# Pythagoras Theorem. Page I can identify and label right-angled triangles explain Pythagoras Theorem calculate the hypotenuse

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse"

## Transcription

1 Pythagoras Theorem Page I can identify and label right-angled triangles 2... eplain Pythagoras Theorem 4... calculate the hypotenuse 5... calculate a shorter side 6... determine whether a triangle has a right angle 7... leave answers as surds where appropriate 8... use Pythagoras Theorem to find areas and perimeters solve worded problems use Pythagoras in 3D situations.

2 Notes Working with 3D shapes The vertical height of a cone is 65cm and its slant height is 70cm. Find its radius, and thus its volume and surface area. V Where: r 3 2 h 2 SA rl r V is volume SA is surface area r is radius h is perpendicular height l is slant height 13

3 Working with 3D shapes The vertical height of a cone is 15m and its radius is 4m. Find its slant height. Right-angled triangles A right-angled triangle is any triangle where one angle is 90. Since the sum of angles in a triangle are 180, the other two angles must be acute (less than 90 ). These two acute angles will be complementary (sum to 90 ). The small square in the bottom-left angle tells us that it is 90, so this is a right-angled triangle. The side opposite the right angle is called the hypotenuse, and is always the longest side. A bo measures 2m 4m 6m. Find the length of the longest stick that will fit inside the bo. Find the missing angle in the following triangles and label the longest side h:

4 2 Pythagoras Theorem Pythagoras Theorem shows us how to calculate one side of a right-angled triangle when we know the other two. It says that: In any right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Let s break that down with an eample: The hypotenuse is 13cm. The other two sides are 5cm and 12cm. 5cm The square of the = the sum of the squares hypotenuse of the other two sides 13 2 = Use your calculator to check this is true. For any triangle: a b 12cm h 13cm Working with 3D shapes When given a problem involving a 3D shape, we need to first identify where the right-angled triangle lies. It always helps to draw a diagram. Eample The slant height of a cone is and the radius of its base is 3cm. Find its vertical height. Eample b 2 = h 2 - a 2 2 = = 64-9 = 55 = 55 = 7.42cm (2 d.p.) A cuboid measures 4cm 3cm 12cm. Find the length of its diagonal. y 2 = = = 25 y = 25 = 5cm 2 = = = 169 = 169 = 13cm 3cm y 4cm 12cm 3cm 11

5 Worded problems Drawing a sketch will help you to solve the following: A 4m long ladder is leaning against a wall. The ladder reaches 2.5m up the wall. How far from the base of the wall is the bottom of the ladder? Pythagoras Theorem On this triangle, each side has been used to draw a square. Find the area of the two smaller squares and add them together. Now find the area of the largest square. What do you notice? A 10m long piece of cloth is used to create a tent by draping it in half over a length of string. The tent needs to be 1.7m tall so we can stand up in it. How wide will the base of the tent be? A person is trapped in a building, 9m up. The closest the ladder can be set to the base of the wall is 3m. How long does the ladder have to be to reach the person? The history behind the Maths! Pythagoras was a Greek philosopher and mathematician who lived about 500BC. The theorem was known long before Pythagoras used it, and the ancient Babylonians and Chinese used it to help them with constructions. 10 3

6 Calculating the hypotenuse Perimeter and area Calculate the unknown side in each of these triangles: Eample 2 = = = 289 = 289 = 17cm 15cm 1.8m 3.2m 7cm 24cm 89km 39km 7cm 9cm 1.7m 13cm 9cm 1.9m 4 9

7 The perimeter of a triangle is the distance all the way round. We need to know the lengths of all three sides. b h The area of a triangle is given by 2 We need to know the lengths of the perpendicular sides (the two shorter sides). Find the missing side then the perimeter and area of each of these triangles: Eample 2 = = = 313 = 313 cm Perimeter and area P = A = b h = 42.69cm (2 d.p.) 2 = = cm 13cm Calculating a shorter side We can rearrange Pythagoras Theorem to help us find either of the two shorter sides: Subtract a 2 from each side to get b 2 = h 2 - a 2 Calculate the unknown side in each of these triangles: Eample 13cm b 2 = h 2 - a 2 2 = = = 225 = 225 = 15cm 21cm 17cm 20cm 1 29cm 8 5

8 Is it a right-angled triangle? We may have a triangle where we are not sure whether it has a right angle. We can find out by checking whether Pythagoras Theorem is true for that triangle. If it is true, the triangle must be right-angled! Work out which of these triangles are right-angled. Mark any right angles that you find. Eample 9 2 = = = 73 3cm This is not a right-angled triangle. 6cm 9cm Using surds Sometimes you will be asked to leave your answer as a surd. A surd is a root that does not have an integer (whole number) result, so it is left in square root form rather than as a decimal. Find the missing lengths, leaving your answers as surds: Eample 2cm b 2 = h 2 - a 2 30cm 15cm 2 = = 675 = 675 = 15 3 cm 6cm 10cm 12cm 6cm 10cm 9cm 15cm 5cm 6 7

### Pythagoras. 1 of 60. (Pythagoras)

Pythagoras 1 of 60 http://www.youtube.com/watch?v=8fjlxrudhg4 (Pythagoras) 2 of 60 The history of Pythagoras Theorem The theorem is named after the Greek mathematician and philosopher, Pythagoras. He lived

### 3 Pythagoras' Theorem

3 Pythagoras' Theorem 3.1 Pythagoras' Theorem Pythagoras' Theorem relates the length of the hypotenuse of a right-angled triangle to the lengths of the other two sides. Hypotenuse The hypotenuse is always

### 1 Math 116 Supplemental Textbook (Pythagorean Theorem)

1 Math 116 Supplemental Textbook (Pythagorean Theorem) 1.1 Pythagorean Theorem 1.1.1 Right Triangles Before we begin to study the Pythagorean Theorem, let s discuss some facts about right triangles. The

### CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area 2. SURFACE AREAS OF SOLIDS If you need to know more about plane shapes, areas, perimeters, solids or volumes of solids, please refer to CONNECT: Areas, Perimeters 1. AREAS

### Square Roots and the Pythagorean Theorem

4.8 Square Roots and the Pythagorean Theorem 4.8 OBJECTIVES 1. Find the square root of a perfect square 2. Use the Pythagorean theorem to find the length of a missing side of a right triangle 3. Approximate

### Instructions for SA Completion

Instructions for SA Completion 1- Take notes on these Pythagorean Theorem Course Materials then do and check the associated practice questions for an explanation on how to do the Pythagorean Theorem Substantive

### MAT 080-Algebra II Applications of Quadratic Equations

MAT 080-Algebra II Applications of Quadratic Equations Objectives a Applications involving rectangles b Applications involving right triangles a Applications involving rectangles One of the common applications

### CHAPTER 38 INTRODUCTION TO TRIGONOMETRY

CHAPTER 38 INTRODUCTION TO TRIGONOMETRY EXERCISE 58 Page 47. Find the length of side x. By Pythagoras s theorem, 4 = x + 40 from which, x = 4 40 and x = 4 40 = 9 cm. Find the length of side x. By Pythagoras

### Pythagorean Theorem: 9. x 2 2

Geometry Chapter 8 - Right Triangles.7 Notes on Right s Given: any 3 sides of a Prove: the is acute, obtuse, or right (hint: use the converse of Pythagorean Theorem) If the (longest side) 2 > (side) 2

### The Triangle and its Properties

THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

### 15 Trigonometry Pythagoras' Theorem. Example 1. Solution. Example 2

15 Trigonometry 15.1 Pythagoras' Theorem MEP Y9 Practice Book B Pythagoras' Theorem describes the important relationship between the lengths of the sides of a right-angled triangle. Pythagoras' Theorem

### Chapter 8. Right Triangles

Chapter 8 Right Triangles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the

### Hiker. A hiker sets off at 10am and walks at a steady speed for 2 hours due north, then turns and walks for a further 5 hours due west.

Hiker A hiker sets off at 10am and walks at a steady speed for hours due north, then turns and walks for a further 5 hours due west. If he continues at the same speed, what s the earliest time he could

### Grade 6 Math Circles March 24/25, 2015 Pythagorean Theorem Solutions

Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 4/5, 015 Pythagorean Theorem Solutions Triangles: They re Alright When They

### 6) Which of the following is closest to the length of the diagonal of a square that has sides that are 60 feet long?

1) The top of an 18-foot ladder touches the side of a building 14 feet above the ground. Approximately how far from the base of the building should the bottom of the ladder be placed? 4.0 feet 8.0 feet

### Unit 9: Areas and volumes of geometrical 3D shapes

Unit 9: Areas and volumes of geometrical 3D shapes In this lesson you will learn about: Pythagoras theorem Areas and volumes of prisms, cubes, pyramids, cylinders, cones ans spheres. Solving problems related

### a c Pythagorean Theorem: a 2 + b 2 = c 2

Section 2.1: The Pythagorean Theorem The Pythagorean Theorem is a formula that gives a relationship between the sides of a right triangle The Pythagorean Theorem only applies to RIGHT triangles. A RIGHT

### 9.6 The Pythagorean Theorem

Section 9.6 The Pythagorean Theorem 959 9.6 The Pythagorean Theorem Pythagoras was a Greek mathematician and philosopher, born on the island of Samos (ca. 582 BC). He founded a number of schools, one in

### The Pythagorean Packet Everything Pythagorean Theorem

Name Date The Pythagorean Packet Everything Pythagorean Theorem Directions: Fill in each blank for the right triangle by using the words in the Vocab Bo. A Right Triangle These sides are called the of

### The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself.

Exponents An integer is multiplied by itself one or more times. The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself. Example:

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM a 2 + b 2 = c 2 CFE 3285V OPEN CAPTIONED ALLIED VIDEO CORPORTATION 1993 Grade Levels: 9-12 14 minutes DESCRIPTION Reviews the definition of a right triangle before a brief history

### Example 2. If the area of this square is 144 cm 2, find the length of one of its sides.

THEOREM OF PYTHAGORAS Introduction: Squares and Square Roots Students shold be shon both the 2 and Ö button on calculator. This eercise is simply based on revision of: (i) the use of a calculator to square

### Time needed: each worksheet will take approximately 1 hour to complete

Pythagoras Theorem Teacher s Notes Subject: Mathematics Topic: Pythagoras theorem Level: Pre-intermediate, intermediate Time needed: each worksheet will take approximately 1 hour to complete Learning objectives:

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Applications of the Pythagorean Theorem

9.5 Applications of the Pythagorean Theorem 9.5 OBJECTIVE 1. Apply the Pythagorean theorem in solving problems Perhaps the most famous theorem in all of mathematics is the Pythagorean theorem. The theorem

### Name Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles

Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use

### Pythagorean Theorem, Distance and Midpoints Chapter Questions. 3. What types of lines do we need to use the distance and midpoint formulas for?

Pythagorean Theorem, Distance and Midpoints Chapter Questions 1. How is the formula for the Pythagorean Theorem derived? 2. What type of triangle uses the Pythagorean Theorem? 3. What types of lines do

### Lesson 19. Triangle Properties. Objectives

Student Name: Date: Contact Person Name: Phone Number: Lesson 19 Triangle Properties Objectives Understand the definition of a triangle Distinguish between different types of triangles Use the Pythagorean

### Pythagorean Theorem: Proof and Applications

Pythagorean Theorem: Proof and Applications Kamel Al-Khaled & Ameen Alawneh Department of Mathematics and Statistics, Jordan University of Science and Technology IRBID 22110, JORDAN E-mail: kamel@just.edu.jo,

### Pythagorean Theorem & Trigonometric Ratios

Algebra 2012-2013 Pythagorean Theorem & Trigonometric Ratios Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the length of a side a right triangle using the Pythagorean Theorem Pgs: 1-4 HW:

### 4) The length of one diagonal of a rhombus is 12 cm. The measure of the angle opposite that diagonal is 60º. What is the perimeter of the rhombus?

Name Date Period MM2G1. Students will identify and use special right triangles. MM2G1a. Determine the lengths of sides of 30-60 -90 triangles. MM2G1b. Determine the lengths of sides of 45-45 -90 triangles.

### Pythagorean Theorem. Inquiry Based Unit Plan

Pythagorean Theorem Inquiry Based Unit Plan By: Renee Carey Grade: 8 Time: 5 days Tools: Geoboards, Calculators, Computers (Geometer s Sketchpad), Overhead projector, Pythagorean squares and triangle manipulatives,

### 1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional

### B a. This means that if the measures of two of the sides of a right triangle are known, the measure of the third side can be found.

The Pythagorean Theorem One special kind of triangle is a right triangle a triangle with one interior angle of 90º. B A Note: In a polygon (like a triangle), the vertices (and corresponding angles) are

### PYTHAGORAS S THEOREM AND TWO CONSEQUENCES

UNIT FIVE PYTHAGORAS S THEOREM AND TWO CONSEQUENCES Activity: Squares on Square Lattices 86 Pythagoras s Theorem 91 Some Consequences Path from a point to a line 101 Shortest Path 102 Triangle Inequality

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Trigonometry I. MathsStart. Topic 5

MathsStart (NOTE Feb 0: This is the old version of MathsStart. New books will be created during 0 and 04) Topic 5 Trigonometry I h 0 45 50 m x MATHS LEARNING CENTRE Level, Hub Central, North Terrace Campus

### Teaching & Learning Plans. Using Pythagoras Theorem to establish the Distance Formula (Draft) Junior Certificate Syllabus

Teaching & Learning Plans Using Pythagoras Theorem to establish the Distance Formula (Draft) Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson,

### Types of Angles acute right obtuse straight Types of Triangles acute right obtuse hypotenuse legs

MTH 065 Class Notes Lecture 18 (4.5 and 4.6) Lesson 4.5: Triangles and the Pythagorean Theorem Types of Triangles Triangles can be classified either by their sides or by their angles. Types of Angles An

### Unit 6: Pythagorean Theorem

Approximate Time Frame: 2 weeks Connections to Previous Learning: In Unit 1, students learned to evaluate expressions and equations with exponents and solved equations of the form worked with triangles

### In-Class Game. The Pythagorean Theorem Game (Lesson 3-4)

TEACHING SUGGESTIONS The Pythagorean Theorem Game (Lesson 3-4) Separate the class into groups of four. The Pythagorean Theorem Game master, p. 8 The Pythagorean Theorem Game Board master, p. 9 The Pythagorean

### Law of Cosines. If the included angle is a right angle then the Law of Cosines is the same as the Pythagorean Theorem.

Law of Cosines In the previous section, we learned how the Law of Sines could be used to solve oblique triangles in three different situations () where a side and two angles (SAA) were known, () where

### PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

### Geometry: Classifying, Identifying, and Constructing Triangles

Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral

### All about those Triangles and Circles

All about those Triangles and Circles 1BUTYPES OF TRIANGLES Triangle - A three-sided polygon. The sum of the angles of a triangle is 180 degrees. Isosceles Triangle - A triangle having two sides of equal

### Make sure you get the grade you deserve!

How to Throw Away Marks in Maths GCSE One tragedy that only people who have marked eternal eamination papers such as GCSE will have any real idea about is the number of marks that candidates just throw

### solve problems in right-angled triangles using the Theorem of Pythagoras

THE THEOREM OF PYTHAGORAS By the end of this set of eercises, you should be able to (a) solve problems in right-angled triangles using the Theorem of Pythagoras Mathematics Support Materials: Mathematics

### Right Triangle Trigonometry Test Review

Class: Date: Right Triangle Trigonometry Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the length of the missing side. Leave your answer

### 1.6 Powers of 10 and standard form Write a number in standard form. Calculate with numbers in standard form.

Unit/section title 1 Number Unit objectives (Edexcel Scheme of Work Unit 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds) 1.1 Number

### Trigonometry. Week 1 Right Triangle Trigonometry

Trigonometry Introduction Trigonometry is the study of triangle measurement, but it has expanded far beyond that. It is not an independent subject of mathematics. In fact, it depends on your knowledge

### Specimen paper MATHEMATICS HIGHER TIER. Time allowed: 2 hours. GCSE BITESIZE examinations. General Certificate of Secondary Education

GCSE BITESIZE examinations General Certificate of Secondary Education Specimen paper MATHEMATICS HIGHER TIER 2005 Paper 1 Non-calculator Time allowed: 2 hours You must not use a calculator. Answer all

### 1 Investigation of Right-angled Triangles

1 Investigation of Right-angled Triangles Answering this investigation Some tasks in this investigation require you to use Geogebra (www.geogebra. org). All the files are viewable online, so you will not

### Remember that the information below is always provided on the formula sheet at the start of your exam paper

Maths GCSE Linear HIGHER Things to Remember Remember that the information below is always provided on the formula sheet at the start of your exam paper In addition to these formulae, you also need to learn

### Identifying Triangles 5.5

Identifying Triangles 5.5 Name Date Directions: Identify the name of each triangle below. If the triangle has more than one name, use all names. 1. 5. 2. 6. 3. 7. 4. 8. 47 Answer Key Pages 19 and 20 Name

### WORK SCHEDULE: MATHEMATICS 2007

, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check

### Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

### Q1. Here is a flag. Calculate the area of the shaded cross. Q2. The diagram shows a right-angled triangle inside a circle.

Q1. Here is a flag. Calculate the area of the shaded cross. 2 marks Q2. The diagram shows a right-angled triangle inside a circle. The circle has a radius of 5 centimetres. Calculate the area of the triangle.

### Maths Toolkit Teacher s notes

Angles turtle Year 7 Identify parallel and perpendicular lines; know the sum of angles at a point, on a straight line and in a triangle; recognise vertically opposite angles. Use a ruler and protractor

### MATH 10 COMMON TRIGONOMETRY CHAPTER 2. is always opposite side b.

MATH 10 OMMON TRIGONOMETRY HAPTER 2 (11 Days) Day 1 Introduction to the Tangent Ratio Review: How to set up your triangles: Angles are always upper case ( A,, etc.) and sides are always lower case (a,b,c).

### = = 4 + = 4 + = 25 = 5

1 4 1 4 1 4 = 4 6+ 1 = 4 + = 4 + = 25 = 5 5. Find the side length of each square as a square root. Then estimate the square root. A B C D A side length B side length C side length D side length = 4 2+

### 2.1 The Tangent Ratio

2.1 The Tangent Ratio In this Unit, we will study Right Angled Triangles. Right angled triangles are triangles which contain a right angle which measures 90 (the little box in the corner means that angle

### Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook

Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Objectives Use the triangle measurements to decide which side is longest and which angle is largest.

### 1. The volume of the object below is 186 cm 3. Calculate the Length of x. (a) 3.1 cm (b) 2.5 cm (c) 1.75 cm (d) 1.25 cm

Volume and Surface Area On the provincial exam students will need to use the formulas for volume and surface area of geometric solids to solve problems. These problems will not simply ask, Find the volume

### Pythagorean Relation. Suggested Time: 12 Hours

Pythagorean Relation Suggested Time: 12 Hours Unit Overview Focus and Context In this unit, students will verify the Pythagorean theorem and apply it to solve problems. The Pythagorean theorem is used

### KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number

KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number 1.1 Calculations 1.2 Decimal Numbers 1.3 Place Value Use priority of operations with positive and negative numbers. Simplify

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...

### In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

### A factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2-D shape?

BOND HOW TO DO 11+ MATHS MATHS FACTS CARDS 1 2 3 4 A factor is a whole number that Name 6 different quadrilaterals. The radius of a circle is What is an axis or a line of symmetry in a 2-D shape? 5 6 7

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### CHAPTER 27 AREAS OF COMMON SHAPES

EXERCISE 113 Page 65 CHAPTER 7 AREAS OF COMMON SHAPES 1. Find the angles p and q in the diagram below: p = 180 75 = 105 (interior opposite angles of a parallelogram are equal) q = 180 105 0 = 35. Find

### Section 7.1 Solving Right Triangles

Section 7.1 Solving Right Triangles Note that a calculator will be needed for most of the problems we will do in class. Test problems will involve angles for which no calculator is needed (e.g., 30, 45,

8 Coordinate Geometr Negative gradients: m < 0 Positive gradients: m > 0 Chapter Contents 8:0 The distance between two points 8:0 The midpoint of an interval 8:0 The gradient of a line 8:0 Graphing straight

### (a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

### Foundation. Scheme of Work. Year 10 September 2016-July 2017

Foundation Scheme of Work Year 10 September 016-July 017 Foundation Tier Students will be assessed by completing two tests (topic) each Half Term. PERCENTAGES Use percentages in real-life situations VAT

### Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

### Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle

### Teaching & Learning Plans. Plan 8: Introduction to Trigonometry. Junior Certificate Syllabus

Teaching & Learning Plans Plan 8: Introduction to Trigonometry Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes

### Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

### PERIMETER AND AREA OF PLANE FIGURES

PERIMETER AND AREA OF PLANE FIGURES Q.. Find the area of a triangle whose sides are 8 cm, 4 cm and 30 cm. Also, find the length of altitude corresponding to the largest side of the triangle. Ans. Let ABC

### UNIT 8 RIGHT TRIANGLES NAME PER. I can define, identify and illustrate the following terms

UNIT 8 RIGHT TRIANGLES NAME PER I can define, identify and illustrate the following terms leg of a right triangle short leg long leg radical square root hypotenuse Pythagorean theorem Special Right Triangles

### Answer: = π cm. Solution:

Round #1, Problem A: (4 points/10 minutes) The perimeter of a semicircular region in centimeters is numerically equal to its area in square centimeters. What is the radius of the semicircle in centimeters?

### Mathematics (Project Maths Phase 1)

2011. S135S Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination 2011 Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Higher Level Time: 2 hours, 30 minutes

### Solids. Objective A: Volume of a Solids

Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular

### The Not-Formula Book for C1

Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

### SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

Mathematics Revision Guides Solid Shapes Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SOLID SHAPES Version: 2.1 Date: 10-11-2015 Mathematics Revision Guides Solid

### as a fraction and as a decimal to the nearest hundredth.

Express each ratio as a fraction and as a decimal to the nearest hundredth. 1. sin A The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So, 2. tan C The tangent of an

### SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

### Lesson 9.1 The Theorem of Pythagoras

Lesson 9.1 The Theorem of Pythagoras Give all answers rounded to the nearest 0.1 unit. 1. a. p. a 75 cm 14 cm p 6 7 cm 8 cm 1 cm 4 6 4. rea 9 in 5. Find the area. 6. Find the coordinates of h and the radius

### Looking for Pythagoras: Homework Examples from ACE

Looking for Pythagoras: Homework Examples from ACE Investigation 1: Coordinate Grids, ACE #20, #37 Investigation 2: Squaring Off, ACE #16, #44, #65 Investigation 3: The Pythagorean Theorem, ACE #2, #9,

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### DIFFERENTIATION OPTIMIZATION PROBLEMS

DIFFERENTIATION OPTIMIZATION PROBLEMS Question 1 (***) 4cm 64cm figure 1 figure An open bo is to be made out of a rectangular piece of card measuring 64 cm by 4 cm. Figure 1 shows how a square of side

### Session 6 The Pythagorean Theorem

Session 6 The Pythagorean Theorem Key Terms for This Session Previously Introduced altitude perpendicular bisector right triangle side-angle-side (SAS) congruence New in This Session converse coordinates

### Circumference and area of a circle

c Circumference and area of a circle 22 CHAPTER 22.1 Circumference of a circle The circumference is the special name of the perimeter of a circle, that is, the distance all around it. Measure the circumference