The dogandrabbit chase problem as an exercise in introductory kinematics


 Leonard Mills
 1 years ago
 Views:
Transcription
1 The dogandrabbi chase problem as an exercise in inrodcor kinemaics O I Chashchina 1 Z KSilagadze 1 1 Deparmen of Phsics Novosibirsk Sae Universi 63 9 Novosibirsk Rssia Bdker Insie of Nclear Phsics 63 9 Novosibirsk Rssia (Received 3 Ags 9 acceped 19 Sepember 9) Absrac The prpose of his aricle is o presen a simple solion of he classic dogandrabbi chase problem which emphasizes he se of conceps of elemenar kinemaics and herefore can be sed in inrodcor mechanics corse The aricle is based on he eaching experience of inrodcor mechanics corse a Novosibirsk Sae Universi for firs ear phsics sdens which are js beginning o se advanced mahemaical mehods in phsics problems We hope i will be also sefl for sdens and eachers a oher niversiies oo Kewords: Phsics Edcaion Classical Mechanics eaching Resmen El propósio de ese aríclo es presenar na solción simple al problema clásico del perro el conejo el cal remarca el so de los concepos básicos de cinemáica por lo ano pede ser empleado en n crso inrodcorio de Mecánica Ese aríclo esá basado en la experiencia generada del crso inrodcorio de Mecánica en la Universidad Esaal de Novosibirsk para el primer año de Física dónde los esdianes comienzan con méodos avanzados de maemáicas en los problemas de Física Se espera qe el presene rabajo sea úil ano para los esdianes como para los almnos oras niversidades ambién Palabras clave: Edcación en Física Enseñanza de la Mecánica Clásica PACS: 14Fk 45D ISSN I INTRODUCTION A rabbi rns in a sraigh line wih a speed A dog wih a speed > sars o prsi i and dring he prsi alwas rns in he direcion owards he rabbi Iniiall he rabbi is a he origin while he dog s coordinaes are x() = () = (see Fig 1) Afer wha ime does he dog cach he rabbi? This classic chase problem and is variaions are ofen sed in inrodcor mechanics corse [1 3] When one asks o find he dog s rajecor (crve of prsi) he problem becomes an exercise in advanced calcls and/or in he elemenar heor of differenial eqaions [4 5] However is reamen simplifies if he radiional machiner of phsical kinemaics is sed [6] The mahemaics of he solion becomes even simpler if we frher nderline he se of phsical conceps like reference frames vecor eqaions decomposiion of veloci ino radial and angenial componens II DURATION OF THE CHASE e r 1 be a radisvecor of he dog and r a radisvecor of he rabbi So ha FIGURE 1 Dog and rabbi chase The dog is heading alwas owards he rabbi r 1 = r = (1) As he dog alwas is heading owards he rabbi we can wrie r r k () 1 = () a Am J Phs Edc ol 3 No 3 Sep hp://wwwjornallapenorgmx
2 O I Chashchina and Z KSilagadze The proporionali coefficien k depends on ime Namel a he sar and a he end of he chase we obviosl have k() = kt ( ) = (3) Differeniaing () and sing (1) we ge = k () + k() (4) As he dog s veloci does no change in magnide i ms be perpendiclar o he dog s acceleraion all he ime: = (5) Formall his follows from d d = d = d = Eqaions (4) and (5) impl ( ) = k ( ) or = k () (6) We can inegrae he las eqaion and ge x x k() = (7) A he ime =T when he dog caches he rabbi and he chase erminaes we ms have x=t and remembering ha k(t)= we easil find T from (7): T = (8) III DOG S TRAJECTORY IN THE RABBIT S FRAME e s decompose he dog s veloci ino he radial and angenial componens in he rabbi s frame (see Fig ): r = + cos( π ) = cos = sin( π ) = sin FIGURE Componens of he dog s veloci in he rabbi s frame we ge Hence Ping r dr = d 1 dr + cos = rd sin r + cos ln d = sin π / z = cos and sing he decomposiion + z A B = + z z + z A = (1 + ) we can easil inegrae and ge π / 1 B = ( 1) B cos (1 cos ) 1 + d = ln + = ln[( cg ) ] A sin (1 cos ) sin he eqaion of he dog s rajecor in he rabbi s frame is B r = r and = r r = cos r = sin (9) r = ( cg ) (1) sin If we divide he firs eqaion on he second and ake ino accon ha I DOG S CURE OF PURSUIT e s now find he dog s rajecor in he laboraor frame From (9) and (1) we ge a Am J Phs Edc ol 3 No 3 Sep 9 54 hp://wwwjornallapenorgmx
3 which b sing ( cg ) = sin sin d 1 1 = 1 + d( cg ) cg sin can be recas in he form ( cg ) d ( cg ) = d cg 1 = 1 ( 1)( cg ) + ( + 1)( cg ) T (11) The dogandrabbi chase problem as an exercise in inrodcor kinemaics and herefore k () = (14) I remains o differeniae (1) o ge he derivaive of and hence he desired expression for k() : k 1 1 () 1 ( 1) + = + (15) T Sbsiing (1) and (15) ino (13) we finall ge he dog s crve of prsi in he form x = (16) Of corse his resl is he same as fond earlier in he lierare [4 5 6] p o applied convenions = and T was defined earlier hrogh (8) B b (1) = rsin = cg and herefore (11) reprodces he resl of Ref [6] (1 ) + (1 ) = + + (1) T THE IMIT DISTANCE FOR EQUA EO CITIES e speeds of he dog and he rabbi are eqal in magnide and heir iniial posiions are as shown in he Fig 3 To wha limi converges he disance beween hem? I is convenien o answer his qesion in he rabbi s frame For eqal velociies = eqaions (9) ake he form r = (1 + cos ) r = sin d ( r r cos ) = r (1 cos ) + r sin = d 1 = = From (7) we have 3 x k() = + (13) 1 T T and o ge he eqaion of he dog s rajecor we have o express k() hrogh Taking he componen of he vecor eqaion () we ge = k() FIGURE 3 The chase wih eqal velociies a Am J Phs Edc ol 3 No 3 Sep hp://wwwjornallapenorgmx
4 O I Chashchina and Z KSilagadze We see ha r(1 cos ) = C C is a consan A = we have (see Fig 3) r = 1 + cos = + 1 (noe ha we are assming > π / as in Fig 3 so ha cos = 1 sin ) Now le s find he dog s rajecor We have (see Fig 3) B x= ( τ ) dτ cos( π ) = ( τ) dτ + cos = sin( π ) = sin C = In he rabbi s frame π when Hence he limi disance beween he dog and he rabbi is [5] r C + + = = 1 cosπ 1 I CHASE AONG THE TRACTRIX If he rabbi is allowed o change he magnide of his speed he can manage o keep he disance beween him and he dog consan e s find he reqired fncional dependence () and he dog s rajecor in his case If r = = cons so ha r = eqaions (9) ake he form = cos = sin (17) becase d d cos ( τ) dτ = = (19) sin 1 cos o d () = d sin according o he second eqaion of (17) B sing he decomposiion = cos 1 cos 1 cos he inegral in (19) is easil evalaed wih he resl ( τ) dτ = ln( cg ) ln( cg ) g = he parameric form of he dog s rajecor is x = = cos + ln( cg ) ln( cg ) sin which can be easil inegraed o ge To ge he explici form of he rajecor we se or sin ln = sin sin = sin e cos = 1 1+ cos cg = = sin which gives Then he firs eqaion of (17) deermines he reqired form of he rabbi s veloci () = 1 sin e (18) x cg = ln( ) ln This rajecor is a par of racrix he famos crve [7 8] wih he defining proper ha he lengh of is angen beween is direcrix (he x axis in or case) and he poin of angenc has he same vale for all poins of he racrix a Am J Phs Edc ol 3 No 3 Sep 9 54 hp://wwwjornallapenorgmx
5 II CONCUDING REMARKS We hink he problem considered is of pedagogical vale for ndergradae sdens which ake heir firs ear corse in phsics I demonsraes he se of some imporan conceps of phsical kinemaics as alread sressed b Mngan in Ref [6] The approach presened in his aricle reqires onl minimal mahemaical backgrond and herefore is siable for sdens which js begin heir phsics edcaion However if desired his classic chase problem allows a demonsraion of more elaborae mahemaical conceps like FreneSerre formlas [9] Mercaor projecion in carograph [1] and even hperbolic geomer (which is realized on he srface of revolion of a racrix abo is direcrix) [11] Ineresed reader can find some oher variaions of his chase problem in [ ] ACKNOWEDGEMENTS The work is sppored in par b grans SciSchool 956 and RFBR a REFERENCES [1] Irodov I E Problems in General Phsics (NTTS ladis Moscow 1997) p 9 (in Rssian) [] Belchenko Y I Gilev E A and Silagadze Z K Problems in mechanics of paricles and bodies Par 1: relaivisic mechanics (Novosibirsk Universi Press Novosibirsk 6) p 9 (in Rssian) The dogandrabbi chase problem as an exercise in inrodcor kinemaics [3] Silagadze Z K Tes problems in mechanics and special relaivi Preprin phsics/6557 [4] Olchovsk I I Pavlenko Y G and Kzmenkov S Problems in heoreical mechanics for phsiciss (Moscow Universi Press Moscow 1977) p 9 (in Rssian) [5] Pák P and Tkadlec J The dogandrabbi chase revisied Aca Polechnica (1996) [6] Mngan C A A classic chase problem solved from a phsics perspecive Er J Phs (5) [7] Yaes R C The Caenar and he Tracrix Am Mah Mon (1959) [8] Cad W G The Circlar Tracrix Am Mah Mon (1965) [9] Pckee C C The Crve of Prsi Mah Gazee (1953) [1] Pijls W Some Properies Relaed o Mercaor Projecion Am Mah Mon (1) [11] Beroi B Caenacci R and Dappiaggi C Psedospheres in geomer and phsics: From Belrami o de Sier and beond Preprin mah/56395 [1] oka A J Conribion o he Mahemaical Theor of Capre I Condiions for Capre Proc Na Acad Sci (193) [13] alan Conribion á l ede de la corbe de porsie Compes Rends (1931) [14] oka A J Families of crves of prsi and heir isochrones Am Mah Mon (198) [15] QingXin Y and YinXiao D Noe on he dogandrabbi chase problem in inrodcor kinemaics Er J Phs 9 N43 N45 (8) [16] Wnderlich W Über die Hndekrven mi konsanen Schielwinkel Monashefe für Mahemaik (1957) a Am J Phs Edc ol 3 No 3 Sep hp://wwwjornallapenorgmx
The U.S. Treasury Yield Curve: 1961 to the Present
Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. The U.S. Treasury Yield Curve: 1961 o he Presen Refe S. Gurkaynak, Brian
More informationToday s managers are very interested in predicting the future purchasing patterns of their customers, which
Vol. 24, No. 2, Spring 25, pp. 275 284 issn 7322399 eissn 1526548X 5 242 275 informs doi 1.1287/mksc.14.98 25 INFORMS Couning Your Cusomers he Easy Way: An Alernaive o he Pareo/NBD Model Peer S. Fader
More informationAnchoring Bias in Consensus Forecasts and its Effect on Market Prices
Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. Anchoring Bias in Consensus Forecass and is Effec on Marke Prices Sean
More informationFollow the Leader If You Can, Hedge If You Must
Journal of Machine Learning Research 15 (2014) 12811316 Submied 1/13; Revised 1/14; Published 4/14 Follow he Leader If You Can, Hedge If You Mus Seven de Rooij seven.de.rooij@gmail.com VU Universiy and
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationOUTOFBAG ESTIMATION. Leo Breiman* Statistics Department University of California Berkeley, CA. 94708 leo@stat.berkeley.edu
1 OUTOFBAG ESTIMATION Leo Breiman* Saisics Deparmen Universiy of California Berkeley, CA. 94708 leo@sa.berkeley.edu Absrac In bagging, predicors are consruced using boosrap samples from he raining se
More informationThe concept of potential output plays a
Wha Do We Know (And No Know) Abou Poenial Oupu? Susano Basu and John G. Fernald Poenial oupu is an imporan concep in economics. Policymakers ofen use a onesecor neoclassical model o hink abou longrun
More informationCentral Bank Communication: Different Strategies, Same Effectiveness?
Cenral Bank Communicaion: Differen Sraegies, Same Effeciveness? Michael Ehrmann and Marcel Frazscher * European Cenral Bank Michael.Ehrmann@ecb.in, Marcel.Frazscher@ecb.in November 2004 Absrac The paper
More informationA Simple Introduction to Dynamic Programming in Macroeconomic Models
Economics Deparmen Economics orking Papers The Universiy of Auckland Year A Simple Inroducion o Dynamic Programming in Macroeconomic Models Ian King Universiy of Auckland, ip.king@auckland.ac.nz This paper
More informationDynamic Contracting: An Irrelevance Result
Dynamic Conracing: An Irrelevance Resul Péer Eső and Balázs Szenes Sepember 5, 2013 Absrac his paper considers a general, dynamic conracing problem wih adverse selecion and moral hazard, in which he agen
More informationCostSensitive Learning by CostProportionate Example Weighting
CosSensiive Learning by CosProporionae Example Weighing Bianca Zadrozny, John Langford, Naoki Abe Mahemaical Sciences Deparmen IBM T. J. Wason Research Cener Yorkown Heighs, NY 0598 Absrac We propose
More informationExchange Rate PassThrough into Import Prices: A Macro or Micro Phenomenon? Abstract
Exchange Rae PassThrough ino Impor Prices: A Macro or Micro Phenomenon? Absrac Exchange rae regime opimaliy, as well as moneary policy effeciveness, depends on he ighness of he link beween exchange rae
More informationBanco Central de Chile Documentos de Trabajo. Central Bank of Chile Working Papers EXCHANGE RATE PASSTHROUGH INTO IMPORT PRICES: THE CASE OF CHILE
Banco Cenral de Chile Documenos de Trabajo Cenral Bank of Chile Working Papers N 465 Abril 2008 EXCHANGE RATE PASSTHROUGH INTO IMPORT PRICES: THE CASE OF CHILE Robero Álvarez Paricio Jaramillo Jorge Selaive
More informationImproved Techniques for Grid Mapping with RaoBlackwellized Particle Filters
1 Improved Techniques for Grid Mapping wih RaoBlackwellized Paricle Filers Giorgio Grisei Cyrill Sachniss Wolfram Burgard Universiy of Freiburg, Dep. of Compuer Science, GeorgesKöhlerAllee 79, D79110
More informationBIS Working Papers. Globalisation, passthrough. policy response to exchange rates. No 450. Monetary and Economic Department
BIS Working Papers No 450 Globalisaion, passhrough and he opimal policy response o exchange raes by Michael B Devereux and James Yeman Moneary and Economic Deparmen June 014 JEL classificaion: E58, F6
More informationDoes Britain or the United States Have the Right Gasoline Tax?
Does Briain or he Unied Saes Have he Righ Gasoline Tax? Ian W.H. Parry and Kenneh A. Small March 2002 (rev. Sep. 2004) Discussion Paper 02 12 rev. Resources for he uure 1616 P Sree, NW Washingon, D.C.
More informationWhen Should Public Debt Be Reduced?
I M F S T A F F D I S C U S S I ON N O T E When Should Public Deb Be Reduced? Jonahan D. Osry, Aish R. Ghosh, and Raphael Espinoza June 2015 SDN/15/10 When Should Public Deb Be Reduced? Prepared by Jonahan
More informationWhich Archimedean Copula is the right one?
Which Archimedean is he righ one? CPA Mario R. Melchiori Universidad Nacional del Lioral Sana Fe  Argenina Third Version Sepember 2003 Published in he YieldCurve.com ejournal (www.yieldcurve.com), Ocober
More informationFIRST PASSAGE TIMES OF A JUMP DIFFUSION PROCESS
Adv. Appl. Prob. 35, 54 531 23 Prined in Norhern Ireland Applied Probabiliy Trus 23 FIRST PASSAGE TIMES OF A JUMP DIFFUSION PROCESS S. G. KOU, Columbia Universiy HUI WANG, Brown Universiy Absrac This paper
More informationEDUCATION POLICIES AND STRATEGIES
EDUCATION POLICIES AND STRATEGIES Naional Educaion Secor Developmen Plan: A resulbased planning handbook 13 Educaion Policies and Sraegies 13 Educaion Policies and Sraegies 13 Naional Educaion Secor Developmen
More informationBIS Working Papers No 365. Was This Time Different?: Fiscal Policy in Commodity Republics. Monetary and Economic Department
BIS Working Papers No 365 Was This Time Differen?: Fiscal Policy in Commodiy Republics by Luis Felipe Céspedes and Andrés Velasco, Discussion Commens by Choongsoo Kim and Guillermo Calvo Moneary and Economic
More informationKONSTANTĪNS BEŅKOVSKIS IS THERE A BANK LENDING CHANNEL OF MONETARY POLICY IN LATVIA? EVIDENCE FROM BANK LEVEL DATA
ISBN 9984 676 20 X KONSTANTĪNS BEŅKOVSKIS IS THERE A BANK LENDING CHANNEL OF MONETARY POLICY IN LATVIA? EVIDENCE FROM BANK LEVEL DATA 2008 WORKING PAPER Lavias Banka, 2008 This source is o be indicaed
More informationParttime Work, Wages and Productivity: Evidence from Matched Panel Data
Parime Work, Wages and Produciviy: Evidence from Mached Panel Daa Alessandra Caaldi (Universià di Roma "La Sapienza" and SBSEM) Sephan Kampelmann (Universié de Lille, CLERSE, SBSEM) François Rycx (Universié
More informationAre Under and Overreaction the Same Matter? A Price Inertia based Account
Are Under and Overreacion he Same Maer? A Price Ineria based Accoun Shengle Lin and Sephen Rasseni Economic Science Insiue, Chapman Universiy, Orange, CA 92866, USA Laes Version: Nov, 2008 Absrac. Theories
More informationAsymmetry of the exchange rate passthrough: An exercise on the Polish data 1
Asymmery of he exchange rae passhrough: An exercise on he Polish daa Jan Przysupa Ewa Wróbel 3 Absrac We propose a complex invesigaion of he exchange rae passhrough in a small open economy in ransiion.
More informationThe Macroeconomics of MediumTerm Aid ScalingUp Scenarios
WP//6 The Macroeconomics of MediumTerm Aid ScalingUp Scenarios Andrew Berg, Jan Goschalk, Rafael Porillo, and LuisFelipe Zanna 2 Inernaional Moneary Fund WP//6 IMF Working Paper Research Deparmen The
More informationI M F S T A F F D I S C U S S I O N N O T E
I M F S T A F F D I S C U S S I O N N O T E February 29, 2012 SDN/12/01 Two Targes, Two Insrumens: Moneary and Exchange Rae Policies in Emerging Marke Economies Jonahan D. Osry, Aish R. Ghosh, and Marcos
More informationThe Simple Analytics of Helicopter Money: Why It Works Always
Vol. 8, 201428 Augus 21, 2014 hp://dx.doi.org/10.5018/economicsejournal.ja.201428 The Simple Analyics of Helicoper Money: Why I Works Always Willem H. Buier Absrac The auhor proides a rigorous analysis
More informationT he dramatic movements in equity prices in
Why he Fe Shoul Ignore he Sock Marke James B. Bullar an Eric Schaling INTRODUCTION Equiy Prices an Moneary Policy Rules T he ramaic movemens in equiy prices in he Unie Saes uring he las ecae or so have
More information