Linear algebra. Systems of linear equations

Size: px
Start display at page:

Download "Linear algebra. Systems of linear equations"

Transcription

1 Linear algebra

2 Outline 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 2 / 27

3 Outline 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 2 / 27

4 Outline 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 2 / 27

5 Outline 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 3 / 27

6 Basic notation Basic notation Definition The system of equations a 11x 1 + a 12x a 1nx n = b 1 a 21x 1 + a 22x a 2nx n = b 2. a m1x 1 + a m2x a mnx n = b m, (1) where numbers a ij, i = 1,..., m, j = 1,..., n are called coefficients, numbers b 1,..., b m are called absolute (or constant) terms and x 1,..., x n are unknowns, is called the system of linear algebraic equations. Lucie Doudová (UoD Brno) Linear algebra 4 / 27

7 Basic notation Basic notation Notation a 11 a a 1n a 21 a a 2n Matrix of the system: A =... a m1 a m2... a mn a 11 a a 1n b 1 a 21 a a 2n b 2 Augmented matrix of the system: R =.... a m1 a m2... a mn b m Vector of unknowns: x = (x 1,..., x n) Vector of absolute terms: b = (b 1,..., b m) Lucie Doudová (UoD Brno) Linear algebra 5 / 27

8 Basic notation Basic notation Remark We can rewrite system (1) in the shorter way: A x = b Definition If b 1 = = b n = 0 then system of linear equations is called a homogenous system. We mark it S 0(m, n). Otherwise, the system of linear equations is called non-homogenous. We mark it S(m, n). Lucie Doudová (UoD Brno) Linear algebra 6 / 27

9 Basic notation Basic notation Example x 1-2x 2 + x 3 = 0 2x 1-3x 2 - x 3 = 0 Homogenous system of 2 linear equations for 3 unknowns x 1, x 2, x 3. Example x 1 + x 2 - x 3 = 1 x 1-2x 2 - x 3 = 0 x 1-3x 2 + 2x 3 = -2 Non-homogenous system of 3 linear equations for 3 unknowns x 1, x 2, x 3. Lucie Doudová (UoD Brno) Linear algebra 7 / 27

10 Solvability of system Basic notation Definition Ordered n-tuple X = (r 1, r 2,..., r n) is called solution of equation (1) if after replacing r 1 with x 1,..., r n with x n in (1) we get m valid identity between numbers. System is solved if we known all its solutions. System which has at least 1 solution is called solvable, in other case it is called insolvable. Lucie Doudová (UoD Brno) Linear algebra 8 / 27

11 Solvability of system Basic notation Example x 1 + 2x 2 = 3 2x 1 x 2 = 1 solvable system: x = (1, 1) Example x 1 + x 2 = 4 x 1 + x 2 = 5 insolvable system Example 2x 1 + x 2 = 3 4x 1 + 2x 2 = 6 solvable system: x = (t, 3 2t), t R Lucie Doudová (UoD Brno) Linear algebra 9 / 27

12 Solvability of system Basic notation Forbenius theorem The system of n linear equations has a solution if and only if r(a) = r(r). If r(a) = r(r) = n then the solution is unique. If r(a) = r(r) < n then the system (1) has infinitely many solutions. Lucie Doudová (UoD Brno) Linear algebra 10 / 27

13 Equivalent modifications Basic notation Definition 1 Two systems S(m 1, n) and S(m 2, n) are called equivalent if they have identical sets of solutions. 2 Modification which transform system S(m, n) to a equivalent system is called a equivalent modification. Theorem (Equivalent modifications) Let S be given system of linear equations (1). Let S be a new system formed from system S by following equivalent modifications. 1 Interchanging of two equations of system S. 2 Multiplying of a equation of system S by number k 0. 3 Adding k-multiple of one equation of system S to another equation of system S. 4 Adding of arbitrary linear combination of equations of system S to another equation of system S. 5 Inserting of equation which is linear combination of other equations of system S. 6 Omitting of equation which is linear combination of other equations of system S. Then both systems S and S have the same set of solution. We say that they are equivalent. Lucie Doudová (UoD Brno) Linear algebra 11 / 27

14 Gaussian elimination Gaussian elimination Gaussian elimination We transform the augmented matrix R of system S(m, n) (by equivalent modifications) to a row echelon form. We write the system of equations which correspond to modified augmented matrix R. We solve this system of equations by back substitution. Lucie Doudová (UoD Brno) Linear algebra 12 / 27

15 Gaussian elimination Gaussian elimination Example Solve the system of equations. x 1 + 2x 2 + x 3 = 1 2x 1 + x 2 x 3 = 4 x 1 x 2 x 3 = x 1 + 2x 2 + x 3 = 1 x 2 + x 3 = 2 x 3 = 4 x 1 = 1 x 2 = 2 x 3 = 4 x = (1, 2, 4) Lucie Doudová (UoD Brno) Linear algebra 13 / 27

16 Gaussian elimination Gaussian elimination Example Different way how to compute this example. x 1 + 2x 2 + x 3 = 1 2x 1 + x 2 x 3 = 4 x 1 x 2 x 3 = 1 x = (1, 2, 4) Lucie Doudová (UoD Brno) Linear algebra 14 / 27

17 Gaussian elimination Gaussian elimination Example x 1 + x 2 + 2x 3 = 1 2x 1 5x 3 = 2 4x 1 + 2x 2 x 3 = from the last row we have equation: = 2 insolvable system Lucie Doudová (UoD Brno) Linear algebra 15 / 27

18 Gaussian elimination Gaussian elimination Example x 1 + x 2 + 2x 3 x 4 = 2 x 2 + x 4 = 3 2x 1 + x 2 + 4x 3 3x 4 = 1 3x 1 + 2x 2 + 6x 3 4x 4 = This system has infinitely many solutions. ( ) Lucie Doudová (UoD Brno) Linear algebra 16 / 27

19 Gaussian elimination Gaussian elimination Example ( ) x 1 + x 2 + 2x 3 x 4 = 2 x 2 + x 4 = 3 x 1 + x 2 = 2 2x 3 + x 4 x 2 = 3 x 4 x 3 = a, x 4 = b; a and b are arbitrary real numbers. x 1 + x 2 = 2 2a + b x 2 = 3 b x 1 = 1 2a + 2b x 2 = 3 b x = ( 1 2a + 2b, 3 b, a, b) Lucie Doudová (UoD Brno) Linear algebra 17 / 27

20 Jordan method Gaussian elimination Example Equivalent method of computation. ( ) ( ( x 3 = a, x 4 = b; a and b are arbitrary real numbers. ) ) x = ( 1 2a + 2b, 3 b, a, b) This method is called the Jordan method. Lucie Doudová (UoD Brno) Linear algebra 18 / 27

21 Cramer s rule Cramer s rule Theorem (Cramer s rule) Let determinant of matrix of system (1) be nonzero. Then system (1) has just one solution. Let D be determinant of matrix of system and D i determinants which we get from D by replacing of i-th column by column of absolute terms. Then x i = D i D, i = 1,..., n Lucie Doudová (UoD Brno) Linear algebra 19 / 27

22 Cramer s rule Cramer s rule Example x y = 4 x + y = 6 ( ) 1 1 A =, D = A = 2 ( ) 4 1 A 1 =, D = A = 10 ( ) 1 4 A 2 =, D = A 2 = 2 x = D1 D = 5, y = D2 D = 1 x = (5, 1) Lucie Doudová (UoD Brno) Linear algebra 20 / 27

23 Cramer s rule Cramer s rule Example x 1 2x 2 + x 3 = 0 3x 1 5x 2 2x 3 = 3 7x 1 3x 2 + x 3 = 16 D = D 2 = = 49, D1 = = 98, D3 = = 147 = 49 x = (3, 2, 1) x 1 = = 3, x2 = = 2, x3 = = 1 Lucie Doudová (UoD Brno) Linear algebra 21 / 27

24 Outline Examples 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 22 / 27

25 Examples Examples Solve systems of linear equations x + 3y + 3z = 1 5x + 3y + 2z = 1 x + 4y + 3z = 2 2x y 2z = 1 x y + z = 2 x 2y + 5z = 4 x 1 + 3x 2 + x 3 x 4 = 2 2x 1 2x 2 + x 4 = 3 2x 1 + 3x 2 + x 3 3x 4 = 6 3x 1 + 4x 2 x 3 + 2x 4 = 0 Lucie Doudová (UoD Brno) Linear algebra 23 / 27

26 Examples Examples Solve systems of linear equations x 1 2x 2 + x 3 + x 4 = 1 x 1 2x 2 + x 3 x 4 = 1 x 1 2x 2 + x 3 + 5x 4 = 5 x + y z = 0 3x + y + z = 0 x y 2z = 0 x + y z = 0 y + 2z 2u = 0 x + z u = 0 Lucie Doudová (UoD Brno) Linear algebra 24 / 27

27 Outline List of tasks for students 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 25 / 27

28 List of tasks for students List of tasks for students Example 1: Example 2: Example 3: 2x 4y + 3y = 1 x 2y + 4z = 3 3x y + 5z = 2 3x 1 + 2x 2 x 3 + x 4 = 0 2x 1 x 2 + x 3 + 2x 4 = 2 x 1 2x 2 + 2x 3 x 4 = 16 4x 1 2x 2 2x 3 + 3x 4 = 5 x 1 + 2x 2 + 3x 3 + x 4 2x 5 = 1 3x 1 + x 3 x 4 + 4x 5 = 0 x 2 2x 3 + 3x 4 + x 5 = 2 4x 1 + 3x 2 + 2x 3 + 3x 4 + 3x 5 = 7 x 1 + 2x 2 + 5x 3 + 4x 4 + x 5 = 3 Lucie Doudová (UoD Brno) Linear algebra 26 / 27

29 List of tasks for students List of tasks for students Example 4: Example 5: Example 6: x 1 x 2 + x 3 + x 4 2x 5 = 0 2x 1 + x 2 x 3 x 4 + 2x 5 = 1 3x 1 + 3x 3 3x 3 3x 4 + 6x 5 = 2 4x 1 + 5x 2 5x 3 5x x 5 = 3 2x + y 2z = 0 x + 2y + 2z = 0 3x + y 4z = 0 2x y z = 0 x + y 2z = 0 x 2y + 2z = 0 Lucie Doudová (UoD Brno) Linear algebra 27 / 27

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination) Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix

More information

5.5. Solving linear systems by the elimination method

5.5. Solving linear systems by the elimination method 55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

8.1. Cramer s Rule for Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

8.1. Cramer s Rule for Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Cramer s Rule for Solving Simultaneous Linear Equations 8.1 Introduction The need to solve systems of linear equations arises frequently in engineering. The analysis of electric circuits and the control

More information

Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3 MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

II. Linear Systems of Equations

II. Linear Systems of Equations II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

4.3-4.4 Systems of Equations

4.3-4.4 Systems of Equations 4.3-4.4 Systems of Equations A linear equation in 2 variables is an equation of the form ax + by = c. A linear equation in 3 variables is an equation of the form ax + by + cz = d. To solve a system of

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Lecture 4: Partitioned Matrices and Determinants

Lecture 4: Partitioned Matrices and Determinants Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

10.2 Systems of Linear Equations: Matrices

10.2 Systems of Linear Equations: Matrices SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Homogeneous equations, Linear independence

Homogeneous equations, Linear independence Homogeneous equations, Linear independence 1. Homogeneous equations: Ex 1: Consider system: B" #B# œ! B" #B3 œ! B B œ! # $ Matrix equation: Ô " #! Ô B " Ô! "! # B # œ! œ 0Þ Ð3Ñ Õ! " " ØÕB Ø Õ! Ø $ Homogeneous

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra May, 25 :46 l57-ch Sheet number Page number cyan magenta yellow black Linear Equations in Linear Algebra WEB INTRODUCTORY EXAMPLE Linear Models in Economics and Engineering It was late summer in 949. Harvard

More information

Brief Introduction to Vectors and Matrices

Brief Introduction to Vectors and Matrices CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vector-valued

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

II. Linear Systems of Equations

II. Linear Systems of Equations II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information

Application of Linear Algebra in. Electrical Circuits

Application of Linear Algebra in. Electrical Circuits Application of Linear Algebra in Electrical Circuits Seamleng Taing Math 308 Autumn 2001 December 2, 2001 Table of Contents Abstract..3 Applications of Linear Algebra in Electrical Circuits Explanation..

More information

26. Determinants I. 1. Prehistory

26. Determinants I. 1. Prehistory 26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix 7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse

More information

Discrete Mathematics: Homework 7 solution. Due: 2011.6.03

Discrete Mathematics: Homework 7 solution. Due: 2011.6.03 EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information