Question Details SEssCalc [ ] Question Details SEssCalc [ ] Question Details SEssCalc

Size: px
Start display at page:

Download "Question Details SEssCalc [ ] Question Details SEssCalc [ ] Question Details SEssCalc"

Transcription

1 REVIEW FOR THE EXAM 1 MATH 203 F 2014 ( ) Question Question Details SEssCalc [ ] Write the equation of the sphere in standard form. x 2 + y 2 + z 2 + 4x 2y 6z = 2 Find its center and radius. center radius 2. Question Details SEssCalc [ ] Write the equation of the sphere in standard form. 2x 2 + 2y 2 + 2z 2 = 4x 20z + 1 Find its center and radius. center radius 3. Question Details SEssCalc [ ] Describe the surface in 3 represented by the equation x + y = 8. Page 1 of 19

2 This is the set {(x, 8 x, z) x, z } which is a vertical plane that intersects the xyplane in the line y = 8 x, z = 0. This is the set {(x, 8 x, z) x, z } which is a vertical plane that intersects the xzplane in the line y = 8 x, z = 0. This is the set {(x, 8 x, z) x, z } which is a horizontal plane that intersects the xyplane in the line y = 8 x, z = 0. This is the set {(x, 8 x, z) x, z } which is a horizontal plane that intersects the xzplane in the line y = 8 x, z = 0. This is the set {(x, y, 8 x y) x, y } which is a vertical plane that intersects the xyplane in the line y = 8 x, z = 0. Sketch the surface. Page 2 of 19

3 The equation x + y = 8 represents the set of all points in 3 whose x and ycoordinates have a sum of 8, or equivalently where y = 8 x. This is the set {(x, 8 x, z) x, z } which is a vertical plane that intersects the xyplane in the line y = 8 x, z = Question Details SEssCalc [ ] Consider the point. (1, 4, 6) What is the projection of the point on the xyplane? What is the projection of the point on the yzplane? Page 3 of 19

4 What is the projection of the point on the xzplane? Draw a rectangular box with the origin and (1, 4, 6) as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Find the length of the diagonal of the box. Page 4 of 19

5 5. Question Details SEssCalc [ ] Describe in words the region of 3 represented by the inequality. 0 z 5 The inequality 0 z 5 represents all points Select on or between the Select horizontal planes z = 0 (the? xy plane) and z = 5. The inequality 0 z 5 represents all points on or between the horizontal planes z = 0 (the xyplane) and z = Question Details SEssCalc [ ] Find a + b, 2a + 3b, a, and a b. a = 4, 3, b = 4, 3 a + b = 2a + 3b = a = a b = Page 5 of 19

6 7. Question Details SEssCalc [ ] Find a + b, 2a + 3b, a, and a b. a = 2i 4j + 3k, b = 2j k a + b = 2a + 3b = a = a b = 8. Question Details SEssCalc [ ] Find a vector that has the same direction as 2, 6, 2 but has length 6. 2, 6, 2 = ( 2) = 44 = 2 11, so a unit vector in the direction of 2, 6, 2 is u = 2, 6, A vector in the same direction but with length 6 is 6u = 6 2, 6, 2 = 2, 6, Question Details SEssCalc XP. [ ] Find a unit vector that has the same direction as the given vector. 4, 8, 8 4, 8, 8 = ( 4) = = 12, so u = 1 4, 8, 8 = 1 144, 2, Page 6 of 19

7 10. Question Details SEssCalc [ ] If a = 5, 0, 1, find a vector b such that comp a b = 2. b = 11. Question Details SEssCalc [ ] Find the scalar and vector projections of b onto a. a = i + j + k, b = i j + k comp a b = proj a b = 12. Question Details SEssCalc [ ] Find the acute angle between the lines. Round your answer to the nearest degree. 3x y = 5, 2x + y = 8 45 The line 3x y = 5 y = 3x 5 has slope 3, so a vector parallel to the line is a = 1, 3. The line 2x + y = 8 y = 2x + 8 has slope 2, so a vector parallel to the line is b = 1, 2. The angle between the lines is the same as the angle θ between the vectors. Here we have b = ( 2) 2 = 5, so cos θ = a b 5 5 = =. Thus θ = cos 135, and the acute a b angle between the lines is = 45. a b = (1)(1) + (3)( 2) = 5, a = =, and 13. Question Details SEssCalc [ ] Find a unit vector that is orthogonal to both i + j and i + k. Page 7 of 19

8 14. Question Details SEssCalc [ ] Use vectors to decide whether the triangle with vertices Yes, it is rightangled. No, it is not rightangled. P(0, 4, 3), Q(1, 1, 5), and R(5, 3, 6) is rightangled. QP = 1, 3, 2, QR = 4, 2, 1, and QP QR = = 0. Thus QP and QR are orthogonal, so the angle of the triangle at vertex Q is a right angle. 15. Question Details SEssCalc [ ] Determine whether the given vectors are orthogonal, parallel, or neither. (a) u = 3, 3, 6, orthogonal parallel neither v = 4, 4, 8 (b) u = i j + 3k, orthogonal parallel neither v = 3i j + k (c) u = a, b, c, v = b, a, 0 parallel neither orthogonal Page 8 of 19

9 16. Question Details SEssCalc [ ] If u is a unit vector, find u v and u w. (Assume v and w are also unit vectors.) u v = 1/2 u w = 1/2 u, v, and w are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60 and u v = u v cos 60 = (1)(1) 1 = 1. If w is moved so it has the same initial point as u, we can see that the angle 2 2 between them is 120 and we have u w = u w cos 120 = (1)(1) 1 = Page 9 of 19

10 17. Question Details SEssCalc [ ] Find the area of the parallelogram with vertices 16 A( 3, 5), B( 1, 8), C(3, 6), and D(1, 3). By plotting the vertices, we can see that the parallelogram is determined by the vectors AB = 2, 3 and AD = 4, 2. We know that the area of the parallelogram determined by two vectors is equal to the length of the cross product of these vectors. In order to compute the cross product, we consider the vector AB as the threedimensional vector 2, 3, 0 (and similarly for AD), and then the area of parallelogram ABCD is i j k AB AD = = (0)i (0)j + ( 4 12)k = 16k = Page 10 of 19

11 18. Question Details SEssCalc [ ] Consider the points below. P(1, 0, 1), Q( 2, 1, 3), R(4, 2, 5) (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R. (b) Find the area of the triangle PQR. (a) Because the plane through P, Q, and R contains the vectors PQ and PR, a vector orthogonal to both of these vectors (such as their cross product) is also orthogonal to the plane. Here PQ = 3, 1, 2 and PR = 3, 2, 4, so PQ PR = (1)(4) (2)(2), (3)(2) ( 3)(4), ( 3)(2) (3)(1) = 0, 18, 9 Therefore, 0, 18, 9 or any nonzero scalar multiple thereof, such as 0, 18, 9 is orthogonal to the plane through P, Q, and R. (b) Note that the area of the triangle determined by P, Q, and R is equal to half of the area of the parallelogram determined by the three points. From part (a), the area of the parallelogram is PQ PR = 0, 18, 9 = = 405 = 9 5, so the area of the triangle is = Question Details SEssCalc [ ] Consider the points below. P( 1, 2, 1), Q(0, 6, 3), R(5, 3, 1) (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R. (b) Find the area of the triangle PQR. Page 11 of 19

12 20. Question Details SEssCalc [ ] Find the volume of the parallelepiped determined by the vectors a, b, and c. a = 1, 5, 4, b = 1, 1, 5, c = 3, 1, 3 72 cubic units Recalling that the volume of the parallelepiped determined by the vectors a, b, and c is the magnitude of their scalar triple product, V = a (b c), one obtains a (b c) = = = 1 (3 5) 5 ( 3 15) + 4 ( 1 3) = Thus the volume of the parallelepiped is 72 cubic units. 21. Question Details SEssCalc [ ] Use the scalar triple product to determine if the vectors Yes, they are coplanar. No, they are not coplanar. u = i + 5j 2k, v = 4i j, and w = 8i + 14j 6k are coplanar. 22. Question Details SEssCalc [ ] Use the scalar triple product to determine whether the points same plane. Yes, they lie in the same plane. No, they do not lie in the same plane. A(1, 2, 3), B(4, 3, 7), C(6, 1, 2), and D(3, 6, 2) lie in the Page 12 of 19

13 23. Question Details SEssCalc MI. [ ] A bicycle pedal is pushed by a foot with a 60N force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of the torque about P. (Round your answer to one decimal place.) 10.6 N m 24. Question Details SEssCalc [ ] Find the magnitude of the torque about P if an F = 76lb force is applied as shown. (Round your answer to the nearest whole number.) 415 ftlb Page 13 of 19

14 25. Question Details SEssCalc [ ] (a) Find parametric equations for the line through (2, 3, 4) that is perpendicular to the plane x y + 2z = 6. (Use the parameter t.) (x(t), y(t), z(t)) = (b) In what points does this line intersect the coordinate planes? xyplane yzplane xzplane 26. Question Details SEssCalc [ ] Find a vector equation for the line segment from (3, 1, 4) to (7, 5, 3). (Use the parameter t.) r(t) = Page 14 of 19

15 27. Question Details SEssCalc [ ] Determine whether the lines L 1 and L 2 are parallel, skew, or intersecting. L 1 : x = 9 + 6t, y = 12 3t, z = 3 + 9t L 2 : x = 2 + 8s, y = 6 4s, z = s parallel skew intersecting If they intersect, find the point of intersection. (If an answer does not exist, enter DNE.) Since the direction vectors 6, 3, 9 and 8, 4, 10 are not scalar multiples of each other, the lines aren't parallel. For the lines to intersect, we must be able to find one value of t and one value of s that produce the same point from the respective parametric equations. Thus we need to satisfy the following three equations: 9 + 6t = 2 + 8s, 12 3t = 6 4s, 3 + 9t = s. Solving the last two equations we get t = 20, s = and checking, we see that these values don't satisfy the first equation. Thus the lines aren't parallel and don't intersect, so they must be skew lines. 28. Question Details SEssCalc [ ] Find an equation of the plane. The plane through the point (7, 1, 2) and parallel to the plane 9x y z = Question Details SEssCalc [ ] Find an equation of the plane. The plane through the points (0, 9, 9), (9, 0, 9), and (9, 9, 0) Page 15 of 19

16 30. Question Details SEssCalc [ ] Find an equation of the plane. The plane through the origin and the points (2, 2, 7) and (9, 2, 4) 31. Question Details SEssCalc [ ] Find an equation of the plane. The plane that passes through (9, 0, 2) and contains the line x = 7 2t, y = 1 + 3t, z = 3 + 2t 32. Question Details SEssCalc [ ] Find an equation of the plane. The plane that passes through the point x + y z = 5 and 4x y + 5z = 2 ( 2, 1, 2) and contains the line of intersection of the planes 33. Question Details SEssCalc [ ] Find an equation of the plane. The plane that passes through the line of intersection of the planes the plane x + y 4z = 3 x z = 2 and y + 4z = 1 and is perpendicular to Page 16 of 19

17 34. Question Details SEssCalc [ ] Find the point at which the line x = 5 t, y = 4 + t, z = 4t intersects the plane x y + 5z = Question Details SEssCalc [ ] Determine whether the planes are parallel, perpendicular, or neither. 9x + 9y + 9z = 1, 9x 9y + 9z = 1 parallel perpendicular neither If neither, find the angle between them. (Round your answer to one decimal place. If the planes are parallel or perpendicular, enter PARALLEL or PERPENDICULAR, respectively.) Normal vector for the planes are n 1 = 9, 9, 9 and n 2 = 9, 9, 9. The normals are not parallel, so neither are the planes. Furthermore, n 1 n 2 = = 81 0, so the planes aren't perpendicular. The angle between them is given by n cos θ = 1 n 2 81 = = 81 = 1 θ = cos n 1 n Question Details SEssCalc [ ] (a) Find parametric equations for the line of intersection of the planes x + y + z = 2 and x + 3y + 3z = 2. (x(t), y(t), z(t)) = (b) Find the angle between these planes. (Round your answer to one decimal place.) 22.0 Page 17 of 19

18 37. Question Details SEssCalc [ ] Find the distance from the point to the given plane. (1, 3, 8), 3x + 2y + 6z = 5 ax 1 + by 1 + cz 1 + d 3(1) + 2( 3) + 6(8) 5 40 By the equation D =, the distance is D = = = 40. a 2 + b 2 + c Question Details SEssCalc [ ] Find the distance from the point to the given plane. ( 9, 6, 5), x 2y 4z = 8 ax 1 + by 1 + cz 1 + d 1( 9) 2(6) 4(5) By the equation D =, the distance is D = = =. a 2 + b 2 + c ( 2) 2 + ( 4) Question Details SEssCalc [ ] Find the distance between the given parallel planes. 5x 5y + z = 20, 10x 10y + 2z = 2 Page 18 of 19

19 40. Question Details SEssCalc [ ] (a) Find the point at which the given lines intersect. r = 1, 2, 0 + t 2, 2, 2 r = 3, 0, 2 + s 2, 2, 0 (b) Find an equation of the plane that contains these lines. Assignment Details Name (AID): REVIEW FOR THE EXAM 1 MATH 203 F 2014 ( ) Submissions Allowed: 5 Category: Homework Code: Locked: No Author: Islam, Mohammad ( shafiqusa@gmail.com ) Last Saved: Sep 17, :56 AM EDT Permission: Protected Randomization: Person Which graded: Last Feedback Settings Before due date Question Score Assignment Score Publish Essay Scores Question Part Score Mark Add Practice Button Help/Hints Response Save Work After due date Question Score Assignment Score Publish Essay Scores Key Question Part Score Solution Mark Add Practice Button Help/Hints Response Page 19 of 19

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v 12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

More information

The Dot and Cross Products

The Dot and Cross Products The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

More information

MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev

MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev MATH 275: Calculus III Lecture Notes by Angel V. Kumchev Contents Preface.............................................. iii Lecture 1. Three-Dimensional Coordinate Systems..................... 1 Lecture

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections 8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50 Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

More information

CHAPTER FIVE. 5. Equations of Lines in R 3

CHAPTER FIVE. 5. Equations of Lines in R 3 118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

More information

Problem set on Cross Product

Problem set on Cross Product 1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular

More information

LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Section 2.4: Equations of Lines and Planes

Section 2.4: Equations of Lines and Planes Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Additional Topics in Math

Additional Topics in Math Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L. Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)

More information

Equations of Lines and Planes

Equations of Lines and Planes Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

More information

Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes

Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes

More information

AP Calculus AB 2010 Free-Response Questions Form B

AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session. Geometry, 17 March 2012 CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

BALTIC OLYMPIAD IN INFORMATICS Stockholm, April 18-22, 2009 Page 1 of?? ENG rectangle. Rectangle

BALTIC OLYMPIAD IN INFORMATICS Stockholm, April 18-22, 2009 Page 1 of?? ENG rectangle. Rectangle Page 1 of?? ENG rectangle Rectangle Spoiler Solution of SQUARE For start, let s solve a similar looking easier task: find the area of the largest square. All we have to do is pick two points A and B and

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

More information

Chapter 7. Cartesian Vectors. By the end of this chapter, you will

Chapter 7. Cartesian Vectors. By the end of this chapter, you will Chapter 7 Cartesian Vectors Simple vector quantities can be expressed geometrically. However, as the applications become more complex, or involve a third dimension, you will need to be able to express

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

More information

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1. SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Parametric Equations and the Parabola (Extension 1)

Parametric Equations and the Parabola (Extension 1) Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures

Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures SHAPE NAMES Three-Dimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere Two-Dimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]

More information

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

More information

The Vector or Cross Product

The Vector or Cross Product The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

More information

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

More information

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a. VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position

More information

Cumulative Test. 161 Holt Geometry. Name Date Class

Cumulative Test. 161 Holt Geometry. Name Date Class Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2

More information

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4 of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11. SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Geometry of 2D Shapes

Geometry of 2D Shapes Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

More information

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question. Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important These students are setting up a tent. How do the students know how to set up the tent? How is the shape of the tent created? How could students find the amount of material needed to make the tent? Why

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse

Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse Pythagoras Theorem Page I can... 1... identify and label right-angled triangles 2... eplain Pythagoras Theorem 4... calculate the hypotenuse 5... calculate a shorter side 6... determine whether a triangle

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper

Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items. - The rubrics show sample student responses. Other valid methods for solving

More information

Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

More information

1. Vectors and Matrices

1. Vectors and Matrices E. 8.02 Exercises. Vectors and Matrices A. Vectors Definition. A direction is just a unit vector. The direction of A is defined by dir A = A, (A 0); A it is the unit vector lying along A and pointed like

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information