Graphing Motion. Every Picture Tells A Story

Size: px
Start display at page:

Download "Graphing Motion. Every Picture Tells A Story"

Transcription

1 Graphing Motion Every Picture Tells A Story

2 Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs

3

4 If you make a graph by hand it should always be on graph paper. The graph should fill the available space. Carefully choosing the best scale is necessary to achieve this.

5

6 The graph should always have a title.

7 Always label the x and y axes in 3 ways: title, numerical values, and units.

8 Always make a line graph line graphs are way more handy, because they tell you how one thing changes under the influence of some other variable.

9 The x axis is always the independent variable. If time is one of the measurements being graphed, it always goes on the x-axis. Independent Variable or Manipulated Variable is what you are testing. It is what causes things to change as you make changes to it. Some people nickname it the I-do variable.

10 The y axis is always the dependent variable. Y axis Dependent Variable or the Responding Variable is the effect and it may or may not change. It is observed during as well as at the end of the experiment.

11 Dependent Responing Y-axis Manipulated Independent X-axis D = dependent variable R = responding variable Y = graph information on the vertical axis M = manipulated variable I = independent variable X = graph information on the horizontal axis

12 Example of a Bad Graph There's no title. What's it a graph of? Who knows? There are no labels on the x or y axis. What are those numbers? Who knows? There are no units on the x or y axis. Is this a graph of speed in miles per hour or a graph of temperature in Kelvins? Who can tell?

13 What s wrong with this graph? There's no title. What's it a graph of? Who knows? There are no increments on the axes, and there are no gridlines. There are no labels on the x or y axis. What are those numbers? Who knows? There are no units on the x or y axis. What size are the numbers: kilo-, centi-, or milli-?

14

15 Definition of slope Numerical measure of a line's incline relative to the horizontal. In analytic geometry, the slope of any line, ray, or line segment is the ratio of the vertical to the horizontal distance between any two points on it ( slope equals rise over run ).

16 A displacement time graph with time along x axis and displacement on the y axis. Velocity is positive when the object moves in the positive direction. Since the position value is increasing, the graph slopes upward. Zero slope Velocity is zero when the position does not change. This line has zero slope. Velocity is negative when the object moves In the negative direction on the Axis system. This line has a negative Slope.

17 Types of Motion Graphs Distance vs Time Position vs Time Velocity vs Time Acceleration vs Time

18 Distance vs Time Graphs Speed is the distance an object travels per unit of time. You can graphically represent the speed or an object using a distance-time graph.

19

20

21 If the speed is constant, then the slope is constant (straight line).

22 Constant Speed A uniform distance is covered for each unit of time. A constant speed graph shows a constant & positive slope

23 The steeper the slope, the faster the speed.

24

25 If the speed is changing, then the slope is changing (curve).

26 Describe the motion in each section of the graph. Decelerating Stopped Accelerating Steady speed

27 Position vs time Graphs of Constant motion Position vs. time graphs give you an easy and obvious way of determining an object s displacement at any given time, and a subtler way of determining that object s velocity at any given time.

28

29 A position-time graph, is one in which position is Plotted on the y-axis and the time is on the x-axis. A position-time graph is similar to a distance-time Graph but has direction on the y-axis.

30 Although distance-time and position-time graphs can show Similar graphs, this is not always the case. Below is a graph of a person who walked to a nearby store (10 km north) and back to the original reference point, this would mean the total travelled distance is 20 km (10 km to the store and 10 km back). The distance-time graph is on the left.

31 The position-time graph looks different because the position changed when the person turned back from the store back to the original reference point.

32 Looking at the slope of a distance vs time or a position vs time graph... Slope = Velocity As slope goes, so does velocity. If the speed is constant, then the slope is constant (straight line). If the speed is changing, then the slope is changing (curve). If the velocity is positive, then the slope is positive (moving upward, towards the right). If the velocity is negative, then the slope is negative (moving downward, towards the right). The steeper the line/curve, the faster the speed.

33 Reading and interpreting position-time graphs

34

35 s vs t - The object is standing still at a positive location. Time is going by but the position is not changing. Since the slope equals zero it has no movement.

36 s vs t - the object is traveling at a constant positive velocity. The locations of its position are increasingly positive.

37 s vs t - the object is traveling at a constant positive velocity but is traveling through a negative region.

38 s vs t - this slope represents a constant negative velocity since the object is traveling in a negative direction at a constant rate. Notice that the locations of its position are becoming less and less positive

39 s vs t - the object is traveling at a constant negative velocity through a negative region. The locations of its position are increasingly negative.

40 The meaning of slope on a position-time graph! If calculated properly, it shows the velocity of the motion.

41 In this graph Car A moves for 5 seconds a distance of 10 meters. How can we figure out the velocity of the car from the graph? We can use the formula for the slope of a line to get the velocity.

42

43 Any point on this graph shows the position of the ant at a particular moment in time.

44 The point at (2, 2) show that, two seconds after it started moving, the ant was two centimeters to the left of its starting position. The point at (3,1) shows that, three seconds after it started moving, the ant is one centimeter to the right of its starting position.

45 For the first two seconds, the ant is moving to the left. The next second, it reverses its direction and moves quickly to y = 1. The ant then stays still for three seconds before it turns left again and moves back to where it started.

46 For any position vs. time graph, the velocity at time t is equal to the slope of the line at time t. In a graph made up of straight lines, like the one for the ant, the slope can easily be calculated at each point on the graph to show the instantaneous velocity at any given time.

47 Determine the ant s instantaneous velocity at any given point during the trip. Remember the instantaneous velocity shows the velocity of the ant at one point. The ant is cruising along at the fastest speed between t = 2 and t = 3, because the position vs. time graph is steepest between these points.

48 Calculate the ant s average velocity during this time interval is a simple matter of dividing rise by run. Remember average velocity is the total displacement divided by the total time. The average velocity here is zero because the total diaplacement is zero. 0/7 = 0 m/s

49 Stage 1: The car moves forwards from the origin to in the first 5 s. Calculate the velocity for the car after the first five seconds.

50 Stage 2: The car moves backwards, passes the origin, to in the next 5 s. Calculate the velocity of the car between five and ten seconds.

51 Stage 3: The car remains at rest in the last 5 s. Calculate the velocity of the car for the last five seconds.

52 Distance (km) Different Slopes Slope = Rise/Run = 1 km/1 hr = 1 km/hr Run = 1 hr Slope = Rise/Run = 0 km/1 hr = 0 km/hr Rise = 1 km Run = 1 hr Rise = 0 km Time (hr) Run = 1 hr Rise = 2 km Slope = Rise/Run = 2 km/1 hr = 2 km/hr

53 Position Time Graphs of Accelerated motion Position vs. time graphs give you an easy and obvious way of determining an object s displacement at any given time, and a subtler way of determining that object s velocity at any given time.

54 A very useful aspect of these graphs is that the area under the v-t graph tells us the distance travelled during the motion.

55 Since the slope represents the speed, if the speed is increasing over time, the slope must be also be increasing over time. The graph is a curve that gets steeper as you move along The x-axis. A position-time graph for a ball in free fall is shown below.

56 The graph of an object slowing down is also cuved. The example below show the position-time graph for a car coming to a gradual stop at a red l ight. As time passes, the car s speed decreases. The slope must therefore decrease.

57

58 answers

59 Velocity vs Time Graphs d slope = velocity t slope = acceleration v area = distance t a area = velocity t

60 If the graph is a horizontal line, there is no change in velocity, therefore there is no acceleration (the slope is 0). If the acceleration is positive then the slope is positive (the line moves upward to the right). If the acceleration is negative, then the slope is negative (the line moves downward to the right).).

61 Calculating acceleration from a velocity-time graph

62 Calculating the distance on velocity-time graph.

63 An object is moving in the positive direction if the line is located in the positive region of the graph (whether it is sloping up or sloping down). An object is moving in the negative direction if the line is located in the negative region of the graph (whether it is sloping up or sloping down). If a line crosses over the x-axis from the positive region to the negative region of the graph (or vice versa), then the object has changed directions.

64 The object moves in the + direction at a constant speed - zero acceleration (interval A). The object then continues in the + direction while slowing down with a negative acceleration (interval B). Finally, the object moves at a constant speed in the + direction, slower than before (interval C).

65 The object moves in the + direction while slowing down; this involves a negative acceleration (interval A). It then remains at rest (interval B). The object then moves in the - direction while speeding up; this also involves a negative acceleration (interval C).

66 The object moves in the + direction with a constant velocity and zero acceleration (interval A). The object then slows down while moving in the + direction (i.e., it has a negative acceleration) until it finally reaches a 0 velocity (stops) (interval B). Then the object moves in the - direction while speeding up; this corresponds to a - acceleration (interval C).

67 a plot of velocity versus time can also be used to determine the displacement of an object. The diagram below shows three different velocity-time graphs; the shaded regions between the line and the timeaxis represents the displacement during the stated time interval.

68

69

70

71 The velocity-time graph for a two-stage rocket is shown below. Use the graph and your understanding of slope calculations to determine the acceleration of the rocket during the listed time intervals. When finished, click the buttons to see the answers. 40 m/s 2 20 m/s 2-20 m/s 2

72 Constant positive (rightward) velocity

73 Constant negative (leftward) velocity

74 Rightward velocity with rightward acceleration.

75 Rightward Velocity and negative acceleration

76 Leftward velocity, leftward acceleration

77 Leftward velocity rightward acceleration

78 Acceleration Acceleration the rate at which velocity is changing Acceleration = v/ t Can increase or decrease (sometimes called deceleration) Think of traveling in a car, you can feel the acceleration 3 ways to accelerate in a car 1. Brake pedal slowing down; coming to a stop (changing speed) 2. Steering wheel going around a corner or curve (changing direction) 3. Gas pedal leaving from a stopped position (changing speed)

79

80 The object moves in the + direction at a constant speed - zero acceleration (interval A). The object then continues in the + direction while slowing down with a negative acceleration (interval B). Finally, the object moves at a constant speed in the + direction, slower than before (interval C).

81 The object moves in the + direction at a constant speed - zero acceleration (interval A). The object then continues in the + direction while slowing down with a negative acceleration (interval B). Finally, the object moves at a constant speed in the + direction, slower than before (interval C).

82 The object moves in the + direction while slowing down; this involves a negative acceleration (interval A). It then remains at rest (interval B). The object then moves in the - direction while speeding up; this also involves a negative acceleration (interval C).

83 Zero to 90s - On this graph we see a horizontal line that reads 5m/s for those same first 90 seconds. On a v-t graph a flat line means constant velocity. Constant velocity means zero acceleration.

84

85 Graphs of Motion Uniform Velocity The area under a velocity vs time graph is the displacement of the object. Find the distance traveled by each object.

86 Acceleration Suppose you are traveling in a car and your speed goes from 10.km/h to 60.km/h in 2.0s. What is your acceleration? Suppose a car goes from 80.km/h to 15km/h in 5.0 seconds. What is the acceleration? A car is coasting backwards down a hill at a speed of 3.0m/s when the driver gets the engine started. After 2.5s, the car is moving uphill at 4.5m/s. Assuming that uphill is in the positive direction, what is the car s average acceleration?

87 Graphs of Motion Velocity vs time graphs: How can you tell if the object is accelerating or decelerating? Accelerating (speeding up) when the magnitude of the velocity is increasing Decelerating (slowing down) when the magnitude of the velocity is decreasing

88 Graph Practice

89 Which pair of graphs shows the same motion? Answer 1

90 pc.org/~clement/simulations/physlets/tst/position- Time%20Graphs.html

91 anics/kin/motion_graph/x-t02_e.html

92

93 Stage 1: The car moves forwards from the origin to in the first 5 s.

94

95 Stage 2: The car moves backwards, passes the origin, to in the next 5 s.

96 Stage 3: The car remains at rest in the last 5 s.

97

98

99

100

101

102

103

104

105

106 What is the velocity for each stage of the journey? b. What is the average (mean) velocity for the whole journey

107

108

109

110

111

112 Distance or Displacement Distance how far an object has traveled Indianapolis is about 45 miles away The distance to Indianapolis is 45 miles; the distance back to Bloomington is 45 miles the total distance traveled round trip is 90 miles Displacement how far an object is from its original position (direction matters) The displacement to Indianapolis is 45 miles north; the displacement back to Bloomington is 45 miles south the total displacement is 0 miles You can find displacement by Finding the area under a velocity time graph Using the equation d = v avg * t

113

114

115

116 Understanding the Connection Between Slope and Velocity The slope of a line for a distance vs. time graph represents the velocity for the object in motion. Slope can be determined using the following formula: The change in y values divided by the change in x values determines the average velocity for the object between any two points.

117 Pick two points on the line and determine their coordinates. Determine the difference in y-coordinates of these two points (rise). Determine the difference in x-coordinates for these two points (run). Divide the difference in y-coordinates by the difference in x-coordinates (rise/run or slope).

118 rise over run Calculate the velocity between 3 and 4 seconds. Note: This is a constant speed graph, so the velocity should be the same at all points.

119

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Position-time and velocity-time graphs Uniform motion problems algebra Acceleration and displacement

Position-time and velocity-time graphs Uniform motion problems algebra Acceleration and displacement Position-time and velocity-time graphs Uniform motion problems algebra Acceleration and displacement Topics: The kinematics of motion in one dimension: graphing and calculations Problem-solving strategies

More information

language Vectors, Scalars, Distance, Displacement, Speed, Velocity, Acceleration

language Vectors, Scalars, Distance, Displacement, Speed, Velocity, Acceleration I. Mechanics the study of the motion of objects introduction to the language Vectors, Scalars, Distance, Displacement, Speed, Velocity, Acceleration 1 Describing motion is a mathematical science. The underlying

More information

Time hours. 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped?

Time hours. 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped? Time hours 1. Above is a velocity time graph of a moving car. Answer the following questions using the graph. a. At what time was the car stopped? b. At what time did the car have the greatest velocity?

More information

Chapter 2: Describing Motion

Chapter 2: Describing Motion Chapter 2: Describing Motion 1. An auto, starting from rest, undergoes constant acceleration and covers a distance of 1000 meters. The final speed of the auto is 80 meters/sec. How long does it take the

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Newton s Theory of Motion To see well, we must stand on the shoulders of giants. First Things First! Before we can accurately describe motion, we must provide clear definitions

More information

Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here.

Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here. Kinematics 1D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Graphing

More information

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an

More information

STAAR Tutorial: Motion, Speed, Velocity and Acceleration

STAAR Tutorial: Motion, Speed, Velocity and Acceleration Name: Teacher: Period: Date: STAAR Tutorial: Motion, Speed, Velocity and Acceleration TEK 6.8C (Supporting): Calculate average speed using distance and time measurements. TEK 6.8D (Supporting: Measure

More information

IX Physics Motion and Rest

IX Physics Motion and Rest Page1 IX Physics Motion and Rest CBSE chapter-wise MCQ Multiple Choice Questions, Test Paper, Sample paper on CCE pattern for class 9 science Motion. Distance and displacement, velocity; uniform and non-uniform

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Motion Unit: Part1 Speed and Acceleration Learning Targets

Motion Unit: Part1 Speed and Acceleration Learning Targets Motion Unit: Part1 Speed and Acceleration Learning Targets These are the things that you will know and be able to do after we finish this unit: I know - the definition for speed. - the definition for velocity.

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

JSUNIL TUTORIAL, PANJABI COLONY GALI 01

JSUNIL TUTORIAL, PANJABI COLONY GALI 01 SCIENCE & TECHNOLOGY (Class-09) Chapter Motion and Rest In the physical world, one of the most common phenomena is motion. The branch of Physics, which deals with the behavior of moving objects, is known

More information

Modeling Human Walking: Position and Velocity Graphs

Modeling Human Walking: Position and Velocity Graphs HPP A3v1 Modeling Human Walking: Position and Velocity Graphs In this activity we will investigate the relationship between position-time graphs and velocitytime graphs for a walking person. Materials

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Some practice with velocity and position graphs

Some practice with velocity and position graphs Some practice with velocity and position graphs Position to Velocity The main idea here is that the velocity is the rate of change of the position. A large velocity means the position changes fast, a big

More information

Equations: Average Speed (v) = distance time Velocity = displacement time Acceleration = V f - V i time

Equations: Average Speed (v) = distance time Velocity = displacement time Acceleration = V f - V i time Motion (Speed, Velocity, Acceleration) Test Review Name _Riehbrandt Key for student use_ Physical Science Riehbrandt Hr. Equations: Average Speed (v) = distance time Velocity = displacement time Acceleration

More information

CHAPTER 2 TEST REVIEW -- ANSWER KEY

CHAPTER 2 TEST REVIEW -- ANSWER KEY AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

Motion in One Dimension - Grade 10

Motion in One Dimension - Grade 10 Chapter 3 Motion in One Dimension - Grade 10 3.1 Introduction This chapter is about how things move in a straight line or more scientifically how things move in one dimension. This is useful for learning

More information

4 Linear Motion. You can describe the motion of an object by its position, speed, direction, and acceleration.

4 Linear Motion. You can describe the motion of an object by its position, speed, direction, and acceleration. You can describe the motion of an object by its position, speed, direction, and acceleration. 4.1 Motion Is Relative An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Physics Exam 1 Review - Chapter 1,2

Physics Exam 1 Review - Chapter 1,2 Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

More information

Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8

Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8 Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8 Speed, Velocity, and Acceleration Major Topic and SOL: Science SOL Length of Unit: Speed, Velocity, and

More information

LAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X'- by R.E.Tremblay

LAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X'- by R.E.Tremblay Purpose: To learn how to make position and velocity verses time graphs when given the position of an object at various times. You will also learn how to determine initial velocity and acceleration from

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing.

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object.

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Lesson 8: Making Inferences

Lesson 8: Making Inferences Lesson 8: Making Inferences Selected Content Standards Benchmarks Addressed: D-5-M Comparing experimental probability results with theoretical probability (e.g., representing probabilities of concrete

More information

Motion; Speed; Velocity; Acceleration. Regan Willson Tucker Middle School

Motion; Speed; Velocity; Acceleration. Regan Willson Tucker Middle School Motion; Speed; Velocity; Acceleration Regan Willson Tucker Middle School Speed, Velocity, and Acceleration: TEKS 8.6B Describing motion It s a fact: You are always in motion, even when you are fast asleep.

More information

8.4.1.C. YEAR 11 HSC PHYSICS 8.4 MOVING ABOUT Worksheet Velocity Time Graphs. Set 1 Drawing velocity-time graphs

8.4.1.C. YEAR 11 HSC PHYSICS 8.4 MOVING ABOUT Worksheet Velocity Time Graphs. Set 1 Drawing velocity-time graphs YEAR 11 HSC PHYSICS 8.4 MOVING ABOUT Worksheet Velocity Time Graphs 8.4.1.C Set 1 Drawing velocity-time graphs 1. The table below is a table of data from an experiment measuring the! variation of speed

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

2.3 Acceleration. Acceleration. Chapter 2

2.3 Acceleration. Acceleration. Chapter 2 The speed of things is always changing. Your car speeds up and slows down. If you slow down gradually, it feels very different from slamming on the brakes and stopping fast. In this section we will learn

More information

The figure shows the position vs. time graphs of two objects A and B moving along x-axis for 5 seconds.

The figure shows the position vs. time graphs of two objects A and B moving along x-axis for 5 seconds. Velocity from position vs. time graph The figure shows the position vs. time graphs of two objects A and B moving along x-axis for 5 seconds. (a) Do objects A and B moving along a straight line? Explain?

More information

Chapter 2 - Representing Motion w./ QuickCheck Questions

Chapter 2 - Representing Motion w./ QuickCheck Questions Chapter 2 - Representing Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico August 27, 2015 Review of Last Time

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

Focused Learning Lesson Science Grades 9-12 PS-H-E2

Focused Learning Lesson Science Grades 9-12 PS-H-E2 Focused Learning Lesson Science Grades 9-12 PS-H-E2 Overview: This lesson is designed to review the basic relationships of speed, velocity, and acceleration. During the lesson, students will review the

More information

Chapter 6A. Acceleration. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 6A. Acceleration. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 6A. Acceleration A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 The Cheetah: : A cat that is built for speed. Its strength and agility

More information

Kinematics is the study of motion. Generally, this involves describing the position, velocity, and acceleration of an object.

Kinematics is the study of motion. Generally, this involves describing the position, velocity, and acceleration of an object. Kinematics Kinematics is the study of motion. Generally, this involves describing the position, velocity, and acceleration of an object. Reference frame In order to describe movement, we need to set a

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Lecture Presentation Chapter 2 Motion in One Dimension

Lecture Presentation Chapter 2 Motion in One Dimension Lecture Presentation Chapter 2 Motion in One Dimension Suggested Videos for Chapter 2 Prelecture Videos Motion Along a Line Acceleration Free Fall Video Tutor Solutions Motion in One Dimension Class Videos

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

1. How long does it take the sound of thunder to go 1,600 meters (~1 mile) traveling at an average speed of 330 meters / sec? (4.

1. How long does it take the sound of thunder to go 1,600 meters (~1 mile) traveling at an average speed of 330 meters / sec? (4. LHWHS Physics Unit One - Motion (Kinematics) HW #2...Sept 9 NAME ANSWERS 1. How long does it take the sound of thunder to go 1,600 meters (~1 mile) traveling at an average speed of 330 meters / sec? (4.85

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

The Magic Chart Honors Physics

The Magic Chart Honors Physics The Magic Chart Honors Physics Magic Chart Equations v = v o + a t x = v o t + 1/2 a t 2 x = ½ (v o + v) t v 2 = v 2 o + 2a x x = vt - 1/2 a t 2 x Who Cares Quantity v a t v o THE WHO CARES QUANTITY tells

More information

Physics Lecture 3 (Walker: 2.4-6) Velocity and Acceleration Sept. 2, 2009

Physics Lecture 3 (Walker: 2.4-6) Velocity and Acceleration Sept. 2, 2009 Physics 111.01 Lecture 3 (Walker: 2.4-6) Velocity and Acceleration Sept. 2, 2009 1 Uniorm Velocity Uniorm Velocity Uniorm velocity is constant velocity Both the size and the direction o the velocity are

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information

Motion: Velocity and Net Change

Motion: Velocity and Net Change math 3, applications motion: velocity net change Motion: Velocity Net Change In Calculus I you interpreted the first second derivatives as velocity acceleration in the context of motion So let s apply

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

SPEED / Velocity / Acceleration

SPEED / Velocity / Acceleration SPEED / Velocity / Acceleration Calculating Speed with Roller Cars Part A NAME Per Due date Mail Box 1 P a g e Speed - Until the 1950s, the land speed record was held by a series of European gentlemen

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

WEEK 2: INTRODUCTION TO MOTION

WEEK 2: INTRODUCTION TO MOTION Names Date OBJECTIVES WEEK 2: INTRODUCTION TO MOTION To discover how to use a motion detector. To explore how various motions are represented on a distance (position) time graph. To explore how various

More information

Worksheet 7: Velocity and Acceleration

Worksheet 7: Velocity and Acceleration Science 10 Worksheet 7: Velocity and Acceleration Additional Practice Questions Directions: Select the best answer for each of the following questions. Answers are found at the end of this document. Physical

More information

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points? GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

More information

Chapter 3 Solutions. Figure 3.7a. (b) Thus (c) velocity: At. Figure 3.7b

Chapter 3 Solutions. Figure 3.7a. (b) Thus (c) velocity: At. Figure 3.7b Chapter 3 Solutions 3.7.IDENTIFY and Use Eqs. (3.4) and (3.12) to find and as functions of time. The magnitude and direction of and can be found once we know their components. (a) Calculate x and y for

More information

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Motion in One-Dimension

Motion in One-Dimension This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released

More information

A scalar quantity is fully described by its magnitude (size) and unit, e.g. time = 220 s. Force = 800 N upwards direction

A scalar quantity is fully described by its magnitude (size) and unit, e.g. time = 220 s. Force = 800 N upwards direction Vector and Scalar Quantities (recap on National 5 Physics) A scalar quantity is fully described by its magnitude (size) and unit, e.g. quantity time = 220 s unit magnitude A vector quantity is fully described

More information

2.4 Motion and Integrals

2.4 Motion and Integrals 2 KINEMATICS 2.4 Motion and Integrals Name: 2.4 Motion and Integrals In the previous activity, you have seen that you can find instantaneous velocity by taking the time derivative of the position, and

More information

Amy Dueger I2T2 Final Project Summer

Amy Dueger I2T2 Final Project Summer Amy Dueger I2T2 Final Project Summer 2005 Email- akilmer@nfschools.net DAY 1 PARABOLAS Objective: Students will be introduced to: ~ what a parabola is ~ the equation of a parabola ~ various terms that

More information

Exampro GCSE Physics. P2 Foundation - Forces and their effects Self Study Questions. Name: Class: Author: Date: Time: 125. Marks: 125.

Exampro GCSE Physics. P2 Foundation - Forces and their effects Self Study Questions. Name: Class: Author: Date: Time: 125. Marks: 125. Exampro GCSE Physics P2 Foundation - Forces and their effects Self Study Questions Name: Class: Author: Date: Time: 25 Marks: 25 Comments: Page of 44 Q. (a) Figure shows the horizontal forces acting on

More information

Lesson 8: Velocity. Displacement & Time

Lesson 8: Velocity. Displacement & Time Lesson 8: Velocity Two branches in physics examine the motion of objects: Kinematics: describes the motion of objects, without looking at the cause of the motion (kinematics is the first unit of Physics

More information

Linear and angular kinematics

Linear and angular kinematics Linear and angular kinematics How far? Describing change in linear or angular position Distance (scalar): length of path Displacement (vector): difference between starting and finishing positions; independent

More information

Unit 4 Physical Science: Motion

Unit 4 Physical Science: Motion Unit 4 SCIENCE 1206 CURRICULUM GUIDE 91 Unit Overview Introduction The concept of motion allows students to investigate and develop their interest in the sports that are part of their daily lives. Students

More information

Chapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc.

Chapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc. Chapter 3 Kinematics in Two or Three Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Speed, Velocity, Acceleration

Speed, Velocity, Acceleration Speed, Velocity, Acceleration Pre-Test - Post-Test 1. What two measurements are necessary for calculating average speed? a. acceleration and time c. velocity and time 2. How is velocity different than

More information

2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style

2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style The straight line 2.7 Introduction Probably the most important function and graph that you will use are those associated with the straight line. A large number of relationships between engineering variables

More information

Unit 1 Our Dynamic Universe

Unit 1 Our Dynamic Universe North Berwick High School Higher Physics Department of Physics Unit 1 Our Dynamic Universe Section 1 Equations of Motion Section 1 Equations of Motion Note Making Make a dictionary with the meanings of

More information

Chapter Rules for significant digits are covered on page 7 of the text and pages 1-3 in the lab book.

Chapter Rules for significant digits are covered on page 7 of the text and pages 1-3 in the lab book. Chapter 1 1. To express the answer in seconds, convert years to days (use 364 days in one year), days to hours and hours to seconds. Use the factor/label method. 2. Rules for significant digits are covered

More information

2 Representing Motion

2 Representing Motion CHAPTER 2 Representing Motion Section Review 2.1 Picturing Motion pages 31 33 page 33 1. Motion Diagram of a Runner Use the particle model to draw a motion diagram for a bike rider riding at a constant

More information

Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction

Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction Chapter 4 Kinematics - Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.

More information

1. One-Dimensional Kinematics Tutorial 1

1. One-Dimensional Kinematics Tutorial 1 1. One-Dimensional Kinematics Tutorial 1 1.1 Referring to Figure 1.1, you walk from your home to the library, then to the park. (a) What is the distance traveled? (b) What is your displacement? (1.95mi,

More information

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity - to inappropriately interchange quantities such as position, velocity, and

More information

Do Now. How do you know if an object is in motion?

Do Now. How do you know if an object is in motion? Do Now How do you know if an object is in motion? Speed, Velocity, and Acceleration To describe motion accurately and completely, a frame of reference is needed. An object is in motion if it changes position

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

Physics Exam Q1 Exam, Part A Samples

Physics Exam Q1 Exam, Part A Samples Physics Exam Q1 Exam, Part A Samples 1. An object starts from rest and accelerates uniformly down an incline. If the object reaches a speed of 40 meters per second in 5 seconds, its average speed is (A)

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Introduction Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Falling Objects

More information

Lecture 2. Displacement. Speed. Average velocity. Instantaneous velocity. Gravity and acceleration. Cutnell+Johnson: chapter 2

Lecture 2. Displacement. Speed. Average velocity. Instantaneous velocity. Gravity and acceleration. Cutnell+Johnson: chapter 2 Lecture 2 Displacement Speed Average velocity Instantaneous velocity Gravity and acceleration Cutnell+Johnson: chapter 2 Most physics classes start by studying the laws describing how things move around.

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2.

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2. ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for

More information

CHAPTER We find the average speed from average speed = d/t = (230 km)/(3.25 h) =

CHAPTER We find the average speed from average speed = d/t = (230 km)/(3.25 h) = CHAPTER 1. We find the average speed from average speed = d/t = (30 km)/(3.5 h) = 70.8 km/h.. We find the time from average speed = d/t; 5 km/h = (15 km)/t, which gives t = 0.60 h (36 min). 3. We find

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Mechanics 1. Revision Notes

Mechanics 1. Revision Notes Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time

More information