemical 78. Describe the action of different types of chemical mutagens. 1. Chemicals that are similar to normal DNA nucleotides but that pair incorrectly during DNA replication 2. Chemicals that interfere with correct DNA replication by inserting themselves into the DNA and distorting the double helix 3. Chemicals that cause chemical changes in bases that change their pairing properties Copyright 2011 Pearson Education, Inc

11 Concept 17.6 While gene expression differs among the domains of life, the concept of a gene is universal 79. Describe two important ways in which bacterial and eukaryotic gene expression differ. 1. Transcription is terminated differently in bacteria and eukaryotes. 2. In the absence of a nucleus, bacterial cells can simultaneously transcribe and translate the same gene, and the newly made protein can quickly diffuse to its site of function. The eukaryotic cell s nuclear envelope segregates transcription from translation and provides a compartment for extensive RNA processing. This processing state includes additional steps whose regulation can help coordinate the eukaryotic cell s elaborate activities. 80. What is a gene? It used to be simply stated that one gene codes for one polypeptide. That definition has now been modified. Write below the broader molecular definition in use today. A gene is a region of DNA that can be expressed to produce a final functional product that is either a polypeptide or an RNA molecule. 81. Finally, use this summary figure to put together all that you have learned in this chapter. See page 348 in your text for the labeled figure. Testing Your Understanding Answers Now you should be ready to test your knowledge. Place your answers here: 1. b 2. d 3. a 4. a 5. b 6. d 7. e Copyright 2011 Pearson Education, Inc

Chapter 17: From Gene to Protein

Chapter 17: From Gene to Protein AP Biology Reading Guide Fred and Theresa Holtzclaw Julia Keller 12d Chapter 17: From Gene to Protein 1. What is gene expression? Gene expression is the process by which DNA directs the synthesis of proteins

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Protein Synthesis How Genes Become Constituent Molecules

Protein Synthesis How Genes Become Constituent Molecules Protein Synthesis Protein Synthesis How Genes Become Constituent Molecules Mendel and The Idea of Gene What is a Chromosome? A chromosome is a molecule of DNA 50% 50% 1. True 2. False True False Protein

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino

More information

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3 DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein Assignment 3 Michele Owens Vocabulary Gene: A sequence of DNA that instructs a cell to produce a particular protein Promoter a control sequence near the start of a gene Coding sequence the sequence of

More information

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown 1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains

More information

13.2 Ribosomes & Protein Synthesis

13.2 Ribosomes & Protein Synthesis 13.2 Ribosomes & Protein Synthesis Introduction: *A specific sequence of bases in DNA carries the directions for forming a polypeptide, a chain of amino acids (there are 20 different types of amino acid).

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

BCH401G Lecture 39 Andres

BCH401G Lecture 39 Andres BCH401G Lecture 39 Andres Lecture Summary: Ribosome: Understand its role in translation and differences between translation in prokaryotes and eukaryotes. Translation: Understand the chemistry of this

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

RNA and Protein Synthesis

RNA and Protein Synthesis Name lass Date RN and Protein Synthesis Information and Heredity Q: How does information fl ow from DN to RN to direct the synthesis of proteins? 13.1 What is RN? WHT I KNOW SMPLE NSWER: RN is a nucleic

More information

Basic Principles of Transcription and Translation

Basic Principles of Transcription and Translation The Flow of Genetic Information The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific traits by dictating the synthesis of

More information

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons Tutorial II Gene expression: mrna translation and protein synthesis Piergiorgio Percipalle, PhD Program Control of gene transcription and RNA processing mrna translation and protein synthesis KAROLINSKA

More information

Translation. Translation: Assembly of polypeptides on a ribosome

Translation. Translation: Assembly of polypeptides on a ribosome Translation Translation: Assembly of polypeptides on a ribosome Living cells devote more energy to the synthesis of proteins than to any other aspect of metabolism. About a third of the dry mass of a cell

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

The Steps. 1. Transcription. 2. Transferal. 3. Translation

The Steps. 1. Transcription. 2. Transferal. 3. Translation Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order

More information

Transcription: RNA Synthesis, Processing & Modification

Transcription: RNA Synthesis, Processing & Modification Transcription: RNA Synthesis, Processing & Modification 1 Central dogma DNA RNA Protein Reverse transcription 2 Transcription The process of making RNA from DNA Produces all type of RNA mrna, trna, rrna,

More information

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary Protein Synthesis Vocabulary Transcription Translation Translocation Chromosomal mutation Deoxyribonucleic acid Frame shift mutation Gene expression Mutation Point mutation Page 41 Page 41 Page 44 Page

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

To be able to describe polypeptide synthesis including transcription and splicing

To be able to describe polypeptide synthesis including transcription and splicing Thursday 8th March COPY LO: To be able to describe polypeptide synthesis including transcription and splicing Starter Explain the difference between transcription and translation BATS Describe and explain

More information

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized: Module 3F Protein Synthesis So far in this unit, we have examined: How genes are transmitted from one generation to the next Where genes are located What genes are made of How genes are replicated How

More information

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams. Module 3 Questions Section 1. Essay and Short Answers. Use diagrams wherever possible 1. With the use of a diagram, provide an overview of the general regulation strategies available to a bacterial cell.

More information

Nucleotides and Nucleic Acids

Nucleotides and Nucleic Acids Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated

More information

Bio 102 Practice Problems Genetic Code and Mutation

Bio 102 Practice Problems Genetic Code and Mutation Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Beadle and Tatum mutagenized Neurospora to find strains that required arginine

More information

Ms. Campbell Protein Synthesis Practice Questions Regents L.E.

Ms. Campbell Protein Synthesis Practice Questions Regents L.E. Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide

More information

3120-1 - Page 1. Name:

3120-1 - Page 1. Name: Name: 1) Which series is arranged in correct order according to decreasing size of structures? A) DNA, nucleus, chromosome, nucleotide, nitrogenous base B) chromosome, nucleus, nitrogenous base, nucleotide,

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular

More information

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme. Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS

TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS Central Dogma of Protein Synthesis Proteins constitute the major part by dry weight of an actively growing cell. They are widely

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu. Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.au What is Gene Expression & Gene Regulation? 1. Gene Expression

More information

Announcements. Chapter 15. Proteins: Function. Proteins: Function. Proteins: Structure. Peptide Bonds. Lab Next Week. Help Session: Monday 6pm LSS 277

Announcements. Chapter 15. Proteins: Function. Proteins: Function. Proteins: Structure. Peptide Bonds. Lab Next Week. Help Session: Monday 6pm LSS 277 Lab Next Week Announcements Help Session: Monday 6pm LSS 277 Office Hours Chapter 15 and Translation Proteins: Function Proteins: Function Enzymes Transport Structural Components Regulation Communication

More information

2006 7.012 Problem Set 3 KEY

2006 7.012 Problem Set 3 KEY 2006 7.012 Problem Set 3 KEY Due before 5 PM on FRIDAY, October 13, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Which reaction is catalyzed by each

More information

Sickle cell anemia: Altered beta chain Single AA change (#6 Glu to Val) Consequence: Protein polymerizes Change in RBC shape ---> phenotypes

Sickle cell anemia: Altered beta chain Single AA change (#6 Glu to Val) Consequence: Protein polymerizes Change in RBC shape ---> phenotypes Protein Structure Polypeptide: Protein: Therefore: Example: Single chain of amino acids 1 or more polypeptide chains All polypeptides are proteins Some proteins contain >1 polypeptide Hemoglobin (O 2 binding

More information

Lab # 12: DNA and RNA

Lab # 12: DNA and RNA 115 116 Concepts to be explored: Structure of DNA Nucleotides Amino Acids Proteins Genetic Code Mutation RNA Transcription to RNA Translation to a Protein Figure 12. 1: DNA double helix Introduction Long

More information

Academic Nucleic Acids and Protein Synthesis Test

Academic Nucleic Acids and Protein Synthesis Test Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination

More information

Lecture 4. Polypeptide Synthesis Overview

Lecture 4. Polypeptide Synthesis Overview Initiation of Protein Synthesis (4.1) Lecture 4 Polypeptide Synthesis Overview Polypeptide synthesis proceeds sequentially from N Terminus to C terminus. Amino acids are not pre-positioned on a template.

More information

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH)

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH) DNA, RNA, replication, translation, and transcription Overview Recall the central dogma of biology: DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) DNA structure

More information

Name: Date: Period: DNA Unit: DNA Webquest

Name: Date: Period: DNA Unit: DNA Webquest Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.

More information

Lecture 5. 1. Transfer of proper aminoacyl-trna from cytoplasm to A-site of ribosome.

Lecture 5. 1. Transfer of proper aminoacyl-trna from cytoplasm to A-site of ribosome. Elongation & Termination of Protein Synthesis (5.1) Lecture 5 1. INITIATION Assembly of active ribosome by placing the first mrna codon (AUG or START codon) near the P site and pairing it with initiation

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

GENE REGULATION. Teacher Packet

GENE REGULATION. Teacher Packet AP * BIOLOGY GENE REGULATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material. Pictures

More information

Lecture 6. Regulation of Protein Synthesis at the Translational Level

Lecture 6. Regulation of Protein Synthesis at the Translational Level Regulation of Protein Synthesis (6.1) Lecture 6 Regulation of Protein Synthesis at the Translational Level Comparison of EF-Tu-GDP and EF-Tu-GTP conformations EF-Tu-GDP EF-Tu-GTP Next: Comparison of GDP

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

CCR Biology - Chapter 8 Practice Test - Summer 2012

CCR Biology - Chapter 8 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 8 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What did Hershey and Chase know

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

CHAPTER 40 The Mechanism of Protein Synthesis

CHAPTER 40 The Mechanism of Protein Synthesis CHAPTER 40 The Mechanism of Protein Synthesis Problems: 2,3,6,7,9,13,14,15,18,19,20 Initiation: Locating the start codon. Elongation: Reading the codons (5 3 ) and synthesizing protein amino carboxyl.

More information

AP BIOLOGY 2009 SCORING GUIDELINES

AP BIOLOGY 2009 SCORING GUIDELINES AP BIOLOGY 2009 SCORING GUIDELINES Question 4 The flow of genetic information from DNA to protein in eukaryotic cells is called the central dogma of biology. (a) Explain the role of each of the following

More information

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes Page 1 of 22 Introduction Indiana students enrolled in Biology I participated in the ISTEP+: Biology I Graduation Examination

More information

CHAPTER 30: PROTEIN SYNTHESIS

CHAPTER 30: PROTEIN SYNTHESIS CHAPTER 30: PROTEIN SYNTHESIS (Translation) Translation: mrna protein LECTURE TOPICS Complexity, stages, rate, accuracy Amino acid activation [trna charging] trnas and translating the Genetic Code - Amino

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided.

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. Name lass Date hapter 12 DN and RN hapter Test Multiple hoice Write the letter that best answers the question or completes the statement on the line provided. Pearson Education, Inc. ll rights reserved.

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA. Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary

More information

The Nucleus: DNA, Chromatin And Chromosomes

The Nucleus: DNA, Chromatin And Chromosomes The Nucleus: DNA, Chromatin And Chromosomes Professor Alfred Cuschieri Department of Anatomy, University of Malta. Objectives By the end of this unit the student should be able to: 1. List the major structural

More information

Modeling DNA Replication and Protein Synthesis

Modeling DNA Replication and Protein Synthesis Skills Practice Lab Modeling DNA Replication and Protein Synthesis OBJECTIVES Construct and analyze a model of DNA. Use a model to simulate the process of replication. Use a model to simulate the process

More information

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS Period Date REGENTS REVIEW: PROTEIN SYNTHESIS 1. The diagram at the right represents a portion of a type of organic molecule present in the cells of organisms. What will most likely happen if there is

More information

Chem 465 Biochemistry II

Chem 465 Biochemistry II Chem 465 Biochemistry II Name: 2 points Multiple choice (4 points apiece): 1. Formation of the ribosomal initiation complex for bacterial protein synthesis does not require: A) EF-Tu. B) formylmethionyl

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Chapter 11: Molecular Structure of DNA and RNA

Chapter 11: Molecular Structure of DNA and RNA Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as

More information

Control of Gene Expression

Control of Gene Expression Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

Complex multicellular organisms are produced by cells that switch genes on and off during development.

Complex multicellular organisms are produced by cells that switch genes on and off during development. Home Control of Gene Expression Gene Regulation Is Necessary? By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

MUTATION, DNA REPAIR AND CANCER

MUTATION, DNA REPAIR AND CANCER MUTATION, DNA REPAIR AND CANCER 1 Mutation A heritable change in the genetic material Essential to the continuity of life Source of variation for natural selection New mutations are more likely to be harmful

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

The world of non-coding RNA. Espen Enerly

The world of non-coding RNA. Espen Enerly The world of non-coding RNA Espen Enerly ncrna in general Different groups Small RNAs Outline mirnas and sirnas Speculations Common for all ncrna Per def.: never translated Not spurious transcripts Always/often

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET

AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET NAME: AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET 1. Griffith's experiments showing the transformation of R strain pneumococcus bacteria to S strain pneumococcus bacteria in the presence of

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

How Cancer Begins???????? Chithra Manikandan Nov 2009

How Cancer Begins???????? Chithra Manikandan Nov 2009 Cancer Cancer is one of the most common diseases in the developed world: 1 in 4 deaths are due to cancer 1 in 17 deaths are due to lung cancer Lung cancer is the most common cancer in men Breast cancer

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources 1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

AP BIOLOGY 2010 SCORING GUIDELINES (Form B)

AP BIOLOGY 2010 SCORING GUIDELINES (Form B) AP BIOLOGY 2010 SCORING GUIDELINES (Form B) Question 2 Certain human genetic conditions, such as sickle cell anemia, result from single base-pair mutations in DNA. (a) Explain how a single base-pair mutation

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information