Solutions. Chang 7 th Edition Chapter 12 General Chemistry II

Size: px
Start display at page:

Download "Solutions. Chang 7 th Edition Chapter 12 General Chemistry II"

Transcription

1 s Chang 7 th Edition Chapter 12 General Chemistry II Why does a raw egg swell or shrink when placed in different solutions? Chapter Objectives Define solution, solvent, solute and colligative properties and use them in calculations to solve for molality, mole fraction, weight percent and ppm Explain the differences between saturated, unsaturated and supersaturated solutions, miscible and immiscible Use lattice energy and enthalpy of hydration to explain enthalpy of solution Use Henry's law and Le Chatelier's principle to explain solubility of gases Solve problems using mole fraction, Raoult's law, and calculations predicting changes in colligative properties, and solving for variables related to colligative properties Define and calculate Osmotic pressure Driving forces for solution formation Some Definitions A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent is usually regarded as the SOLVENT and the others as SOLUTES. 4 major topics Ways to describe solution concentrations (amount of solute per unit of solution) How and why solutions form Colligative properties (those properties that depend on the number of solute particles per solvent molecule - but not on the identity of the solute) Colloids Concentration Units An IDEAL SOLUTION is one where the properties depend only on the concentration of solute. Need conc. units to tell us the number of solute particles per solvent particle. The unit molarity does not do this! Concentration Units MOLE FRACTION, X For a mixture of A, B, and C Concentration Units MOLE FRACTION, X For a mixture of A, B, and C MOLALITY, m Concentration Units MOLE FRACTION, X For a mixture of A, B, and C MOLALITY, m WEIGHT % = grams solute per 100 g solution s lecture notes.doc page 1 of 8 Dr. Myton, CH116

2 Dissolve 62.1 g (1.00 mol) of ethylene glycol in 250. g of H 2 O. Calculate mol fraction, molality, and weight % of glycol g H 2 O = 13.9 mol 250. g H 2 O = 13.9 mol X glycol = glycol Calculate molality Calculate molality Calculate weight % A solution of ethyl alcohol, CH 3 CH 2 OH, in water has a concentration of 1.25 m. Calculate the weight percent of ethyl alcohol Calculate the molarity of an aqueous solution of NaCl with a concentration of m and a density of g/ml A solution of ammonia in water is at a concentration of 5.00% w/w. Its density is g/ml, calculate the molarity and molality of the solution. Assume you add 1.2 kg of ethylene glycol HOCH 2 CH 2 OH as an antifreeze to 4.0 kg of water in the radiator of your car. What are the mole fraction, molalaity, molarity, weight percent and ppm concentrations of the solution? You dissolve 560 g of NaHSO 4 in a swimming pool that contains 4.5e5 L of water at 25 ºC. What is the sodium ion concentration in ppm? If you dissolve 10.0 g of sugar C 12 H 2 O 11 (about one heaping teaspoon) in a cup of water (250. G) what are the mole fraction, molarity, weight percent and ppm concentrations of the solution Sea water has a sodium ion concentration of 1.08e4 ppm. If the sodium is present in the form of dissolved sodium chloride, how many grams of NaCl are in each liter of sea water? Assume the density of sea water is 1.05 g/ml. Definitions s can be classified as unsaturated or saturated. Definitions s can be classified as unsaturated or saturated. A saturated solution contains the maximum quantity of solute that dissolves at that temperature. Definitions s can be classified as unsaturated or saturated. s lecture notes.doc page 2 of 8 Dr. Myton, CH116

3 A saturated solution contains the maximum quantity of solute that dissovles at that temperature. SUPERSATURATED SOLUTIONS contain more than is possible and are unstable. s and IM forces Bond breaking is endothermic Bond formation is exothermic Types of bonds: solute-solute, solvent-solvent, and solute-solvent An IDEAL SOLUTION the enthalpy of solution is zero Energetics of the Process If the enthalpy of formation of the solution is more negative that that of the solvent and solute, the enthalpy of solution is negative. The solution process is exothermic! Supersaturated Sodium Acetate One application of a supersaturated solution is the sodium acetate heat pack. Sodium acetate has an ENDOthermic heat of solution. Supersaturated Sodium Acetate Sodium acetate has an ENDOthermic heat of solution. NaCH 3 CO 2 (s) + heat ----> Na + (aq) + CH 3 CO - 2 (aq) Therefore, formation of solid sodium acetate from its ions is EXOTHERMIC. Na + (aq) + CH 3 CO - 2 (aq) ---> NaCH 3 CO 2 (s) + heat Enthalpy of Determine the heat of solution for ammonium nitrate (used in cold packs) Calculate the enthalpy of solution for sodium hydroxide (lye) Enthalpy Dissolving Gases & Henry s Law Gas solubility S g = k H Pgas -6 k H for O 2 = 1.66 x 10 M/mmHg When Pgas drops, solubility drops. Henry s Law Constants At 25 ºC Gas N 2 O 2 k H (M/ mm Hg) 8.42e e-6 CO e-5 What is the concentration of oxygen in a fresh water stream in equilibrium with the atmosphere at 25 ºC and 1.00 atm? Express your answer in ppm. What is the concentration of carbon dioxide in equilibrium with an atmospheric partial pressure of 0.33 atm at 25 ºC? At 740 torr and 20 C, nitrogen has a solubility in water of g/l. At 620 torr and 20 C, its solubility is g/l. Does nitrogen obey Henry s law? Temperature dependence of solubility Colligative Properties On adding a solute to a solvent, the props. of the solvent are modified. Vapor pressure decreases Melting point decreases Boiling point increases is possible (osmotic pressure) These changes are called COLLIGATIVE PROPERTIES. s lecture notes.doc page 3 of 8 Dr. Myton, CH116

4 They depend only on the NUMBER of solute particles relative to solvent particles, not on the KIND of solute particles. Releasing pressure changes the solubility of a gas in solution Lake Nyos, Cameroon Courtesy of George Kling, page Understanding Colligative Properties To understand colligative properties, study the LIQUID-VAPOR EQUILIBRIUM for a solution. Understanding Colligative Properties To understand colligative properties, study the LIQUID-VAPOR EQUILIBRIUM for a solution. Adding a solute lowers vapor pressure Understanding Colligative Properties VP of H 2 O over a solution depends on the number of H 2 O molecules per solute molecule. Psolvent proportional to Xsolvent OR Psolvent = Xsolvent P o solvent VP of solvent over solution = (Mol frac solvent) (VP pure solvent) RAOULT S LAW Raoult s Law An ideal solution is one that obeys Raoult s law. P A = X A P o A Because mole fraction of solvent, X A, is always less than 1, then P A is always less than P o A. The vapor pressure of solvent over a solution is always LOWERED! Raoult s Law Assume the solution containing 62.1 g of glycol in 250. g of water is ideal. What is the vapor pressure of water over the solution at 30 o C? (The VP of pure H 2 O is 31.8 mm Hg; see App. G) Xglycol = and so Xwater =? Because Xglycol + X water = 1 X water = = water P water = X water P o water = (0.9382)(31.8 mm Hg) water water water P water = 29.7 mm Hg water Ethylene glycol, HOCH 2 CH 2 OH is a common ingredient in automobile antifreeze. If 651 g of ethylene glycol is dissolved in 1.50 kg of water (represents a typical 30.2% solution), what is the vapor pressure of water over the solution at 90 ºC? The vapor pressure of water at 90 ºC is mm Hg, assume ideal behavior Assume you dissolve 10.0 g of sugar (C 12 H 22 O 12 in 225 ml of water and warm the water to 60 ºC. What is the vapor pressure of the water over this solution at equilibrium? P solvent = -X solute Pº solvent Problem solving s lecture notes.doc page 4 of 8 Dr. Myton, CH116

5 12.43 The vapor pressure of water at 20 C is 17.5 torr. A 20% by weight solution of ethylene glycol HOCH 2 CH 2 OH in water is prepared. Assuming that the solute is nonvolatile, do a calculation to estimate the vapor pressure of the solution Example 12.5 CCl 4 has a vapor pressure of 100 torr at 23 degrees Celsius. Assume candle wax has a molecular weight of 331 and calculate the vapor pressure of carbon tetrachloride in a solution made of 10.0 g of the nonvolatile wax in 40.0 g of carbon tetrachloride Benzene and toluene help get good engine performance from lead-free gasoline. At 40 C the vapor pressure of benzene is 180 torr and that of toluene is 60 torr. To prepare a solution of these that will have a total vapor pressure of 96 torr at 40 C requires what mole percent concentration of each? Raoult s Law For a 2-component system where A is the solvent and B is the solute DP A = VP lowering = X B P o A VP lowering is proportional to mol frac solute! For very dilute solutions, DP A = K molality B where K is a proportionality constant. This helps explain changes in melting and boiling points. Boiling Point Elevation T bp = K bp m solute The boiling point of a solution is higher than that of the pure solvent. BP/FP Elevation/Depression Constants Solvent BP K bp FP K fp ºC ºC/m ºC ºC/m water Benzene Camphor Change in Boiling Point Dissolve 62.1 g of glycol (1.00 mol) in 250. g of water. What is the BP of the solution? K BP = o C/molal for water (see Table 14.3). BP 1. Calculate solution molality = 4.00 m 2. DtBP = KBP m Dt BP = o C/molal (4.00 molal) BP Dt BP = o C BP BP = o C Eugenol, the active ingredient in cloves, has the formula C 10 H 12 O 2. What is the boiling point of a solution when g of this compound is dissolved in 10.0 g of benzene What quantity of ethylene glycol, HOCH 2 CH 2 OH, must be added to 125 g of water to raise the boiling point by 1.0 ºC? Using BP for MW A solution prepared from 1.25 g of oil of wintergreen (methyl salicylate) in 99.0 g of benzene has a boiling point of ºC. Determine the molar mass of methyl salicylate. Change in Freezing Point The freezing point of a solution is LOWER than that of the pure solvent. FP depression = DtFP = KFP m Consider equilibrium at melting point Liquid solvent <------> Solid solvent s lecture notes.doc page 5 of 8 Dr. Myton, CH116

6 Rate at which molecules go from S to L depends only on the nature of the solid. BUT rate for L ---> S depends on how much is dissolved. This rate is SLOWED for the same reason VP is lowered. Therefore, to bring S ---> L and L ---> S rates into equilibrium for a solution, T must be lowered. Thus, FP for solution < FP for solvent FP depression = DtFP = KFP m Calculate the FP of a 4.00 molal glycol/water solution. K FP = o C/molal (Table 14.4) FP DtFP = KFP m Dt FP = o C FP = (-1.86 o C/molal)(4.00 m) How much NaCl must be dissolved in 4.00 kg of water to lower FP to o C?. Calc. required molality DtFP = KFP m o C = (-1.86 o C/molal) Conc Conc = 5.38 molal How much NaCl must be dissolved in 4.00 kg of water to lower FP to o C?. Conc req d = 5.38 molal This means we need 5.38 mol of dissolved particles per kg of solvent. Recognize that m represents the total conc. of all dissolved particles. Recall that 1 mol NaCl(aq) --> 1 mol Na + (aq) + 1 mol Cll - (aq) How much NaCl must be dissolved in 4.00 kg of water to lower FP to o C?. Conc req d = 5.38 molal We need 5.38 mol of dissolved particles per kg of solvent. NaCl(aq) --> Na + (aq) + Cl - (aq) To get 5.38 mol/kg of particles we need 5.38 mol / 2 = 2.69 mol NaCl / kg 2.69 mol NaCl / kg ---> 157 g NaCl / kg (157 g NaCl / kg) (4.00 kg) = 629 g NaCl How many grams of ethylene glycol, HOCH 2 CH 2 OH, must be added to 5.50 kg of water to lower the freezing point of the water from 0.0 ºC to ºC? Some people have summer homes on a lake or in the woods. In Northern climates these homes may be closed for winter and antifreeze added to the toilet tank to prevent damage from water freezing in the trap. Will adding 525 g of ethylene glycol, HOCH 2 CH 2 OH, prevent freezing at -25 ºC? Glycerol C 3 H 8 O 3 (molecular mass 92) is essentially a nonvolatile liquid that is very soluble in water. A solution is made by dissolving 46.0 g of glycerol in 250 g of water. By calculations, estimate the following the boiling point of the solution at 1 atm its freezing point its vapor pressure at 25 C (at this temperature the vapor pressure of water is 23.8 torr) Boiling Point Elevation and s lecture notes.doc page 6 of 8 Dr. Myton, CH116

7 Dt = K m i A generally useful equation i = van t Hoff factor = number of particles produced per formula unit. Compound Theoretical Value of i glycol 1 NaCl 2 CaCl 2 3 A m aqueous solution of an ionic compound Co(NH 3 ) 5 (NO 2 )Cl freezes at ºC. How many moles of ions does 1 mole of the salt give upon being dissolved? Calculate the freezing point of 525 g of water containing 25.0 g of NaCl assuming a van t Hoff factor of 1.85 Calculate the percent ionization of a 1.00 m aqueous acetic acid solution based on the following equilibrium: HC 2 H 3 O 2 (aq)! H + (aq) + C 2 H 3 O 2 - (aq) K f = 1.86 C/m. The solution actually freezes at 1.90 C The van t Hoff factor for the solute in m LiCl is Calculate the freezing point of the solution. Why is this factor so much larger than that of NiSO 4? An experiment calls for the use of the dichromate ion in sulfuric acid as an oxidizing agent for propyl alcohol. The chief product is acetone which forms according to the following reaction: 3C 3 H 8 O + Na 2 Cr 2 O H 2 SO 4 " 3C 3 H 6 O + Cr 2 (SO 4 ) 3 + Na 2 SO H 2 O the oxidizing agent is only available as sodium dichromate dihydrate. In theory how many grams of sodium dichromate dihydrate are needed to oxidize 21.4 g of isopropyl alcohol according to the balanced equation? continued The amount of acetone actually isolated was 12.4 g. Calculate the percentage yield of acetone The reaction produces a volatile byproduct. When a sample of it with a mass of mg was burned in oxygen, it was converted into mg of carbon dioxide and mg of water. Assume any unaccounted for material is oxygen. Calculate the percentage composition of the byproduct and determine its empirical formula continued A solution prepared by dissolving g of the byproduct in g of benzene had a freezing point of 4.87 C. Calculate the molecular mass of the byproduct and write its molecular formula. The semipermeable membrane should allow only the movement of solvent molecules. Therefore, solvent molecules move from pure solvent to solution. The semipermeable membrane should allow only the movement of solvent molecules. Therefore, solvent molecules move from pure solvent to solution. Equilibrium is reached when pressure produced by extra solution the OSMOTIC PRESSURE, p p = crt (where c is conc. in mol/l) counterbalances pressure of solvent molecules moving thru the membrane. s lecture notes.doc page 7 of 8 Dr. Myton, CH116

8 Osmotic Pressure Adding a solute increases osmotic pressure of solvent from one solution to another can continue until the solutions are ISOTONIC they have the same concentration. Osmotic pressure in living systems: FIGURE Problem solving What is the osmotic pressure in torr of a M aqueous solution of a molecular compound at 25 C? An aqueous solution of a compound with a very high molecular mass was prepared in a concentration of 2.0 g/l at 298 K. Its osmotic pressure was torr. Calculate the molecular mass of the compound Calculating a Molar Mass Dissolve 35.0 g of hemoglobin in enough water to make 1.00 L of solution. p measured to be 10.0 mm Hg at 25 C. Calc. molar mass of hemoglobin. (a) (b) Calc. p in atmospheres p = 10.0 mmhg (1 atm / 760 mmhg) = atm Calc. concentration Calculating a Molar Mass Calculating a Molar Mass -4 Conc = 5.39 x 10 mol/l (c) Calc. molar mass -4 Molar mass = 35.0 g / 5.39 x 10 mol/l Molar mass = 65,100 g/mol Problem solving A 1.40 g sample of polyethylene, a common plastic, is dissolved in enough benzene to give exactly 100 ml of solution. The measured osmotic pressure of the solution is 1.86 mm Hg at 25 ºC. What is the average molecular mass of the polymer Surfactants s lecture notes.doc page 8 of 8 Dr. Myton, CH116

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

Sample Test 1 SAMPLE TEST 1. CHAPTER 12

Sample Test 1 SAMPLE TEST 1. CHAPTER 12 13 Sample Test 1 SAMPLE TEST 1. CHAPTER 12 1. The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram

More information

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects Week 3 Sections 13.3-13.5 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Ways of Expressing Concentration Mass Percentage, ppm, and ppb Mole Fraction,

More information

Solutions. Chapter 13. Properties of Solutions. Lecture Presentation

Solutions. Chapter 13. Properties of Solutions. Lecture Presentation Lecture Presentation Chapter 13 Properties of Yonsei University homogeneous mixtures of two or more pure substances: may be gases, liquids, or solids In a solution, the solute is dispersed uniformly throughout

More information

2. Why does the solubility of alcohols decrease with increased carbon chain length?

2. Why does the solubility of alcohols decrease with increased carbon chain length? Colligative properties 1 1. What does the phrase like dissolves like mean. 2. Why does the solubility of alcohols decrease with increased carbon chain length? Alcohol in water (mol/100g water) Methanol

More information

Solution concentration = how much solute dissolved in solvent

Solution concentration = how much solute dissolved in solvent Solutions 1 Solutions Concentration Solution concentration = how much solute dissolved in solvent Coffee crystal = solute Water = solvent Liquid Coffee = solution so a solute is dissolved in solvent to

More information

Chemistry Ch 15 (Solutions) Study Guide Introduction

Chemistry Ch 15 (Solutions) Study Guide Introduction Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of are homogeneous mixtures of two or more pure substances. In a solution,

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

Chapter 13: Properties of Solutions

Chapter 13: Properties of Solutions Chapter 13: Properties of Solutions Problems: 9-10, 13-17, 21-42, 44, 49-60, 71-72, 73 (a,c), 77-79, 84(a-c), 91 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component(s)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A.P. Chemistry Practice Test: Ch. 11, Solutions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Formation of solutions where the process is

More information

David A. Katz Department of Chemistry Pima Community College

David A. Katz Department of Chemistry Pima Community College Solutions David A. Katz Department of Chemistry Pima Community College A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent t is usually regarded as the SOLVENT

More information

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?

More information

Chemistry B11 Chapter 6 Solutions and Colloids

Chemistry B11 Chapter 6 Solutions and Colloids Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

Colligative Properties

Colligative Properties CH302 LaBrake and Vanden Bout Colligative Properties PROBLEM #1: Give the molecular formula, the van t hoff factor for the following Ionic Compounds as well as guess the solubility of the compounds. If

More information

Chapter 13 - Solutions

Chapter 13 - Solutions Chapter 13 - Solutions 13-1 Types of Mixtures I. Solutions A. Soluble 1. Capable of being dissolved B. Solution 1. A homogeneous mixture of two or more substances in a single phase C. Solvent 1. The dissolving

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent. TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGraw-Hill Companies,

More information

CHAPTER 13: SOLUTIONS

CHAPTER 13: SOLUTIONS CHAPTER 13: SOLUTIONS Problems: 1-8, 11-15, 20-30, 37-88, 107-110, 131-132 13.2 SOLUTIONS: HOMOGENEOUS MIXTURES solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute:

More information

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Determination of Molar Mass by Boiling Point Elevation of Urea Solution Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling

More information

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance.

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance. Colligative Properties of Solutions: A Study of Boiling Point Elevation Amina El-Ashmawy, Collin County Community College (With contributions by Timm Pschigoda, St. Joseph High School, St. Joseph, MI)

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8 Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Chemical Composition Chapter 8 1 2 Atomic Masses Balanced equation tells us the relative numbers of molecules

More information

Formulas, Equations and Moles

Formulas, Equations and Moles Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

More information

1) What is the overall order of the following reaction, given the rate law?

1) What is the overall order of the following reaction, given the rate law? PRACTICE PROBLEMS FOR TEST 2 (March 11, 2009) 1) What is the overall order of the following reaction, given the rate law? A) 1st order B) 2nd order C) 3rd order D) 4th order E) 0th order 2NO(g) + H 2(g)

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

Determination of Molar Mass by Freezing-Point Depression

Determination of Molar Mass by Freezing-Point Depression DETERMINATION OF MOLAR MASS BY FREEZING-POINT DEPRESSION 141 Determination of Molar Mass by Freezing-Point Depression OBJECTIVES: Gain familiarity with colligative properties of nonelectrolyte solutions

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Solutions. A Chem1 Reference Text Stephen K. Lower Simon Fraser University. 1 Solutions 2

Solutions. A Chem1 Reference Text Stephen K. Lower Simon Fraser University. 1 Solutions 2 Solutions A Chem1 Reference Text Stephen K. Lower Simon Fraser University Contents 1 Solutions 2 2 Types of solutions 2 2.1 Gaseous solutions.................................... 4 2.2 Solutions of gases

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

CHEMISTRY II FINAL EXAM REVIEW

CHEMISTRY II FINAL EXAM REVIEW Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule CHAPTER THREE: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS Part One: Mass and Moles of Substance A. Molecular Mass and Formula Mass. (Section 3.1) 1. Just as we can talk about mass of one atom of

More information

a. Cherry Garcia ice cream: heterogeneous mixture b. mayonnaise: colloid c, d, e. seltzer water, nail polish remover, and brass: solutions

a. Cherry Garcia ice cream: heterogeneous mixture b. mayonnaise: colloid c, d, e. seltzer water, nail polish remover, and brass: solutions Chapter 8 1 Chapter 8 Solutions Solutions to In-Chapter Problems 8.1 A heterogeneous miture does not have a uniform composition throughout a sample. A solution is a homogeneous miture that contains small

More information

Chapter 6. Solution, Acids and Bases

Chapter 6. Solution, Acids and Bases Chapter 6 Solution, Acids and Bases Mixtures Two or more substances Heterogeneous- different from place to place Types of heterogeneous mixtures Suspensions- Large particles that eventually settle out

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Concentration of a solution

Concentration of a solution Revision of calculations Stoichiometric calculations Osmotic pressure and osmolarity MUDr. Jan Pláteník, PhD Concentration of a solution mass concentration: grams of substance per litre of solution molar

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.

Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2. Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven

More information

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent 1 Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent % (v/v) = volume of solute x 100 volume of solution filled

More information

Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction. Molarity, M =

Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction. Molarity, M = Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction Molarity, M tells you how many s of solute are present in every liter of solution (solute-to-solution)

More information

MOLECULAR MASS AND FORMULA MASS

MOLECULAR MASS AND FORMULA MASS 1 MOLECULAR MASS AND FORMULA MASS Molecular mass = sum of the atomic weights of all atoms in the molecule. Formula mass = sum of the atomic weights of all atoms in the formula unit. 2 MOLECULAR MASS AND

More information

Problem Solving. Percentage Yield

Problem Solving. Percentage Yield Skills Worksheet Problem Solving Percentage Yield Although we can write perfectly balanced equations to represent perfect reactions, the reactions themselves are often not perfect. A reaction does not

More information

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration? EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where

More information

Mole Notes.notebook. October 29, 2014

Mole Notes.notebook. October 29, 2014 1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

More information

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words -you cannot write an equation unless you

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

More information

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

More information

Chemistry Post-Enrolment Worksheet

Chemistry Post-Enrolment Worksheet Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS : Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles

More information

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chemical Calculations: Formula Masses, Moles, and Chemical Equations Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic

More information

Concept 1. The meaning and usefulness of the mole. The mole (or mol) represents a certain number of objects.

Concept 1. The meaning and usefulness of the mole. The mole (or mol) represents a certain number of objects. Chapter 3. Stoichiometry: Mole-Mass Relationships in Chemical Reactions Concept 1. The meaning and usefulness of the mole The mole (or mol) represents a certain number of objects. SI def.: the amount of

More information

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils Chemical Principles As Applied to Soils I. Chemical units a. Moles and Avogadro s number The numbers of atoms, ions or molecules are important in chemical reactions because the number, rather than mass

More information

The Mole. Chapter 2. Solutions for Practice Problems

The Mole. Chapter 2. Solutions for Practice Problems Chapter 2 The Mole Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the full set of

More information

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Mole Calculations Chemical Equations and Stoichiometry Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Chemical Equations and Problems Based on Miscellaneous

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

Chemical Quantities and Aqueous Reactions

Chemical Quantities and Aqueous Reactions 4 Chemical Quantities and Aqueous Reactions I feel sorry for people who don t understand anything about chemistry. They are missing an important source of happiness. Linus Pauling (1901 1994) 4.1 Climate

More information

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015 The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

Stoichiometry. What is the atomic mass for carbon? For zinc?

Stoichiometry. What is the atomic mass for carbon? For zinc? Stoichiometry Atomic Mass (atomic weight) Atoms are so small, it is difficult to discuss how much they weigh in grams We use atomic mass units an atomic mass unit (AMU) is one twelfth the mass of the catbon-12

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

Atomic mass is the mass of an atom in atomic mass units (amu)

Atomic mass is the mass of an atom in atomic mass units (amu) Micro World atoms & molecules Laboratory scale measurements Atomic mass is the mass of an atom in atomic mass units (amu) By definition: 1 atom 12 C weighs 12 amu On this scale 1 H = 1.008 amu 16 O = 16.00

More information

CP Chemistry Review for Stoichiometry Test

CP Chemistry Review for Stoichiometry Test CP Chemistry Review for Stoichiometry Test Stoichiometry Problems (one given reactant): 1. Make sure you have a balanced chemical equation 2. Convert to moles of the known substance. (Use the periodic

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

Chapter Three: STOICHIOMETRY

Chapter Three: STOICHIOMETRY p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass

More information

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, Chemistry 11, McGraw-Hill Ryerson, 2001 SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample

More information

Stoichiometry. Lecture Examples Answer Key

Stoichiometry. Lecture Examples Answer Key Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2

More information

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points) CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information