Model No. OS-8515C Experiment 2: Prism
|
|
|
- Rosamond Belinda Kelley
- 9 years ago
- Views:
Transcription
1 Model No. OS-8515C Experiment 2: Prism Experiment 2: Prism Required Equipment from Basic Optics System Light Source Trapezoid from Ray Optics Kit Blank white paper Purpose Normal to surface The purpose of this experiment is to show how a prism separates white light into its component colors and to show that different colors are refracted at different angles through a prism. n 1 q 1 Surface Theory n 2 When a monochromatic light ray crosses from one medium (such as air) to another (such as acrylic), it is refracted. According to Snell s Law, q 2 Refracted ray (n 1 > n 2 ) n 1 sin 1 = n 2 sin 2 Figure 2.1: Refraction of Light the angle of refraction ( 2 ) depends on the angle of incidence ( 1 ) and the indices of refraction of both media (n 1 and n 2 ), as shown in Figure 2.1. Because the index of refraction for light varies with the frequency of the light, white light that enters the material (at an angle other than 0 ) will separate into its component colors as each frequency is bent a different amount. The trapezoid is made of acrylic which has an index of refraction of for light of wavelength 486 nm in a vacuum (blue light), for wavelength 589 nm (yellow), and for wavelength 651 nm (red). In general for visible light, index of refraction increases with increasing frequency. 1. Place the light source in ray-box mode on a sheet of blank white paper. Turn the wheel to select a single white ray. Color spectrum Single white ray q Normal to surface Figure Position the trapezoid as shown in Figure 2.2. The acute-angled end of the trapezoid is used as a prism in this experiment. Keep the ray near the point of the trapezoid for maximum transmission of the light. 11
2 Basic Optics System Experiment 2: Prism 3. Rotate the trapezoid until the angle of the emerging ray is as large as possible and the ray separates into colors. (a) What colors do you see? In what order are they? (b) Which color is refracted at the largest angle? (c) According to Snell s Law and the information given about the frequency dependence of the index of refraction for acrylic, which color is predicted to refract at the largest angle? 4. Without repositioning the light source, turn the wheel to select the three primary color rays. The colored rays should enter trapezoid at the same angle that the white ray did. Do the colored rays emerge from the trapezoid parallel to each other? Why or why not? 12
3 Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor Metric ruler White paper Purpose In this experiment, you will study how rays are reflected from different types of mirrors. You will measure the focal length and determine the radius of curvature of a concave mirror and a convex mirror. Part 1: Plane Mirror 1. Place the light source in ray-box mode on a blank sheet of white paper. Turn the wheel to select a single ray. 2. Place the mirror on the paper. Position the plane (flat) surface of the mirror in the path of the incident ray at an angle that allows you to clearly see the incident and reflected rays. 3. On the paper, trace and label the surface of the plane mirror and the incident and reflected rays. Indicate the incoming and the outgoing rays with arrows in the appropriate directions. 4. Remove the light source and mirror from the paper. On the paper, draw the normal to the surface (as in Figure 3.1). Normal to surface Reflected ray Figure Measure the angle of incidence and the angle of reflection. Measure these angles from the normal. Record the angles in the first row Table Repeat steps 1 5 with a different angle of incidence. Repeat the procedure again to complete Table 3.1 with three different angles of incidence. Table 3.1: Plane Mirror Results Angle of Incidence Angle of Reflection 7. Turn the wheel on the light source to select the three primary color rays. Shine the colored rays at an angle to the plane mirror. Mark the position of the surface of the plane mirror and trace the incident and reflected rays. Indicate the colors of 13
4 Basic Optics System Experiment 3: Reflection the incoming and the outgoing rays and mark them with arrows in the appropriate directions. Questions 1. What is the relationship between the angles of incidence and reflection? 2. Are the three colored rays reversed left-to-right by the plane mirror? Part 2: Cylindrical Mirrors Theory A concave cylindrical mirror focuses incoming parallel rays at its focal point. The focal length ( f ) is the distance from the focal point to the center of the mirror surface. The radius of curvature (R) of the mirror is twice the focal length. See Figure 3.2. R focal point f mirror 1. Turn the wheel on the light source to select five parallel rays. Shine the rays straight into the concave mirror so that the light is reflected back toward the ray box (see Figure 3.3). Trace the surface of the mirror and the incident and reflected rays. Indicate the incoming and the outgoing rays with arrows in the appropriate directions. (You can now remove the light source and mirror from the paper.) Figure The place where the five reflected rays cross each other is the focal point of the mirror. Mark the focal point. s 3. Measure the focal length from the center of the concave mirror surface (where the middle ray hit the mirror) to the focal point. Record the result in Table Use a compass to draw a circle that matches the curvature of the mirror (you will have to make several tries with the compass set to different widths before you find the right one). Measure the radius of curvature and record it in Table 3.2. Figure Repeat steps 1 4 for the convex mirror. Note that in step 3, the reflected rays will diverge, and they will not cross. Use a ruler to extend the reflected rays back behind the mirror s surface. The focal point is where these extended rays cross. Table 3.2: Cylindrical Mirror Results Concave Mirror Convex Mirror Focal Length Radius of Curvature (determined using compass) Questions 1. What is the relationship between the focal length of a cylindrical mirror and its radius of curvature? Do your results confirm your answer? 2. What is the radius of curvature of a plane mirror? 14
5 Model No. OS-8515C Experiment 4: Snell s Law Experiment 4: Snell s Law Required Equipment from Basic Optics System Light Source Trapezoid from Ray Optics Kit Other Required Equipment Protractor White paper Purpose The purpose of this experiment is to determine the index of refraction of the acrylic trapezoid. For rays entering the trapezoid, you will measure the angles of incidence and refraction and use Snell s Law to calculate the index of refraction. q 1 Normal to surface Theory n 1 n 2 Surface For light crossing the boundary between two transparent materials, Snell s Law states n 1 sin 1 = n 2 sin 2 where 1 is the angle of incidence, 2 is the angle of refraction, and n 1 and n 2 are the respective indices of refraction of the materials (see Figure 4.1). q 2 Figure 4.1 Refracted ray (n 1 > n 2 ) 1. Place the light source in ray-box mode on a sheet of white paper. Turn the wheel to select a single ray. 2. Place the trapezoid on the paper and position it so the ray passes through the parallel sides as shown in Figure 4.2. q i 3. Mark the position of the parallel surfaces of the trapezoid and trace the incident and transmitted Figure 4.2 rays. Indicate the incoming and the outgoing rays with arrows in the appropriate directions. Carefully mark where the rays enter and leave the trapezoid. 4. Remove the trapezoid and draw a line on the paper connecting the points where the rays entered and left the trapezoid. This line represents the ray inside the trapezoid. 5. Choose either the point where the ray enters the trapezoid or the point where the ray leaves the trapezoid. At this point, draw the normal to the surface. 6. Measure the angle of incidence ( i ) and the angle of refraction with a protractor. Both of these angles should be measured from the normal. Record the angles in the first row of Table
6 Basic Optics System Experiment 4: Snell s Law 7. On a new sheet of paper, repeat steps 2 6 with a different angle of incidence. Repeat these steps again with a third angle of incidence. The first two columns of Table 4.1 should now be filled. Table 4.1: Data and Results Angle of Incidence Angle of Refraction Calculated index of refraction of acrylic Average: Analysis 1. For each row of Table 4.1, use Snell s Law to calculate the index of refraction, assuming the index of refraction of air is Average the three values of the index of refraction. Compare the average to the accepted value (n = 1.5) by calculating the percent difference. Question What is the angle of the ray that leaves the trapezoid relative to the ray that enters it? 16
7 Model No. OS-8515C Experiment 5: Total Internal Reflection Experiment 5: Total Internal Reflection Required Equipment from Basic Optics System Light Source Trapezoid from Ray Optics Kit Other Required Equipment Protractor White paper Purpose In this experiment, you will determine the critical angle at which total internal reflection occurs in the acrylic trapezoid and confirm your result using Snell s Law. Theory Reflected ray For light crossing the boundary between two transparent materials, Snell s Law states q 1 n 1 sin 1 = n 2 sin 2 n 1 Surface where 1 is the angle of incidence, 2 is the angle of refraction, and n 1 and n 2 are the respective indices of refraction of the materials (see Figure 5.1). In this experiment, you will study a ray as it passes out of the trapezoid, from acrylic (n =1.5) to air (n air =1). n 2 Figure 5.1 q 2 Refracted ray (n 1 > n 2 ) If the incident angle ( 1 ) is greater than the critical angle ( c ), there is no refracted ray and total internal reflection occurs. If 1 = c, the angle of the refracted ray ( 2 ) is 90, as in Figure 5.2. In this case, Snell s Law states: n sin c = 1 sin 90 q c Reflected ray Solving for the sine of critical angle gives: 1 sin c = -- n n n air = 1 90 Refracted ray Figure
8 Basic Optics System Experiment 5: Total Internal Reflection 1. Place the light source in ray-box mode on a sheet of white paper. Turn the wheel to select a single ray. Reflected ray 2. Position the trapezoid as shown in Figure 5.3, with the ray entering the trapezoid at least 2 cm from the tip. 3. Rotate the trapezoid until the emerging ray just barely disappears. Just as it disappears, the ray separates into colors. The trapezoid is correctly positioned if the red has just disappeared. 4. Mark the surfaces of the trapezoid. Mark exactly the point on the surface where the ray is internally reflected. Also mark the entrance point of the incident ray and the exit point of the reflected ray. Incident ray Figure 5.3 Refracted Ray 5. Remove the trapezoid and draw the rays that are incident upon and reflected from the inside surface of the trapezoid. See Figure 5.4. Measure the angle between these rays using a protractor. (Extend these rays to make the protractor easier to use.) Note that this angle is twice the critical angle because the angle of incidence equals the angle of reflection. Record the critical angle here: Exit point c = (experimental) Entrance point 2q c Reflection point 6. Calculate the critical angle using Snell s Law and the given index of refraction for Acrylic (n = 1.5). Record the theoretical value here: Figure 5.4 c = (theoretical) 7. Calculate the percent difference between the measured and theoretical values: Questions % difference = 1. How does the brightness of the internally reflected ray change when the incident angle changes from less than c to greater than c? 2. Is the critical angle greater for red light or violet light? What does this tell you about the index of refraction? 18
Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
Basic Optics System OS-8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same
1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object
Physics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Chapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
Convex Mirrors. Ray Diagram for Convex Mirror
Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel
Light and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
Lesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another?
12.1 What is Refraction pg. 515 Light travels in straight lines through air. What happens to light when it travels from one material into another? Bending Light The light traveling from an object in water
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
Question based on Refraction and Refractive index. Glass Slab, Lateral Shift.
Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when
1 of 9 2/9/2010 3:38 PM
1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine
1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted
CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a
Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
LIGHT REFLECTION AND REFRACTION
QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection
Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
Chapter 23. The Reflection of Light: Mirrors
Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted
Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus
Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
Lecture Notes for Chapter 34: Images
Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject
Thin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133
Color and Light T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
Chapter 22: Mirrors and Lenses
Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;
3D Printing LESSON PLAN PHYSICS 8,11: OPTICS
INVESTIGATE RATIONALE Optics is commonly taught through the use of commercial optics kits that usually include a basic set of 2-4 geometric lenses (such as double convex or double concave). These lenses
After a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.
b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water.
Sierzega/Ferri: Optics 5 Observation Experiments: Light Bending Go to: http://phet.colorado.edu/en/simulation /bending-light You have a laser beam (press the button to turn it on!) that is shining from
Teacher s Resource. 2. The student will see the images reversed left to right.
Answer Booklet Reflection of Light With a Plane (Flat) Mirror Trace a Star Page 16 1. The individual students will complete the activity with varying degrees of difficulty. 2. The student will see the
2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: [email protected]
Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: [email protected] ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Grade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9
Light Energy Grade Level: 5 Time Required: 1-2 class periods Suggested TEKS: Science - 5.8 Suggested SCANS: Information. Acquires and evaluates information. National Science and Math Standards Science
Third Grade Light and Optics Assessment
Third Grade Light and Optics Assessment 1a. Light travels at an amazingly high speed. How fast does it travel? a. 186,000 miles per second b. 186,000 miles per hour 1b. Light travels at an amazingly high
Experiment 3 Lenses and Images
Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently
19 - RAY OPTICS Page 1 ( Answers at the end of all questions )
19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius
Light and Sound. Pupil Booklet
Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 3-11a - By exploring the refraction of light when passed through different materials, lenses
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Monday 1 January 015 Afternoon Time: hours Candidate Number
1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?
Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
Different Types of Dispersions in an Optical Fiber
International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Different Types of Dispersions in an Optical Fiber N.Ravi Teja, M.Aneesh Babu, T.R.S.Prasad, T.Ravi B.tech
OPTICAL FIBERS INTRODUCTION
OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
The light. Light (normally spreads out straight... ... and into all directions. Refraction of light
The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted
The Lighting Effects Filter
Appendix appendix E The Lighting Effects Filter The Lighting Effects filter is like a little program in itself. With this filter, you can create a wealth of different lighting effects, from making a particular
RAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
Refractive Index Measurement Principle
Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was
Unit 2: Number, Algebra, Geometry 1 (Non-Calculator)
Write your name here Surname Other names Edexcel GCSE Centre Number Mathematics B Unit 2: Number, Algebra, Geometry 1 (Non-Calculator) Friday 14 June 2013 Morning Time: 1 hour 15 minutes Candidate Number
Light Energy OBJECTIVES
11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number
HOMEWORK 4 with Solutions
Winter 996 HOMEWORK 4 with Solutions. ind the image of the object for the single concave mirror system shown in ig. (see next pages for worksheets) by: (a) measuring the radius R and calculating the focal
PH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics Unit Physics P3 Thursday 23 May 2013 For this paper you must have: a ruler a calculator
Diffraction of Laser Light
Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic
Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Friday 10 June 2011 Morning Time: 1 hour 45 minutes
Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Friday 10 June 2011 Morning Time: 1 hour 45 minutes
Optics and Geometry. with Applications to Photography Tom Davis [email protected] http://www.geometer.org/mathcircles November 15, 2004
Optics and Geometry with Applications to Photography Tom Davis [email protected] http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Lenses and Telescopes
A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the
9/16 Optics 1 /11 GEOMETRIC OPTICS
9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target
PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Friday 11 June 2010 Morning Time: 1 hour 45 minutes
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all
Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the
Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 4 6
Ma KEY STAGE 3 Mathematics test TIER 4 6 Paper 1 Calculator not allowed First name Last name School 2007 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
PRODUCT LIFECYCLE MANAGEMENT COMPETENCY CENTRE RENDERING. PLMCC, JSS Academy of Technical Education, Noida Rendering 1 of 16
PRODUCT LIFECYCLE MANAGEMENT COMPETENCY CENTRE RENDERING PLMCC, JSS Academy of Technical Education, Noida Rendering 1 of 16 Table of contents Under construction PLMCC, JSS Academy of Technical Education,
Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.
Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the
Mirror, mirror - Teacher Guide
Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction
Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ
Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.
Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis
Review Vocabulary spectrum: a range of values or properties
Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by
OPTICAL IMAGES DUE TO LENSES AND MIRRORS *
1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 1FR Centre Number Tuesday 6 January 2015 Afternoon Time: 2 hours Candidate Number Foundation Tier Paper Reference
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
7 Light and Geometric Optics
7 Light and Geometric Optics By the end of this chapter, you should be able to do the following: Use ray diagrams to analyse situations in which light reflects from plane and curved mirrors state the law
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
AREA & CIRCUMFERENCE OF CIRCLES
Edexcel GCSE Mathematics (Linear) 1MA0 AREA & CIRCUMFERENCE OF CIRCLES Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser.
Reflection Lesson Plan
Lauren Beal Seventh Grade Science AMY-Northwest Middle School Three Days May 2006 (45 minute lessons) 1. GUIDING INFORMATION: Reflection Lesson Plan a. Student and Classroom Characteristics These lessons
Physics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
