Chapter 2 Kinematics: Description of Motion

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 2 Kinematics: Description of Motion"

Transcription

1 Chapter 2 Kinematics: Description of Motion Scalars A scalar quantity is a quantity that has magnitude only and has no direction in space Examples of Scalar Quantities: } Length } Area } Volume } Time } Mass 1 Vectors A vector quantity is a quantity that has both magnitude and a direction in space Examples of Vector Quantities: } Displacement } Velocity } Acceleration } Force 2.1 Distance and Speed: Scalar Quantities Distance is the path length traveled from one location to another. It will vary depending on the path. Distance is a scalar quantity it is described only by a magnitude Distance and Speed: Scalar Quantities Average speed is the distance traveled divided by the elapsed time: Distance and Speed: Scalar Quantities Since distance is a scalar, speed is also a scalar (as is time). Instantaneous speed is the speed measured over a very short time span. Question 2.1 Walking the Dog You and your dog go for a walk to the park. On the way, your dog takes many side trips to chase squirrels or examine fire hydrants. When you arrive at the park, have you and your dog traveled the same distance? a) yes b) no 6 1

2 and Velocity: Vector Quantities A vector has both magnitude and direction. Manipulating vectors means defining a coordinate system, as shown in the diagrams to the left. Displacement is a vector that points from the initial position to the final position of an object. 7 8 Note that an object s position coordinate may be negative, while its velocity may be positive; the two are independent. and Velocity: Vector Quantities For motion in a straight line with no reversals, the average speed and the average velocity are the same. Otherwise, they are not; indeed, the average velocity of a round trip is zero, as the total displacement is zero! 9 10 Different ways of visualizing uniform velocity: This object s velocity is not uniform. Does it ever change direction, or is it just slowing down and speeding up?

3 Question 2.2 Walking the Dog You and your dog go for a walk to the park. On the way, your dog takes many side trips to chase squirrels or examine fire hydrants. When you arrive at the a) yes park, do you and your dog have the same b) no displacement? Question 2.2 Displacement Does the displacement of an object a) yes depend on the specific location of b) no the origin of the coordinate system? c) it depends on the coordinate system Acceleration Question 2.2 Velocity in One Dimension If the average velocity is non-zero over a) yes some time interval, does this mean that b) no the instantaneous velocity is never zero c) it depends during the same interval? Acceleration is the rate at which velocity changes Acceleration Acceleration means that the speed of an object is changing, or its direction is, or both. 2.3 Acceleration Acceleration may result in an object either speeding up or slowing down (or simply changing its direction)

4 2.3 Acceleration If the acceleration is constant, we can find the velocity as a function of time: Question 2.3 Position and Speed a) yes If the position of a car is b) no zero, does its speed have to c) it depends on be zero? the position Kinematic Equations (Constant Acceleration) From previous sections: Question 2.4 Cruising Along I You drive for 30 minutes at 30 mi/ hr and then for another 30 minutes at 50 mi/hr. What is your average speed for the whole trip? a) more than 40 mi/hr b) equal to 40 mi/hr c) less than 40 mi/hr Kinematic Equations (Constant Acceleration) Substitution gives: 2.4 Kinematic Equations (Constant Acceleration) These are all the equations we have derived for constant acceleration. The correct equation for a problem should be selected considering the information given and the desired result. and:

5 Vector Diagrams Vector Diagrams Vector diagrams are diagrams which use vector arrows to depict the direction and relative magnitude of a vector quantity. Vector diagrams can be used to describe the velocity of a moving object during its motion Describing Motion with Position vs. Time Graphs The Meaning of Shape for a p-t Graph 27 To begin, consider a car moving with a constant, rightward (+) velocity - say of +10 m/s. Note that a motion described as a constant, positive velocity results in a line of constant and positive slope when plotted as a positiontime graph. Constant Velocity 28 Changing Velocity The position vs. time graphs for the two types of motion - constant velocity and changing velocity (acceleration) - are depicted as follows. Now consider a car moving with a rightward (+), changing velocity (acceleration) - that is, a car that is moving rightward but speeding up or accelerating Constant Velocity Positive Velocity Positive Velocity Changing Velocity (acceleration)

6 Importance of slope If the velocity is constant, then the slope is constant (i.e., a straight line). If the velocity is changing, then the slope is changing (i.e., a curved line). If the velocity is positive, then the slope is positive (i.e., moving upwards and to the right). Slope of p vs t Slow, Rightward (+) Fast, Rightward (+) Constant Velocity Constant Velocity Slope Slow, Leftward (-) Fast, Leftward (-) Constant Velocity Constant Velocity Meaning of slope Negative (-) Velocity Leftward (-) Slow to Fast Fast to Slow Determining the Slope on a p-t Graph The slope of the line is +10 meter/1 second. It is obvious that in this case the slope of the line (10 m/s) is the same as the velocity of the car In this part of the lesson, we will examine how the actual slope value of any straight line on a graph is the velocity of the object. Consider a car moving with a constant velocity of +10 m/s for 5 seconds. The next diagram depicts such a motion

7 Now consider a car moving at a constant velocity of +5 m/s for 5 seconds, abruptly stopping, and then remaining at rest (v = 0 m/s) for 5 seconds. Determining the slope The line is sloping upwards to the right. But mathematically, by how much does it slope upwards per 1 second along the horizontal (time) axis? To answer this question we must use the slope equation Check your understanding Answer: -3.0 m/s The Meaning of Shape for a v-t Graph Consider a car moving with a constant, rightward (+) velocity - say of +10 m/s. As learned in an earlier lesson, a car moving with a constant velocity is a car with zero acceleration Note that a motion described as a constant, positive velocity results in a line of zero slope (a horizontal line has zero slope) when plotted as a velocity-time graph. Furthermore, only positive velocity values are plotted, corresponding to a motion with positive velocity. Now consider a car moving with a rightward (+), changing velocity - that is, a car that is moving rightward but speeding up or accelerating

8 The velocity vs. time graphs for the two types of motion - constant velocity and changing velocity (acceleration) - can be summarized as follows Positive Velocity Zero Acceleration Positive Velocity Positive Acceleration Notice that the slope of a velocity-time graph represents the acceleration of the object Now how can one tell if the object is speeding up or slowing down? Speeding up means that the magnitude (the value) of the velocity is getting large Question 2.5 You drop a rock off a bridge. When the rock has fallen 4 m, you drop a second rock. As the two rocks continue to fall, what happens to their separation? Throwing Rocks I a) the separation increases as they fall b) the separation stays constant at 4 m c) the separation decreases as they fall d) it is impossible to answer without more information Question 2.5 Throwing Rocks II You drop a rock off a bridge. When the rock has fallen 4 m, you drop a second rock. As the two rocks continue to fall, what happens to their velocities? a) both increase at the same rate b) the velocity of the first rock increases faster than the velocity of the second c) the velocity of the second rock increases faster than the velocity of the first d) both velocities stay constant 47 8

2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance 2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h).

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Revised Pages PART ONE Mechanics CHAPTER Motion Along a Line 2 Despite its enormous mass (425 to 9 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Since the top speed

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

SQA CfE Higher Physics Unit 1: Our Dynamic Universe

SQA CfE Higher Physics Unit 1: Our Dynamic Universe SCHOLAR Study Guide SQA CfE Higher Physics Unit 1: Our Dynamic Universe Authored by: Ian Holton Previously authored by: Douglas Gavin John McCabe Andrew Tookey Campbell White Reviewed by: Grant McAllister

More information

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )). Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

The Bullet-Block Mystery

The Bullet-Block Mystery LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron.

Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron. Physics 241 Lab: Cathode Ray Tube http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html NAME: Section 1: 1.1. A cathode ray tube works by boiling electrons off a cathode heating element

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4. Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging

More information

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time

More information

Student Activity: To investigate an ESB bill

Student Activity: To investigate an ESB bill Student Activity: To investigate an ESB bill Use in connection with the interactive file, ESB Bill, on the Student s CD. 1. What are the 2 main costs that contribute to your ESB bill? 2. a. Complete the

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Derivatives as Rates of Change

Derivatives as Rates of Change Derivatives as Rates of Change One-Dimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions

More information

PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Problem Set 1 Solutions

Problem Set 1 Solutions Problem Set 1 Solutions Chapter 1: Representing Motion Questions: 6, 10, 1, 15 Exercises & Problems: 7, 10, 14, 17, 24, 4, 8, 44, 5 Q1.6: Give an example of a trip you might take in your car for which

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Slope and Rate of Change

Slope and Rate of Change Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Midterm Exam 1 October 2, 2012

Midterm Exam 1 October 2, 2012 Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should

More information

2.2. Instantaneous Velocity

2.2. Instantaneous Velocity 2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Calculus: Module 17. Motion in a straight line

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Calculus: Module 17. Motion in a straight line 1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 10 11 1 A guide for teachers Years 11 and 1 Calculus: Module 17 Motion in a straight line Motion in a straight line A guide for teachers (Years

More information

SQA Higher Physics Unit 1 Mechanics and Properties of Matter

SQA Higher Physics Unit 1 Mechanics and Properties of Matter SCHOLAR Study Guide SQA Higher Physics Unit 1 Mechanics and Properties of Matter John McCabe St Aidan s High School Andrew Tookey Heriot-Watt University Campbell White Tynecastle High School Heriot-Watt

More information

ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES

ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES INSTRUCTIONS The Entrance Examination consists of three parts: Problem Solving (Part 1), Questions on Motivation (Part ), English

More information

Chapter 2 Solutions. 4. We find the average velocity from

Chapter 2 Solutions. 4. We find the average velocity from Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data Chapter Focus Questions What are the benefits of graphic display and visual analysis of behavioral data? What are the fundamental

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Purpose: 1) To understand the H-R Diagram; 2) To understand how the H-R Diagram can be used to follow

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a.

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a. Name DATE Per Completion Complete each statement. TEST REVIEW 1. The two most common systems of standardized units for expressing measurements are the system and the system. 2. A picture that shows how

More information

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Linear Equations 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Tools: Geometer s Sketchpad Software Overhead projector with TI- 83

More information

Introduction to Quadratic Functions

Introduction to Quadratic Functions Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

More information

Credits. Copyright, Utah State Office of Education, 2013.

Credits. Copyright, Utah State Office of Education, 2013. Credits Copyright, Utah State Office of Education, 2013. Unless otherwise noted, the contents of this book are licensed under the Creative Commons Attribution NonCommercial ShareAlike license. Detailed

More information

7 AGGREGATE SUPPLY AND AGGREGATE DEMAND* Chapter. Key Concepts

7 AGGREGATE SUPPLY AND AGGREGATE DEMAND* Chapter. Key Concepts Chapter 7 AGGREGATE SUPPLY AND AGGREGATE DEMAND* Key Concepts Aggregate Supply The aggregate production function shows that the quantity of real GDP (Y ) supplied depends on the quantity of labor (L ),

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

Physics 40 Lab 1: Tests of Newton s Second Law

Physics 40 Lab 1: Tests of Newton s Second Law Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

The momentum of a moving object has a magnitude, in kg m/s, and a... (1)

The momentum of a moving object has a magnitude, in kg m/s, and a... (1) Q. (a) Complete the following sentence. The momentum of a moving object has a magnitude, in kg m/s, and a.... () (b) A car being driven at 9.0 m/s collides with the back of a stationary lorry. The car

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations:

Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations: Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations: Quadratic Equations form Parabolas: Typically there are two types of problems:

More information

EXPERIMENTAL ERROR AND DATA ANALYSIS

EXPERIMENTAL ERROR AND DATA ANALYSIS EXPERIMENTAL ERROR AND DATA ANALYSIS 1. INTRODUCTION: Laboratory experiments involve taking measurements of physical quantities. No measurement of any physical quantity is ever perfectly accurate, except

More information

Fundamental Mechanics: Supplementary Exercises

Fundamental Mechanics: Supplementary Exercises Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

Fo r c e & Mo t i o n

Fo r c e & Mo t i o n Companion Classroom Activities for Fo r c e & Mo t i o n William C. Robertson, PhD Illustrations by Brian Diskin Companion Classroom Activities for Fo r c e & Mo t i o n Companion Classroom Activities

More information

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Keywords - animation, e-learning, high school, physics lesson

Keywords - animation, e-learning, high school, physics lesson Simplify Understanding Physics Lessons for High School with Animation by E-Learning FX Hendra Prasetya Faculty of Computer Science, Soegijapranata Catholic University (SCU) Semarang, Indonesia hendrapraset@yahoo.com

More information

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law. 1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies

More information

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2 Mechanics Translational motions of a mass point One-dimensional motions on the linear air track LD Physics Leaflets P1.3.3.8 Uniformly accelerated motion with reversal of direction Recording and evaluating

More information

M1. (a) (i) 4.5 allow 1 mark for correct substitution i.e. 9 2 2

M1. (a) (i) 4.5 allow 1 mark for correct substitution i.e. 9 2 2 M. (a) (i) 4.5 allow mark for correct substitution i.e. 9 (ii) m/s accept answer given in (a)(i) if not contradicted here (iii) (iv) speed straight line from the origin passing through (s, 9m/s) allow

More information

CHAPTER. Motion in One Dimension

CHAPTER. Motion in One Dimension CHAPTER 2 1* What is the approximate average velocity of the race cars during the Indianapolis 500? Since the cars go around a closed circuit and return nearly to the starting point, the displacement is

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity

Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity Chapter 2 The Derivative Business Calculus 74 Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity Suppose we drop a tomato from the top of a 100 foot building and time its

More information

Focus On Physical Science

Focus On Physical Science Reading Essentials An Interactive Student Textbook Focus On Physical Science ca8.msscience.com Glencoe Science To the Student In today s world, knowing science is important for thinking critically, solving

More information

I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s

I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s I n t e r a c t i n g G a l a x i e s - Making Ellipticals Te a c h e r N o t e s Author: Sarah Roberts Interacting - Making Ellipticals - Teacher Notes Making Ellipticals Making Ellipticals - Changing

More information

One Period Binomial Model

One Period Binomial Model FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

Page Topic Further Support Materials

Page Topic Further Support Materials This booklet will discuss some of the principles involved in the design of a roller coaster. It is intended for the middle or high school teacher. Physics students may find the information helpful as well.

More information

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

GLENCOE PHYSICS. Principles and Problems. Problems and Solutions Manual

GLENCOE PHYSICS. Principles and Problems. Problems and Solutions Manual GLENCOE PHYSICS Principles and Problems Problems and Solutions Manual GLENCOE PHYSICS Principles and Problems Student Edition Teacher Wraparound Edition Teacher Classroom Resources Transparency Package

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

More information

Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

review/assessment questions

review/assessment questions Student Activity Sheet 6 Page 1 Name physics, technology and engineering in automobile racing review/assessment questions 1. Draw a free-body diagram for a block being pushed across the floor. 2. Use all

More information

A Model of Housing Prices and Residential Investment

A Model of Housing Prices and Residential Investment A Model of Prices and Residential Investment Chapter 9 Appendix In this appendix, we develop a more complete model of the housing market that explains how housing prices are determined and how they interact

More information

Graphing Information

Graphing Information Parts of a Typical Graph Graphing Information In the typical graph used to evaluate behavior, time and behavior are the two variables considered. Each data point on a graph gives two pieces of information:

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

Force and motion. Science teaching unit

Force and motion. Science teaching unit Science teaching unit Disclaimer The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility for the actual content of any materials

More information