# Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Size: px
Start display at page:

Download "Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY"

Transcription

1 Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate of change in an airplane s altitude. VOCABULARY Rate a comparison of two quantities measured in different units Rate of change allows ou to see the relationship between two changing quantities RATE OF CHANGE FORMULA: change in dependent variable change in independent variable For the data in the table, is the rate of change the same for each pair of consecutive mileage amounts? Fee for Miles Driven Miles Fee 0 \$ rate of change \$42 \$4 \$66 change in cost change in number of miles Cost depends on the number of miles. The rate of change for each pair of consecutive mileage amounts is \$12 per 0 miles. The rate of change is the same for all the data. Below is a graph of the distance traveled b a motorccle from its starting point. Find the rate of change. Eplain what this rate of change means. Choose two points On the graph (0,0) and (20, 400) rate of change Using the points (0,0) and (20, 400), find the rate of change. vertical change horizontal change change in distance change in time Use two points. Divide the vertical change b the horizontal change. Simplif. The rate of change is 20 m/s. The motorccle is traveling 20 meters each second. 1

2 More Vocabular SLOPE -- vertical change horizontal change a. Find the slope of each line. slope rise run A.K.A. rise over run RISE RUN The slope of the line is rise over run b. Find the slope of the line. slope rise run ( 2) The slope of the line is 2. For positive slope, rise up and run right or move down and to the left. For negative slope, move down and to the right or up and to the left. Finding slope when given a graph of a line. 1. Locate two points on the line. 2. Count straight up or down from one point until ou re even with the other point. (This is our rise.) 3. Count across left or right until ou get to the second point. (This is our run.) 4. Simplif this fraction, if needed. REMEMBER If a line SLANTS UPWARD from left to right, it has a POSITIVE slope. / If a line SLANTS DOWNWARD from left to right, it has a NEGATIVE slope. \ 2

3 FORMULA Find the slope of the line through E(3, 2) and F( 2, 1). SLOPE FORMULA (where 2 1 does not equal 0.) Smbol for slope m. slope ( 2) 2 3 The slope of EF is 1. Substitute ( 2, 1) for ( 2, 2 ) and (3, 2) for ( 1, 1 ). Simplif. Find the slope of the line through each pair of points. a) (2,) and (4,7) c) (a,b) & (c,d) b) (-1,4) & (3,2) Find the slope of the line through each pair of points. SOLUTION: Use the Slope formula. a) (2,) and (4,7) c) (a,b) & (c,d) 7 2 d b m 1 m c a b) (-1,4) & (3,2) m a. Find the slope of each line. slope ( 4) 0 0 Substitute (1, 2) for ( 2, 2 ) and ( 4, 2) for ( 1, 1 ). Simplif. The slope of the horizontal line is 0. b. Find the slope of the line. slope ( 4) Substitute (2, 1) for ( 2, 2 ) and (2, 4) for ( 1, 1 ). Simplif. Division b zero is undefined. The slope of the vertical line in undefined. 3

4 Special Lines The slope of a horizontal line is zero. Equation is b. (No in equation.) The slope of a vertical line is undefined. Equation is a. (No in equation.) -2 Find the slope Since there is no in the equation, this is a horizontal line. The slope of a horizontal is zero. So m 0. Find the slope. Solution 3 Since there is no in the equation, this is a vertical line. The slope of a vertical line is undefined. So m undefined. Graphing a Line using the -intercept and Slope Reminder: The -intercept is the point where a line crosses the -ais. STEPS 1. Plot the -intercept. (referred to as b ) 2. Use the slope and move rise/run to plot at least two more points. Eample -- Graph the line given the slope and -intercept. Eample -- Graph the line given the slope and -intercept. -intercept -3, m -1/2 -intercept -3, m -1/ Plot the -intercept, (0,-3). m -1/2 and rise/run to - - 4

5 Eample -- Graph the line given the slope and -intercept. -intercept 2, m 2/3 Eample -- Graph the line given the slope and -intercept. -intercept 2, m 2/ Plot the -intercept, (0,2). m 2/3 and rise/run to - - Eample -- Graph the line given the slope and -intercept. Eample -- Graph the line given the slope and -intercept. -intercept 0, m -1 -intercept 0, m Plot the -intercept, (0,0). m -1/1 and rise/run to SUMMARY The slope of a line represents the rate of change in the and values. The slope formula is

### Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

### 5.3 Graphing Cubic Functions

Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

### The Slope-Intercept Form

7.1 The Slope-Intercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph

### 5. Equations of Lines: slope intercept & point slope

5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes

### Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

### Name Class Date. Additional Vocabulary Support

- Additional Vocabular Support Rate of Change and Slope Concept List negative slope positive slope rate of change rise run slope slope formula slope of horizontal line slope of vertical line Choose the

### Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Pre Calculus Math 40S: Explained!

Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### Graphing Linear Equations

6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope

MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem Constant Rate of Change/Slope In a Table Relationships that have straight-lined graphs

### 10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### Linear Inequality in Two Variables

90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

### Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

### Algebra II Notes Piecewise Functions Unit 1.5. Piecewise linear functions. Math Background

Piecewise linear functions Math Background Previousl, ou Related a table of values to its graph. Graphed linear functions given a table or an equation. In this unit ou will Determine when a situation requiring

### Section 1.3: Transformations of Graphs

CHAPTER 1 A Review of Functions Section 1.3: Transformations of Graphs Vertical and Horizontal Shifts of Graphs Reflecting, Stretching, and Shrinking of Graphs Combining Transformations Vertical and Horizontal

### Part Three. Cost Behavior Analysis

Part Three Cost Behavior Analysis Cost Behavior Cost behavior is the manner in which a cost changes as some related activity changes An understanding of cost behavior is necessary to plan and control costs

### SECTION 2-2 Straight Lines

- Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

### x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

### 5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

### Graphing Motion. Every Picture Tells A Story

Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

### SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Module 7 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. You are given information about a straight line. Use two points to graph the equation.

### SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

. Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

### INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

### REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

### More Equations and Inequalities

Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

### 1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

### Slope-Intercept Equation. Example

1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

### 135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

### Example 1. Rise 4. Run 6. 2 3 Our Solution

. Graphing - Slope Objective: Find the slope of a line given a graph or two points. As we graph lines, we will want to be able to identify different properties of the lines we graph. One of the most important

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

### Graphing Linear Equations in Two Variables

Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

### Worksheet A5: Slope Intercept Form

Name Date Worksheet A5: Slope Intercept Form Find the Slope of each line below 1 3 Y - - - - - - - - - - Graph the lines containing the point below, then find their slopes from counting on the graph!.

### Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED

Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

### C3: Functions. Learning objectives

CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

### EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

. Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

### NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is

- NAME DATE PERID Functions Determine whether each relation is a function. Eplain.. {(, ), (0, 9), (, 0), (7, 0)} Yes; each value is paired with onl one value.. {(, ), (, ), (, ), (, ), (, )}. No; in the

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Graphing - Slope-Intercept Form

2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

### Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

### Linear Equations in Two Variables

Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

### Lecture 9: Lines. m = y 2 y 1 x 2 x 1

Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending

### STRAND: ALGEBRA Unit 3 Solving Equations

CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

### LINEAR FUNCTIONS OF 2 VARIABLES

CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

### THE PARABOLA 13.2. section

698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### Some Tools for Teaching Mathematical Literacy

Some Tools for Teaching Mathematical Literac Julie Learned, Universit of Michigan Januar 200. Reading Mathematical Word Problems 2. Fraer Model of Concept Development 3. Building Mathematical Vocabular

### Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship

6.5 Direct Variation 6.5 OBJECTIVES 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship Pedro makes \$25 an hour as an electrician. If he works

### ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

### Graphing Rational Functions

Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function

### A synonym is a word that has the same or almost the same definition of

Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

### Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10

Chapter 3 & 8.1-8.3 These are meant for practice. The actual test is different. Determine whether the pair of equations represents parallel lines. 1) 9 + 3 = 12 27 + 9 = 39 1) Determine whether the pair

### Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### Mathematical goals. Starting points. Materials required. Time needed

Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

### Chapter 9 Descriptive Statistics for Bivariate Data

9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)

### Lines. We have learned that the graph of a linear equation. y = mx +b

Section 0. Lines We have learne that the graph of a linear equation = m +b is a nonvertical line with slope m an -intercept (0, b). We can also look at the angle that such a line makes with the -ais. This

### a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

### 5 LESSON 5.1. Writing Linear Equations. Writing Linear Equations from Situations and Graphs ESSENTIAL QUESTION

Writing Linear Equations? MDULE 5 LESSN 5.1 ESSENTIAL QUESTIN Writing Linear Equations from Situations and Graphs How can ou use linear equations to solve real-world problems? 8.F.4 LESSN 5.2 Writing Linear

### 1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

### PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

### 1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

### 1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

### SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Solving Special Systems of Linear Equations

5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

### 5.2 Inverse Functions

78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

### MATH 185 CHAPTER 2 REVIEW

NAME MATH 18 CHAPTER REVIEW Use the slope and -intercept to graph the linear function. 1. F() = 4 - - Objective: (.1) Graph a Linear Function Determine whether the given function is linear or nonlinear..

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

### Part 1: Background - Graphing

Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

### Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation