Sample Test 1 SAMPLE TEST 1. CHAPTER 12

Size: px
Start display at page:

Download "Sample Test 1 SAMPLE TEST 1. CHAPTER 12"

Transcription

1 13 Sample Test 1 SAMPLE TEST 1. CHAPTER The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram of solution. d. moles of solute per kilogram of solvent. e. the gram molecular weight of solute per kilogram of solvent. > d moles of solute per kilogram of solvent. 2. What is the molarity of a NH 3 solution which contains 4.25 g of NH 3 in 2.00 L of solution? a M b M c M d M e M > a M 3. What is the percent NaCl by mass in a 1.00 molal aqueous solution? a b c d e > a How many moles of ethanol, must be dissolved in one hundred grams of water to give a 1.5 molal solution? a. 15 b. 1.5 c d e > c When one mole of a nonvolatile nonelectrolyte is dissolved in three moles of a solvent, the vapor pressure of the solution compared to that of the pure solvent is a. 1/4. b. 1/3. c. 1/2. d. 2/3. e. 3/4. > e 3/4. 6. Using Raoult's law, given that the pure vapor pressure of water (M.W g/mol) at 75oC is 290mmHg, the vapor pressure of an aqueous solution at 75oC containing 60g of urea (M.W g/mol), a nonelectrolyte, in 180g of water is a. 29 mmhg. b. 100 mmhg. c. 130 mmhg. d. 190 mmhg. e. 264 mmhg. > e 264 mmhg. 7. According to Henry's Law, the concentration of a gas in solution at a constant temperature is directly proportional to a. the pressure of the gas above the solution. b. the vapor pressure of the pure solvent. c. the mole fraction of solvent present. d. Each of these statements is true. > a the pressure of the gas above the solution. 8. A 60.0-g sample of NaOH ( F.W g/mol) is dissolved in water, and the solution is diluted to give a final volume of 3.00 L. The molarity of the final solution is

2 a M. b M. c M. d M. e M. > a M. 9. How many grams of Na 2 SO 4 (F.W. 142 g/mol) are contained in L of M Na 2 SO 4 solution? a b c d e > a Using Raoult's law, given that the pure vapor pressure of water (M.W g/mol) at 75oC is 290mmHg, the vapor pressure of an aqueous solution at 75oC containing 60g of urea (M.W g/mol), a nonelectrilyte, in 180g of water is a. 29 mmhg. b. 100 mmhg. c. 130 mmhg. d. 190 mmhg. e. 264 mmhg. > e 264 mmhg. 11. The solubility of a gas in a liquid can always be increased by a. increasing the temperature of the solvent. b. decreasing the polarity of the solvent. c. decreasing the temperature of the gas above the solvent. d. decreasing the pressure of the gas above the solvent. e. increasing the pressure of the gas above the solvent. > e increasing the pressure of the gas above the solvent. 12. Which one of the following is not a colligative property? a. osmotic pressure. b. boiling point elevation. c. density d. vapor pressre lowering. e. freezing-point depression > c density 13. If mol of napthalene is dissolved in g of benzene (C 6 H 6 ), what is the molality? a b c d e > c What is the mole fraction of methanol, CH 3 OH (M.W. 32 g/mol), in an ethanol, C 2 H 5 OH (M.W. 46 g/mol), solution that is 60.0% ethanol by mass? a b c d e > c What is the molality of ethyl alcohol, C 2 H 5 OH (M.W g/mol), in an aqueous solution that is 50.0% ethyl alcohol by mass? a b c d e

3 > b Which of the following solutions made up of soluble salts has the highest osmotic pressure? a M NaCl b M CaCl 2 c M Ba(NO 3 ) 2 d M Al(NO 3 ) 3 > c 0.15 M Ba(NO 3 ) Calculate the MOLALITY of C 2 H 5 OH in a water solution which is prepared by mixing 50.0 ml of C 2 H 5 OH with ml of H 2 O at 20 C. The density of the C 2 H 5 OH is g/ml at 20 C. a m b m c m d m e. none of these 18. A solution of two liquids, A and B, shows negative deviation from Raoult's Law. This means that a. the molecules of A interact strongly with other A-type molecules. b. the two liquids have a positive heat of solution. c. molecules of A interact weakly, if at all, with B molecules. d. the molecules of A hinder the strong interaction between B molecules. e. molecules of A interact more strongly with B than A with A or B with B. 19. Which of the following is NOT a colligative property? a. freezing point depression b. boiling point elevation c. osmotic pressure d. solubility e. two of the above 20. The molal freezing point depression constants for benzene and water are 5.12 and 1.86 respectively. When 4.6 g of formic acid (HCOOH) is dissolved in 1.0 kg of benzene, the observed freezing point lowering is 0.26C. When the same amount of formic acid is dissolved in 1.0 kg of water, the freezing point is lowered by 0.19C. To explain these results, we must assume that: a. formic acid is ASSOCIATED in benzene and MONOMERIC in water. b. formic acid is MONOMERIC in benzene and DISSOCIATED in water. c. formic acid is MONOMERIC in benzene and ASSOCIATED in water. d. formic acid is DISSOCIATED in benzene and MONOMERIC in water. e. none of these is true. 21. When one mole of a nonvolatile non-dissociating substance is dissolved in two moles of solvent, the ratio of the vapor pressure of the solution to that of the pure solvent (at the same temperature) is approximately: a. 1/3 b. 1/2 c. 2/3 d. 3/2 e. none of these 22. How many grams of water are needed to give a 3.00 m NH 3 solution if 15 moles of NH 3 are to be dissolved in the water? a. 5 b c. 4.5 d e Determine the molarity of a 25.0% CaCl 2 solution that has a density of g/ml. a b c d e What is the MOLALITY of a solution of 50.0 g of propanol (molar mass = 60.1 g/mol) in 152 ml water, if the density of water is 1.0 g/ml? a) 5.47 m b) m c) m d) m e) none of these 25. How many grams of C 12 H 22 O 11 are needed to dissolve in 250g of water to give a x 10-1 m solution? (M.W. C 12 H 22 O 11 = ) a g b g c g d g e. 1600g 15

4 A solution is made by adding mole of ethyl ether to mole of ethyl alcohol. If the vapor pressures of ethyl ether and ethyl alcohol at 20 o C are 375 torr and 20.0 torr, respectively, the vapor pressure of the solution at 20 o C (assuming ideal behavior) is: a) 79.2 torr b) 316 torr c) 47.5 torr d) 395 torr e) none of these 27. The term "proof" is defined as twice the percent by volume of pure ethanol in solution. Thus, a solution that is 95% (by VOLUME) ethanol is 190 proof. What is the MOLARITY of ethanol in a 92 proof ethanol/water solution? density of ethanol = 0.80 g/cm3 density of water = 1.0 g/cm3 mol. wt. of ethanol = 46 a) 0.46 M b) 0.80 M c) 0.92 M d) 8.0 M e) 17 M 28. Vapor pressure (in torr) at 25 o C benzene (C 6 H 6 ) 94.4 chloroform (CH 3 Cl) Using the above data, calculate the total vapor pressure of a chloroform-benzene solution at 25 o C which contains 50.0 g CH 3 Cl and 50.0 g C 6 H 6. Assume the solution behaves ideally. a) 67.8 torr b) 125 torr c) 141 torr d) 172 torr e) none of these 29. When a nonvolatile solute is added to a volatile solvent, the solution vapor pressure, the boiling point, the freezing point, and the osmotic pressure across a semipermeable membrane. a) decreases, increases, decreases, decreases. b) increases, increases, decreases, increases. c) increases, decreases, increases, decreases. d) decreases, decreases, increases, decreases. e) decreases, increases, decreases, increases. 30. A solute added to a solvent raises the boiling point of the solution because a) the temperature to cause boiling must be great enough to boil not only the solvent but also the solute. b) the solute particles lower the solvent's vapor pressure thus requiring a higher temperature to cause boiling. c) the solute particles raise the solvent's vapor pressure thus requiring a higher temperature to cause boiling. d) the solute increases the volume of the solution, and an increase in volume requires an increase in the temperature to reach the boiling point (derived from PV = nrt). e) two of the above are correct. 31. At a given temperature the vapor pressures of pure liquid benzene and toluene are 745 torr and 290 torr, respectively. A solution prepared by mixing benzene and toluene obeys Raoult's law. At this temperature the vapor pressure of benzene over a solution in which the mole fraction of benzene is equal to is a) 417 torr b) 352 torr c) 98.6 torr d) 253 torr e) none of these 32. A solution of hydrogen peroxide is 30.0% H 2 O 2 by mass and has a density of 1.11 g/cm 3. The MOLARITY of the solution is: a) 7.94 M b) 8.82 M c) 9.79 M d) e) none of these 33. A solution containing g of Mg(NO 3 ) 2 per liter has a density of g/ml. The MOLARITY of the solution is: a) M b) M c) M d) M e) none of these 34. The osmotic pressure, in torr, of a M solution of NaCl in water at 25C is APPROXIMATELY:

5 17 a) b) 15.6 c) 372 d) 186 e) none of these 35. When 100. ml of M HCl is diluted to 250. ml, the resulting MOLARITY of the HCl solution is: a) M b) M c) M d) M e) none of these 36. When 1.50 g of glutamic acid is dissolved in g H 2 O, the resulting solution freezes at C. (K f for H 2 O is 1.86C kg/mol.) The molecular weight of glutamic acid is: a) 14.7 g/mol b) 1.50 g/mol c) 189 g/mol d) 28.0 g/mol e) 147 g/mol 37. Benzene and toluene form an ideal solution. At 298K, what is the mole fraction of benzene in the liquid that is in equilibrium with a vapor that has equal partial pressures of benzene and toluene? At 298K, the vapor pressures of pure benzene and pure toluene are 95 and 28 torr, respectively. a) 0.50 b) 0.77 c) 0.23 d) 0.30 e) none of these 38. In order to calculate the freezing point of an ideal dilute solution of a single, non-dissociating solute in a solvent, the minimum information one must know is: a) the molality (of the solute). b) the molality (of the solute) and the freezing point depression constant of the solvent. c) the same quantities as in (b) plus the freezing point of the pure solvent. d) all of the quantities in (c) plus the molecular weight of the solute. e) all of the quantities in (c) plus the weight of the solvent. 39. The vapor pressure of water at 90C is atm. What is the vapor pressure (in atm) of a solution made by dissolving 1.00 mole of CsF(s) in 1.00 kg of water? Assume that Raoult's law applies. a) atm b) atm c) atm d) atm e) none of these 40. Pentane and hexane form an ideal solution. The components have the following properties: - - molar mass - density - bp - vapor pressure at 25 o C pentane g/ml 36 o C 511 torr hexane g/ml 69 o C 150 torr What is the mole fraction of pentane (X pentane ) in the vapor in equilibrium at 25C with a pentane-hexane solution in which X pentane = 0.30? a) X pentane = 0.23 b) X pentane = 0.29 c) X pentane = 0.59 d) X pentane = 0.68 e) X pentane = What is the mole fraction of ethanol, C 2 H 5 OH, in a methanol solution that is 40.%(w/w) methanol, CH 3 OH, by mass? a b c d Answers to questions: 1. > d moles of solute per kilogram of solvent. 2. > a M 3. > a > c > e 3/4. 6. > e 264 mmhg. 7. > a the pressure of the gas above the solution. 8. > a M. 9. > a > e 264 mmhg. 11. > e increasing the pressure of the gas above the solvent. 12. > c density 13. > c 1.00

6 14. > c > b > c 0.15 M Ba(NO 3 ) > d 8.56 m > e molecules of A interact more strongly with B than A with A or B with B > e solubility > a formic acid is ASSOCIATED in benzene and MONOMERIC in water > c 2/ > e a d g 26. a) 79.2 torr 27. >d) 8.0 M 28. >b) 141 torr 29. >e) decreases, increases, decreases, increases. 30. b) the solute particles lower the solvent's vapor pressure thus requiring a higher temperature to cause boiling. 31. d) 253 torr 32. c) 9.79 M 33. a) M 34. c) c) M 36. e) 147 g/mol 37. c) c) the same quantities as in (b) plus the freezing point of the pure solvent. 39. c) atm 40. c) X pentane = c

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

COLLIGATIVE PROPERTIES:

COLLIGATIVE PROPERTIES: COLLIGATIVE PROPERTIES: A colligative property is a property that depends only on the number of solute particles present, not their identity. The properties we will look at are: lowering of vapor pressure;

More information

Sample Exercise 13.1 Predicting Solubility Patterns

Sample Exercise 13.1 Predicting Solubility Patterns Sample Exercise 13.1 Predicting Solubility Patterns Predict whether each of the following substances is more likely to dissolve in the nonpolar solvent carbon tetrachloride (CCl 4 ) or in water: C 7 H

More information

Colligative Properties

Colligative Properties Colligative Properties Vapor pressures have been defined as the pressure over a liquid in dynamic equilibrium between the liquid and gas phase in a closed system. The vapor pressure of a solution is different

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions 13.4 Ways of Expressing Concentration All methods involve quantifying the amount of solute per amount of solvent (or solution). Concentration may be expressed qualitatively or quantitatively. The terms

More information

Colligative Properties of Nonvolatile Solutes 01. Colligative Properties of Nonvolatile Solutes 02. Colligative Properties of Nonvolatile Solutes 04

Colligative Properties of Nonvolatile Solutes 01. Colligative Properties of Nonvolatile Solutes 02. Colligative Properties of Nonvolatile Solutes 04 Colligative Properties of Nonvolatile Solutes 01 Colligative Properties of Nonvolatile Solutes 02 Colligative Properties: Depend on the amount not on the identity There are four main colligative properties:

More information

From the book (10, 12, 16, 18, 22, 24 52, 54, 56, 58, 62, 64, 66, 68, 74, 76, 78, 80, 82, 86, 88, 90, 92, 106 and 116)

From the book (10, 12, 16, 18, 22, 24 52, 54, 56, 58, 62, 64, 66, 68, 74, 76, 78, 80, 82, 86, 88, 90, 92, 106 and 116) Chem 112 Solutions From the book (10, 12, 16, 18, 22, 24 52, 54, 56, 58, 62, 64, 66, 68, 74, 76, 78, 80, 82, 86, 88, 90, 92, 106 and 116) 1. Which of the following compounds are nonelectrolytes? A. NaF

More information

CHAPTER 14 Solutions

CHAPTER 14 Solutions CHAPTER 14 Solutions The Dissolution Process 1. Effect of Temperature on Solubility 2. Molality and Mole Fraction Colligative Properties of Solutions 3. Lowering of Vapor Pressure and Raoult s Law 4. Fractional

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

Types of Solutions. Chapter 17 Properties of Solutions. Types of Solutions. Types of Solutions. Types of Solutions. Types of Solutions

Types of Solutions. Chapter 17 Properties of Solutions. Types of Solutions. Types of Solutions. Types of Solutions. Types of Solutions Big Idea: Liquids will mix together if both liquids are polar or both are nonpolar. The presence of a solute changes the physical properties of the system. For nonvolatile solutes the vapor pressure, boiling

More information

2. Why does the solubility of alcohols decrease with increased carbon chain length?

2. Why does the solubility of alcohols decrease with increased carbon chain length? Colligative properties 1 1. What does the phrase like dissolves like mean. 2. Why does the solubility of alcohols decrease with increased carbon chain length? Alcohol in water (mol/100g water) Methanol

More information

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects Week 3 Sections 13.3-13.5 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Ways of Expressing Concentration Mass Percentage, ppm, and ppb Mole Fraction,

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

Chapter 14. Mixtures

Chapter 14. Mixtures Chapter 14 Mixtures Warm Up What is the difference between a heterogeneous and homogeneous mixture? Give 1 example of a heterogeneous mixture and 1 example of a homogeneous mixture. Today s Agenda QOTD:

More information

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1 Solutions Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions.

More information

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1 s Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions. Ways of

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2011/01

More information

1. Define the term colligative property and list those physical properties of a solution that can be classified as colligative properties.

1. Define the term colligative property and list those physical properties of a solution that can be classified as colligative properties. Solutions Colligative Properties DCI Name Section 1. Define the term colligative property and list those physical properties of a solution that can be classified as colligative properties. Colligative

More information

Lab 9. Colligative Properties an Online Lab Activity

Lab 9. Colligative Properties an Online Lab Activity Prelab Assignment Before coming to lab: Lab 9. Colligative Properties an Online Lab Activity Chemistry 162 - K. Marr Revised Winter 2014 This lab exercise does not require a report in your lab notebook.

More information

Colligative Properties Discussion Chem. 1A

Colligative Properties Discussion Chem. 1A Colligative Properties Discussion Chem. 1A The material covered today is found in sections Chapter 12.5 12.7 This material will not be covered in lecture, you will have homework assigned. Chem. 1A Colligative

More information

Solutions. Chapter 13. Properties of Solutions. Lecture Presentation

Solutions. Chapter 13. Properties of Solutions. Lecture Presentation Lecture Presentation Chapter 13 Properties of Yonsei University homogeneous mixtures of two or more pure substances: may be gases, liquids, or solids In a solution, the solute is dispersed uniformly throughout

More information

R = J/mol K R = L atm/mol K

R = J/mol K R = L atm/mol K version: master Exam 1 - VDB/LaB/Spk This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your

More information

SOLUTIONS MODULE - 3. Objectives. Chemistry. States of matter. Notes

SOLUTIONS MODULE - 3. Objectives. Chemistry. States of matter. Notes Chemistry 9 SOLUTIONS Y ou know that when sugar or salt is added to water, it dissolves. The resulting mixture is called a solution. Solutions play an important role in our life. In industry, solutions

More information

Colligative Properties: Freezing Point Depression and Molecular Weight

Colligative Properties: Freezing Point Depression and Molecular Weight Purpose: Colligative Properties: Freezing Point Depression and Molecular Weight The first purpose of this lab is to experimentally determine the van't Hoff (i) factor for two different substances, sucrose

More information

Chapter 14 The Chemistry of Solutes and Solutions. Solute-Solvent Interactions. Solute-Solvent Interactions. Solute-Solvent Interactions

Chapter 14 The Chemistry of Solutes and Solutions. Solute-Solvent Interactions. Solute-Solvent Interactions. Solute-Solvent Interactions John W. Moore Conrad L. Stanitski Peter C. Jurs Solubility & Intermolecular Forces Solution = homogeneous mixture of substances. It consists of: http://academic.cengage.com/chemistry/moore solvent - component

More information

Chapter 13: Physical Properties of Solutions

Chapter 13: Physical Properties of Solutions Chapter 13: Physical Properties of Solutions Key topics: Molecular Picture (interactions, enthalpy, entropy) Concentration Units Colligative Properties terminology: Solution: a homogeneous mixture Solute:

More information

Solutions & Colloids

Solutions & Colloids Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 6 Solutions & Colloids Solutions Components of a Solution Solvent: The substance

More information

Chemistry Notes for class 12 Chapter 2 Solutions

Chemistry Notes for class 12 Chapter 2 Solutions 1 P a g e Chemistry Notes for class 12 Chapter 2 Solutions Solution is a homogeneous mixture of two or more substances in same or different physical phases. The substances forming the solution are called

More information

Chapter 12: Solutions

Chapter 12: Solutions Chapter 12: Solutions Problems: 3, 5, 8, 12, 14, 16, 22, 29, 32, 41-58, 61-68, 71-74 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component present in smaller amount

More information

Chemistry: The Central Science. Chapter 13: Properties of Solutions

Chemistry: The Central Science. Chapter 13: Properties of Solutions Chemistry: The Central Science Chapter 13: Properties of Solutions Homogeneous mixture is called a solution o Can be solid, liquid, or gas Each of the substances in a solution is called a component of

More information

Name Date Class. SECTION 16.1 PROPERTIES OF SOLUTIONS (pages 471 477)

Name Date Class. SECTION 16.1 PROPERTIES OF SOLUTIONS (pages 471 477) 16 SOLUTIONS SECTION 16.1 PROPERTIES OF SOLUTIONS (pages 471 477) This section identifies the factors that affect the solubility of a substance and determine the rate at which a solute dissolves. Solution

More information

CHEMISTRY The Molecular Nature of Matter and Change

CHEMISTRY The Molecular Nature of Matter and Change CHEMISTRY The Molecular Nature of Matter and Change Third Edition Chapter 13 The Properties of Mixtures: Solutions and Colloids Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

12.3 Colligative Properties

12.3 Colligative Properties 12.3 Colligative Properties Changes in solvent properties due to impurities Colloidal suspensions or dispersions scatter light, a phenomenon known as the Tyndall effect. (a) Dust in the air scatters the

More information

Chapter Thirteen. Physical Properties Of Solutions

Chapter Thirteen. Physical Properties Of Solutions Chapter Thirteen Physical Properties Of Solutions 1 Solvent: Solute: Solution: Solubility: Types of Solutions Larger portion of a solution Smaller portion of a solution A homogeneous mixture of 2 or more

More information

Chapter 13: Properties of Solutions

Chapter 13: Properties of Solutions Chapter 13: Properties of Solutions Problems: 9-10, 13-17, 21-42, 44, 49-60, 71-72, 73 (a,c), 77-79, 84(a-c), 91 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component(s)

More information

0.279 M Change g to mol: g/mol = mol Molarity = mol L = mol 0.325L = M

0.279 M Change g to mol: g/mol = mol Molarity = mol L = mol 0.325L = M 118 ChemQuest 39 Name: Date: Hour: Information: Molarity Concentration is a term that describes the amount of solute that is dissolved in a solution. Concentrated solutions contain a lot of dissolved solute,

More information

Colligative properties CH102 General Chemistry, Spring 2014, Boston University

Colligative properties CH102 General Chemistry, Spring 2014, Boston University Colligative properties CH102 General Chemistry, Spring 2014, Boston University here are four colligative properties. vapor-pressure lowering boiling-point elevation freezing-point depression osmotic pressure

More information

Solution concentration = how much solute dissolved in solvent

Solution concentration = how much solute dissolved in solvent Solutions 1 Solutions Concentration Solution concentration = how much solute dissolved in solvent Coffee crystal = solute Water = solvent Liquid Coffee = solution so a solute is dissolved in solvent to

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chapter 13 Properties of Solutions 13.1 The Solution Process - Solutions are homogeneous mixtures of two or more pure substances. - In a solution, the solute is dispersed uniformly throughout the solvent.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A.P. Chemistry Practice Test: Ch. 11, Solutions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Formation of solutions where the process is

More information

Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13

Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13 Chem. A Final Exam Review Problems From ch., 2 & 3 f Multiple Choice Identify the choice that best completes the statement or answers the question.. Place the following cations in order from lowest to

More information

Chapter 13 Properties of Solutions. Classification of Matter

Chapter 13 Properties of Solutions. Classification of Matter Chapter 13 Properties of Solutions Learning goals and key skills: Describe how enthalpy and entropy changes affect solution formation Describe the relationship between intermolecular forces and solubility,

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole

More information

Two Ways to Form Solutions. Role of Disorder in Solutions 2/27/2012. Types of Reactions

Two Ways to Form Solutions. Role of Disorder in Solutions 2/27/2012. Types of Reactions Role of Disorder in Solutions Disorder (Entropy) is a factor Solutions mix to form maximum disorder Two Ways to Form Solutions 1. Physical Dissolving (Solvation) NaCl(s) Na + (aq) + Cl - (aq) C 12 H 22

More information

1) What is the overall order of the following reaction, given the rate law?

1) What is the overall order of the following reaction, given the rate law? PRACTICE PROBLEMS FOR TEST 2 (March 11, 2009) 1) What is the overall order of the following reaction, given the rate law? A) 1st order B) 2nd order C) 3rd order D) 4th order E) 0th order 2NO(g) + H 2(g)

More information

CHAPTER 13: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08

CHAPTER 13: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 CHAPTER 13: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 13.21 The solubility of Cr(NO 3 ) 3 9 H 2 O in water is 208 g per 100 g of water at 15 C. A solution of Cr(NO 3 ) 3

More information

Physical pharmacy. dr basam al zayady

Physical pharmacy. dr basam al zayady Physical pharmacy Lec 7 dr basam al zayady Ideal Solutions and Raoult's Law In an ideal solution of two volatile liquids, the partial vapor pressure of each volatile constituent is equal to the vapor pressure

More information

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Determination of Molar Mass by Boiling Point Elevation of Urea Solution Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling

More information

Vapor Pressure Lowering

Vapor Pressure Lowering Colligative Properties A colligative property is a property of a solution that depends on the concentration of solute particles, but not on their chemical identity. We will study 4 colligative properties

More information

Colligative Properties

Colligative Properties Colligative Properties Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Osmolality Explained. Definitions

Osmolality Explained. Definitions Osmolality Explained What is osmolality? Simply put, osmolality is a measurement of the total number of solutes in a liquid solution expressed in osmoles of solute particles per kilogram of solvent. When

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of are homogeneous mixtures of two or more pure substances. In a solution,

More information

Concentration of Solutions and Molarity

Concentration of Solutions and Molarity Concentration of Solutions and Molarity The concentration of a solution is a measure of the amount of solute that is dissolved in a given quantity of solvent. A dilute solution is one that contains a small

More information

Chemistry Ch 15 (Solutions) Study Guide Introduction

Chemistry Ch 15 (Solutions) Study Guide Introduction Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual

More information

Solutions. ... the components of a mixture are uniformly intermingled (the mixture is homogeneous). Solution Composition. Mass percentageof solute=

Solutions. ... the components of a mixture are uniformly intermingled (the mixture is homogeneous). Solution Composition. Mass percentageof solute= Solutions Properties of Solutions... the components of a mixture are uniformly intermingled (the mixture is homogeneous). Solution Composition 1. Molarity (M) = 4. Molality (m) = moles of solute liters

More information

Colligative properties of biological liquids

Colligative properties of biological liquids Colligative properties of biological liquids Colligative properties are properties of solutions that depend on the number of molecules in a given volume of solvent and not on the properties (e.g. size

More information

Concentration Units The concentration of a dissolved salt in water refers to the amount of salt (solute) that is dissolved in water (solvent).

Concentration Units The concentration of a dissolved salt in water refers to the amount of salt (solute) that is dissolved in water (solvent). Concentration Units The concentration of a dissolved salt in water refers to the amount of salt (solute) that is dissolved in water (solvent). Chemists use the term solute to describe the substance of

More information

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration? EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where

More information

Physical Chemistry. Lecture 34 Colligative Properties of Solutions

Physical Chemistry. Lecture 34 Colligative Properties of Solutions Physical Chemistry Lecture 34 Colligative Properties of Solutions Colligative properties Solution properties that reflect the number of particles in solution Vapor-pressure lowering Freezing-point depression

More information

AP* Chemistry PROPERTIES OF SOLUTIONS

AP* Chemistry PROPERTIES OF SOLUTIONS AP* Chemistry PROPERTIES OF SOLUTIONS IMPORTANT TERMS Solution a homogeneous mixture of two or more substances in a single phase. Does not have to involve liquids. Air is a solution of nitrogen, oxygen,

More information

Experiment 5: Molecular Weight Determination From Freezing Point Depression

Experiment 5: Molecular Weight Determination From Freezing Point Depression Experiment 5: Molecular Weight Determination From Freezing Point Depression PURPOSE To become familiar with colligative properties and to use them to determine the molar mass of a substance APPARATUS AND

More information

Solutions and Colligative Properties

Solutions and Colligative Properties 46 Objective MHT-CET Chemistry 2 Solutions and Colligative Properties 2.1 Introduction 2.2 Types of Solutions 2.3 Concentration of Solutions of Solids in Liquids 2.4 Solubility of Gases in Liquids 2.5

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. 16.3 Colligative of Solutions > 16.3 Colligative of Solutions > CHEMISTRY & YOU Chapter 16 Solutions 16.1 of Solutions 16.2 Concentrations of Solutions 16.3 Colligative of Solutions 16.4 Calculations Involving

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

Freezing Point Depression, the van t Hoff Factor, and Molar Mass

Freezing Point Depression, the van t Hoff Factor, and Molar Mass , the van t Hoff Factor, and Molar Mass Objectives To understand colligative properties. To find the freezing point depression of a solution. To determine the van't Hoff factor for acetic acid dissolved

More information

Colligative Properties - Freezing Point Depression

Colligative Properties - Freezing Point Depression Purpose To observe freezing point depression of different solutions and calculate the molar mass of commercial antifreeze. Introduction In winter, trucks dispense dirt and salt onto the roads and antifreeze

More information

12A. A Molar Mass from Freezing-Point Depression

12A. A Molar Mass from Freezing-Point Depression 12A. A Molar Mass from Freezing-Point Depression Time: 2 hours Required chemicals and solutions: Reagent Requirement/5 Pairs Preparation of 1 L p C 6 H 4 Cl 2 2.0 g Cyclohexane 100 ml Other required materials:

More information

12. SOLUTIONS. Solutions to Exercises

12. SOLUTIONS. Solutions to Exercises 1. SOLUTIONS Solutions to Exercises Note on significant figures: If the final answer to a solution needs to be rounded off, it is given first with one nonsignificant figure, and the last significant figure

More information

Calculations involving concentrations, stoichiometry

Calculations involving concentrations, stoichiometry Calculations involving concentrations, stoichiometry MUDr. Jan Pláteník, PhD Mole Unit of amount of substance the amount of substance containing as many particles (atoms, ions, molecules, etc.) as present

More information

Chapter 13: Solutions

Chapter 13: Solutions Ch 13 Page 1 Chapter 13: Solutions SOLUTION: A homogeneousmixture of two or more substances Composition can vary from one sample to another Appears to be one substance, though really contains multiple

More information

What is a Colligative Property?

What is a Colligative Property? What is a Colligative Property? 0 Defined as bulk liquid properties that change when you add a solute to make a solution 0 Colligative properties are based on how much solute is added but NOT the identity

More information

Simple Mixtures. Atkins 7th: Sections ; Atkins 8th: The Properties of Solutions. Liquid Mixtures

Simple Mixtures. Atkins 7th: Sections ; Atkins 8th: The Properties of Solutions. Liquid Mixtures The Properties of Solutions Simple Mixtures Atkins 7th: Sections 7.4-7.5; Atkins 8th: 5.4-5.5 Liquid Mixtures Colligative Properties Boiling point elevation Freezing point depression Solubility Osmosis

More information

Chapter 14 Solutes and Solvents

Chapter 14 Solutes and Solvents Chapter 14 Solutes and Solvents A solution is a homogeneous mixture of two or more substances. The relative abundance of the substances in a solution determines which is the solute and which is the solvent.

More information

Molecular Formula: Example

Molecular Formula: Example Molecular Formula: Example A compound is found to contain 85.63% C and 14.37% H by mass. In another experiment its molar mass is found to be 56.1 g/mol. What is its molecular formula? 1 CHAPTER 3 Chemical

More information

Colligative Properties

Colligative Properties CH302 LaBrake and Vanden Bout Colligative Properties PROBLEM #1: Give the molecular formula, the van t hoff factor for the following Ionic Compounds as well as guess the solubility of the compounds. If

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution:

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: 1. What are the different types of Intermolecular forces? Define the following terms:

More information

Honors Unit 10 Notes Solutions

Honors Unit 10 Notes Solutions Name: Honors Unit 10 Notes Solutions [Chapter 10] Objectives: 1. Students will be able to calculate solution concentration using molarity, molality, and mass percent. 2. Students will be able to interpret

More information

Observe and measure the effect of a solute on the freezing point of a solvent. Determine the molar mass of a nonvolatile, nonelectrolyte solute

Observe and measure the effect of a solute on the freezing point of a solvent. Determine the molar mass of a nonvolatile, nonelectrolyte solute Chapter 10 Experiment: Molar Mass of a Solid OBJECTIVES: Observe and measure the effect of a solute on the freezing point of a solvent. Determine the molar mass of a nonvolatile, nonelectrolyte solute

More information

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance.

To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance. Colligative Properties of Solutions: A Study of Boiling Point Elevation Amina El-Ashmawy, Collin County Community College (With contributions by Timm Pschigoda, St. Joseph High School, St. Joseph, MI)

More information

Chapter 13 part 4: Colligative Properties

Chapter 13 part 4: Colligative Properties Chapter 13 part 4: Colligative Properties Read: BLB 13.5-13.6 HW: BLB 13:9, 58, 61, 67, 69, 75 Packet 13:13-18 Know:, Colloids!vapor pressure lowering Raoult s Law: P A = X A P A!boiling point elevation

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent. TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

David A. Katz Department of Chemistry Pima Community College

David A. Katz Department of Chemistry Pima Community College Solutions David A. Katz Department of Chemistry Pima Community College A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent t is usually regarded as the SOLVENT

More information

EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE

EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE Experiment 34 EVALUATION OF DEICER AND ANTIFREEZE PERFORMANCE FV 1/11 MATERIALS: PURPOSE: beakers: 400 ml; 150 ml; 100 ml (3); 50 ml (2); 10 ml and 25 ml graduated cylinders; thermometer; 25 x 200 mm test

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

1. solid, vapor, critical point correct. 2. solid, liquid, critical point. 3. liquid, vapor, critical point. 4. solid, liquid, triple point

1. solid, vapor, critical point correct. 2. solid, liquid, critical point. 3. liquid, vapor, critical point. 4. solid, liquid, triple point mcdonald (pam78654) HW 7B: Equilibria laude (89560) 1 This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0

More information

Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction. Molarity, M =

Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction. Molarity, M = Four common concentration units 1. Molarity 2. Weight Percent (Wt %), ppm, ppb 3. Molality 4. Mole Fraction Molarity, M tells you how many s of solute are present in every liter of solution (solute-to-solution)

More information

SOLUBILITY CURVES WORKSHEET

SOLUBILITY CURVES WORKSHEET SOLUBILITY CURVES WORKSHEET 1.) Which compound is least soluble at 20 o C? At 80 o C? 2.) Which substance is the most soluble at 10 o C? At 50 o C? At 90 o C? 3.) The solubility of which substance is most

More information

Solute and Solvent 7.1. Solutions. Examples of Solutions. Nature of Solutes in Solutions. Learning Check. Solution. Solutions

Solute and Solvent 7.1. Solutions. Examples of Solutions. Nature of Solutes in Solutions. Learning Check. Solution. Solutions Chapter 7 s 7.1 s Solute and Solvent s are homogeneous mixtures of two or more substances. consist of a solvent and one or more solutes. 1 2 Nature of Solutes in s Examples of s Solutes spread evenly throughout

More information

Lecture 6: Lec4a Chemical Reactions in solutions

Lecture 6: Lec4a Chemical Reactions in solutions Lecture 6: Lec4a Chemical Reactions in solutions Zumdahl 6 th Ed, Chapter 4 Sections 1-6. 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Solutions. How Solutions Form

Solutions. How Solutions Form Solutions How Solutions Form Solvent substance doing the dissolving, present in greater amount Definitions Solution - homogeneous mixture Solute substance being dissolved Definitions Solute - KMnO 4 Solvent

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Chapter 14 Solutions and Their Behavior

Chapter 14 Solutions and Their Behavior PRACTICING SKILLS Concentration Chapter 14 1. For 2.56 g of succinic acid in 500. ml of water: The molality of the solution: Molality = #mole solute/kg solvent: With a density of water of 1.00 g/cm3, 500.

More information

Molecular Mass by Freezing Point Depression

Molecular Mass by Freezing Point Depression Molecular Mass by Freezing Point Depression Kyle Miller November 28, 2006 1 Purpose The purpose of this experiment is to determine the molecular mass of organic compounds which are dissolved in a solvent

More information

A) HCl C) 52 g KCl in 100 g water at 80ºC A) temperature of the solution increases B) supersaturated D) low temperature and high pressure D) KClO3

A) HCl C) 52 g KCl in 100 g water at 80ºC A) temperature of the solution increases B) supersaturated D) low temperature and high pressure D) KClO3 1. Which compound becomes less soluble in water as the temperature of the solution is increased? A) HCl B) 2. The solubility of O3(s) in water increases as the A) temperature of the solution increases

More information

Solutions. A Chem1 Reference Text Stephen K. Lower Simon Fraser University. 1 Solutions 2

Solutions. A Chem1 Reference Text Stephen K. Lower Simon Fraser University. 1 Solutions 2 Solutions A Chem1 Reference Text Stephen K. Lower Simon Fraser University Contents 1 Solutions 2 2 Types of solutions 2 2.1 Gaseous solutions.................................... 4 2.2 Solutions of gases

More information