HOMEWORK 4 with Solutions


 Erica Harrell
 7 years ago
 Views:
Transcription
1 Winter 996 HOMEWORK 4 with Solutions. ind the image of the object for the single concave mirror system shown in ig. (see next pages for worksheets) by: (a) measuring the radius R and calculating the focal length for the concave mirror, (b) drawing the focal point into the diagram, and (c) constructing the image of the object graphically with three rays. R = 0 cm, and f = R 2 = 5 cm Three rays: Incident Rays Reflected Rays Parallel to the optical axis Through the focal point of the mirror () 2 Through the center of the mirror (C) Through the center of the mirror (C) 3 Through the focal point of the mirror () Parallel to the optical axis C Object
2 2. Regarding your own face as a real object, describe the image of your face which you see standing 4 feet from the center (and looking directly toward) a polished and wellreflecting brass ball 2 feet in diameter hanging in front of a pawn shop. Determine the image of your face both graphically and by calculation. By Calculation: Brass ball is equivalent to a CONVEX MIRROR ( f < 0). Diameter = 2 R = 2 ft R = ft and f = 0.5 ft You are standing at 4 ft from the center of the brass ball, but the distance s o of object from the mirror is measured from the vortex of mirror. s o = (4 ) = + 3 ft rom the mirror equation, f = s o + s i = { }  = 0.43 ft Since s i < 0, the image is virtural. y i M = y o = s i s o = Since M > 0 and M <, the image is upright and minified. s i Graphically, ft s o 4 ft C
3 3. (A) Calculate the focal length of a thin biconcave lens (n=.6) in air, having radii of 6 and 8 cm. (B) Locate and describe (magnified? inverted? real?) the image of a real object 5 cm from lens. (C) What changes if the object is virtual instead of real? (D) What changes in (A), (B), and (C) if everything is immersed in water (n=.33)? (A) biconcave lens R < 0 and R 2 > 0, negative lens. R = 6 cm, R 2 = +8 cm, n =.6 By the lens maker's equation, f = (n ) { R R 2 } f = 7.5 cm (B) s o = + 5 cm. By the lens equation, f = s o + s i s i = 3.0 cm y i s i M = y o = s o = is at 3.0 cm in the left side of the lens, virtual ( s i < 0 ), upright ( M > 0 ), minified ( M < ). (C) or a virtual object, the sign of s o is changed from + to. s o = 5 cm. Then, s i = cm. M = 3.0 is at 5.0 cm in the right side of the lens, real ( s i > 0 ), upright ( M > 0 ), magnified ( M > ). (D) In water (n o =.33), the lens maker's equation is changed to n o f = (n n o ) { R R 2 } f = 22.2 cm or a real object at 5 cm, s i = 4. cm and M = is at 4. cm in the left side of the lens, virtual ( s i < 0 ), upright ( M > 0 ), minified ( M < ). or a virtual object at 5 cm, s i = cm and M = +.3. is at 6.5 cm in the right side of the lens, real ( s i > 0 ), upright ( M > 0 ), magnified ( M > ).
4 4. A positive meniscus thin lens (n=.48), with radii of curvature 4 and 2 cm, is positioned in contact with a planoconcave lens (n=.4) of radius 0 cm. (A) What is the effective focal length and refractive power of the lens combination? (B) What image (real? magnified? inverted?) will this lens combination produce from a real object located 5 cm away from it? (C) What will be the focal length of the lenscombination if the two lenses are separated by D = 5 cm? Positive meniscus thin lens: R = + 4 cm and R 2 = +2 cm (or R = 2cm, R 2 = 4cm) f = (n ) { R R 2 } f = cm Planoconcave lens: R = and R 2 = +0 cm (or R = 0 cm and R 2 = ) f 2 = 25 cm (A) f eff = f + f 2 f eff = + 25 cm Effective refractive power = Inverse of effective focal length (in meter) = 4 m  = 4 Diopters (B) s o = + 5 cm s i = 6.25 cm, and M = s i / s o = +.25 is located at 6.25 cm in the left side of the lens combination, virtual (s i < 0), upright ( M > 0), and magnified ( M > ).
5 (C) D = 5 cm f ( D f 2 ) f f = D (f + f 2 ) = cm (in the left side of the first lens) f b = f 2 ( D f ) D (f + f 2 ) = 2.27 cm (in the left side of the second lens) *** Effective focal length D f eff = f + f 2 f f 2 f eff = +.4 cm Then, the principal planes are at L H = 6.8 cm and L 2 H 2 = 3.6 cm 0 cm L L 2 f * * b 2 2 H H 2 feff feff
6 5. Two thin lenses (L doubleconvex with focal points, and L 2 doubleconcave with focal points 2 ) are placed at a distance D as shown in ig.2 (see next pages for worksheets). Determine the image of object S using a "twostep process" as discussed in class. Obtain location and magnification of image (A) Graphically, using the figure below (B) By numerical calculation using thin lens equations for L and L 2 If done right (with proper signs) results from (A) and (B) should agree. You may compare your results with the one obtained using the equation for s i2 derived and formulated on page 5 of Handout I. (Use the appended worksheet to find the graphical solution.) (A) Graphically, L L 2 of L2 S of L Object of L2 2 2 (B) By calculation, (All parameters are measured by a ruler.) f = cm, f 2 = 2.5 cm, D = 6.0 cm, s o = cm, y o = cm or the lens L, s i = cm and y i = 3 cm. of L is real, inverted, and magnified. or the lens L 2, s o2 = D s i = 6 cm and y o2 = y i = 3 cm. s i2 = 4.3 cm and y i2 = cm of L 2 is virtual, upright, and magnified (compared to the S). Good agreement with Graphical solution! ** rom the page 5 of Handout I, D s i2 = f 2 D (s o f ) f f 2 s o (D f 2 )(s o f ) s o f = 4.3 cm (Good agreement!)
7 (A) Air Air Object C C 2 n =.65 (B) Water n=.33 Water C C 2 (C) n=.7 Air Air C Virtual Object n=.4
8 7 *. Optional ind graphically the image of the object for two plane mirror system shown in ig.4 (see next pages for worksheets) where two mirrors are inclined to each other at 90. Draw all possible images and two rays (at least) for each image. Object 90
Convex Mirrors. Ray Diagram for Convex Mirror
Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel
More informationChapter 36  Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 36  Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine
More informationGeometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
More informationLesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus
Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an
More information1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
More informationwaves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
More information2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
More informationLecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments
Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses
More informationEXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189196 Optics Bench a) For convenience of discussion we assume that the light
More informationC) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same
1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object
More informationLecture Notes for Chapter 34: Images
Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject
More informationThin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
More informationSolution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
More information9/16 Optics 1 /11 GEOMETRIC OPTICS
9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target
More information1 of 9 2/9/2010 3:38 PM
1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationAP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
More informationRAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
More informationProcedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Threesurface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
More informationChapter 23. The Reflection of Light: Mirrors
Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted
More informationRutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
More informationLesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
More informationChapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass
Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the
More informationSize Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted
CHAPTER10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a
More informationChapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
More informationPhysics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu
Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements
More informationReflection and Refraction
Equipment Reflection and Refraction Acrylic block set, planeconcaveconvex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
More informationLIGHT REFLECTION AND REFRACTION
QUESTION BANK IN SCIENCE CLASSX (TERMII) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection
More informationOPTICAL IMAGES DUE TO LENSES AND MIRRORS *
1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are
More informationRevision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
More information7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics
context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change
More informationBasic Optics System OS8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 01209900B Basic Optics System
More informationHow to make a Galileian Telescope
How to make a Galileian Telescope I. THE BASICS THE PRINCIPLES OF OPTICS A Galileian telescope uses just two lenses. The objective lens is convergent (planoconvex), the ocular lens is divergent (planoconcave).
More informationChapter 22: Mirrors and Lenses
Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;
More informationExperiment 3 Lenses and Images
Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently
More information19  RAY OPTICS Page 1 ( Answers at the end of all questions )
19  RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius
More informationOptical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 20052006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
More informationGeometrical Optics  Grade 11
OpenStaxCNX module: m32832 1 Geometrical Optics  Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStaxCNX and licensed under the Creative
More informationPhysics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
More informationLight and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
More informationLenses and Telescopes
A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the
More informationPhysics, Chapter 38: Mirrors and Lenses
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 111958 Physics, Chapter 38: Mirrors and Lenses Henry
More information1051232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
More informationPhysics 202 Problems  Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72
Physics 202 Problems  Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ
More informationLight Energy OBJECTIVES
11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number
More informationStudy Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
More informationLight and Sound. Pupil Booklet
Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 311a  By exploring the refraction of light when passed through different materials, lenses
More informationLIGHT SECTION 6REFRACTIONBENDING LIGHT From Hands on Science by Linda Poore, 2003.
LIGHT SECTION 6REFRACTIONBENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate
More informationPHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) 
More information3D Printing LESSON PLAN PHYSICS 8,11: OPTICS
INVESTIGATE RATIONALE Optics is commonly taught through the use of commercial optics kits that usually include a basic set of 24 geometric lenses (such as double convex or double concave). These lenses
More informationLearning Optics using Vision
Learning Optics using Vision Anjul Maheshwari David R. Williams Biomedical Engineering Center for Visual Science University of Rochester Rochester, NY Center for Adaptive Optics Project #42 2 INTRODUCTION
More informationPhysics 1230: Light and Color
Physics 1230: Light and Color The Eye: Vision variants and Correction http://www.colorado.edu/physics/phys1230 What does 20/20 vision mean? Visual acuity is usually measured with a Snellen chart Snellen
More informationThe light. Light (normally spreads out straight... ... and into all directions. Refraction of light
The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted
More informationReview for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.
Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis
More informationLaws; of Refraction. bends away from the normal. more dense medium bends towards the normal. to another does not bend. It is not
Science 8 Laws; of Refraction 1. tight that moyes at an angle from a less dense medium to a more dense medium bends towards the normal. (The second medium slows the light down) Note: The angle of refraction,
More informationPhysical Science 20  Final Exam Practice
Physical Science 20  Final Exam Practice SHORT ANSWER IS ALL CURVED MIRRORS AND LENSES Mirrors and Lenses 1. Complete the following ray diagrams for curved mirrors. Write the 4 characteristics of each
More informationEndoscope Optics. Chapter 8. 8.1 Introduction
Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize
More informationOptics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004
Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied
More informationMaking a reflector telescope
Making a reflector telescope telescope built by Sir Isaac Newton Replica of the first reflector Nowadays, professional astronomers use another type of telescope that is different to the first telescope
More informationMeasuring Miniature Lens Radius of Curvature and Refractive Index with White Light Optical Profiler
Measuring Miniature Lens Radius of Curvature and Refractive Index with White Light Optical Profiler Introduction For miniature lenses with size of few millimeters or submillimeter, it is difficult to
More informationLenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
More informationWarmUp y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.
CST/CAHSEE: WarmUp Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and
More informationEquations, Lenses and Fractions
46 Equations, Lenses and Fractions The study of lenses offers a good real world example of a relation with fractions we just can t avoid! Different uses of a simple lens that you may be familiar with are
More informationScience In Action 8 Unit C  Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
More informationMagnification Devices
LOW VISION AIDS Optical Characteristics of the Low Vision Patient The definition of visual loss includes two components and limited resolving power or acuity, a blur that can't be eliminated with a simple
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
More informationPHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
More informationPH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics Unit Physics P3 Thursday 23 May 2013 For this paper you must have: a ruler a calculator
More informationAstigmatism. image. object
TORIC LENSES Astigmatism In astigmatism, different meridians of the eye have different refractive errors. This results in horizontal and vertical lines being focused different distances from the retina.
More informationLesson. Objectives. Compare how plane, convex, and concave. State the law of reflection.
KH_BD1_SEG5_U4C12L3_407415.indd 407 Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces
More informationPhysical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
More information104 Practice Exam 23/21/02
104 Practice Exam 23/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A nonzero
More informationVision Correction in Camera Viewfinders
Vision Correction in Camera Viewfinders Douglas A. Kerr Issue 2 March 23, 2015 ABSTRACT AND INTRODUCTION Many camera viewfinders are equipped with a lever or knob that controls adjustable vision correction,
More informationPractice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More information7 Light and Geometric Optics
7 Light and Geometric Optics By the end of this chapter, you should be able to do the following: Use ray diagrams to analyse situations in which light reflects from plane and curved mirrors state the law
More informationAspherical Lens Design by Using a Numerical Analysis
Journal of the Korean Physical Society, Vol. 51, No. 1, July 27, pp. 93 13 Aspherical Lens Design by Using a Numerical Analysis GyeongIl Kweon Department of Optoelectronics, Honam University, Gwangju
More informationStd. XI Science Physics Practical Handbook
Std. XI Science Physics Practical Handbook No. Experiments Page No. 1 Use of Vernier Callipers 1 2 Use of Micrometer screw gauge 5 3 Use of Spherometer 9 4 Parallelogram law of forces 12 5 Coefficient
More informationLens refractive index measurement based on fiber pointdiffraction longitudinal interferometry
Lens refractive index measurement based on fiber pointdiffraction longitudinal interferometry Lingfeng Chen, * Xiaofei Guo, and Jinjian Hao School of Optoelectronics, Beijing Institute of Technology,
More informationFirst let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between
Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details
More informationTesting and Performance of the Convex Lens Concentrating Solar Power Panel Prototype
Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype Ankit S. Gujrathi 1, Prof. Dilip Gehlot 2 1 M.tech (2 nd Year), 2 Assistant Professor, Department of Mechanical Engg.,
More informationMirrors and Lenses. Clicker Questions. Question P1.03
3 Mirrors and Lenses Clicker Questions Question P.03 Descrition: Reasoning with geometric otics and raytracing. Question An object is located on the otical axis and a distance o 8 cm rom a thin converging
More informationFIFTH GRADE TECHNOLOGY
FIFTH GRADE TECHNOLOGY 3 WEEKS LESSON PLANS AND ACTIVITIES SCIENCE AND MATH OVERVIEW OF FIFTH GRADE SCIENCE AND MATH WEEK 1. PRE: Interpreting data from a graph. LAB: Estimating data and comparing results
More informationStudent Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)
Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.
More informationEXPERIMENT O6. Michelson Interferometer. Abstract. References. PreLab
EXPERIMENT O6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of HeNe laser light and the index of refraction of a flat transparent
More informationPHYSICS 534 (Revised Edition 2001)
Student Study Guide PHYSICS 534 (Revised Edition 2001) Leonardo da Vinci 14521519 Student Study Guide Physics 534 (Revised Edition  2000) This Study Guide was written by a committee of Physics teachers
More informationBasic Geometrical Optics
F UNDAMENTALS OF PHOTONICS Module 1.3 Basic Geometrical Optics Leno S. Pedrotti CORD Waco, Texas Optics is the cornerstone of photonics systems and applications. In this module, you will learn about one
More informationLens Equation Purpose
Lens Equation Purpose To verify the lens equation for both a converging lens and a diverging lens. To investigate optical systems. To find the focal lengths of a converging lens and a diverging lens. Background
More informationLecture 12: Cameras and Geometry. CAP 5415 Fall 2010
Lecture 12: Cameras and Geometry CAP 5415 Fall 2010 The midterm What does the response of a derivative filter tell me about whether there is an edge or not? Things aren't working Did you look at the filters?
More informationPHY114 S11 Term Exam 3
PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationAll I Ever Wanted to Know About Circles
Parts of the Circle: All I Ever Wanted to Know About Circles 1. 2. 3. Important Circle Vocabulary: CIRCLE the set off all points that are the distance from a given point called the CENTER the given from
More informationThe Geometry of Perspective Projection
The Geometry o Perspective Projection Pinhole camera and perspective projection  This is the simplest imaging device which, however, captures accurately the geometry o perspective projection. Rays o
More informationThird Grade Light and Optics Assessment
Third Grade Light and Optics Assessment 1a. Light travels at an amazingly high speed. How fast does it travel? a. 186,000 miles per second b. 186,000 miles per hour 1b. Light travels at an amazingly high
More informationUnderstanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
More informationTSE24mm f/3.5l TSE45mm f/2.8 TSE90mm f/2.8 Instructions
TSE24mm f/3.5l TSE45mm f/2.8 TSE90mm f/2.8 ENG Instructions Thank you for purchasing a Canon product. Canon s TSE lenses are tiltshift lenses designed for EOS cameras. The tiltshift mechanism enables
More informationIntroduction. In Physics light is referred to as electromagnetic radiation which is a natural phenomenon that can
Introduction In Physics light is referred to as electromagnetic radiation which is a natural phenomenon that can also be produced and detected through technological means. It has proven invaluable for
More informationObjective: To distinguish between degree and radian measure, and to solve problems using both.
CHAPTER 3 LESSON 1 Teacher s Guide Radian Measure AW 3.2 MP 4.1 Objective: To distinguish between degree and radian measure, and to solve problems using both. Prerequisites Define the following concepts.
More informationOptical Design using Fresnel Lenses
Optical Design using Fresnel Lenses Basic principles and some practical examples Arthur Davis and Frank Kühnlenz Reflexite Optical Solutions Business Abstract The fresnel lens can be used in a wide variety
More informationFunctions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions
Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function
More informationInstallation Manuals Version n. 01 of 14/06/2013
Technical Manuals Installation Manuals Version n. 01 of 14/06/2013 pag. 2 Index Index... 2 Introduction and general hints... 3 Curving Profile... 3 DESCRIPTION... 3 MATERIAL... 3 CERTIFICATE... 3 SIZES...
More information