Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Size: px
Start display at page:

Download "Journal Of Business & Economics Research September 2005 Volume 3, Number 9"

Transcription

1 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, ( George Washingon Universiy Yi-Kang Liu, George Washingon Universiy ABSTRACT The advanage of Mone Carlo simulaions is aribued o he flexibiliy of heir implemenaion. In spie of heir prevalence in finance, we address heir efficiency and accuracy in opion pricing from he perspecive of variance reducion and price convergence. We demonsrae ha increasing he number of pahs in simulaions will increase compuaional efficiency. Moreover, using a -es, we examine he significance of price convergence, measured as he difference beween sample means of opion prices. Overall, our illusraive resuls show ha he Mone Carlo simulaion prices are no saisically differen from he Black-Scholes ype closed-form soluion prices. INTRODUCTION M one Carlo simulaions (MCS) have recenly been an imporan echnique for opion pricing in finance. MCS avoid complicaed mahemaics and have a sraighforward implemenaion concepually and pracically. For example, o price a European down-and-ou call barrier opion 1 by MCS, jus rea i as a normal opion unless he underlying asse price reaches he pre-deermined level, as opposed o seing boundary condiions and solve a parial differenial equaion. In pracice, MCS are procedures of sampling random oucomes for a paricular process. However, while many academics and praciioners acknowledge he meris of MCS, some sudies discuss heir weaknesses in opion pricing. Clewlow and Srickland (1998) and Hull (000) poin ou ha MCS generae high variances ha lead o compuaional inefficiency. This problem can no be overlooked because such inefficiency may produce a biased esimaor of he opion price. In his paper, our focus is on he efficiency and accuracy of MCS in opion pricing. We demonsrae ha he esimaed sandard errors of MCS opion prices can be reduced by increasing he number of pahs in he simulaions. Addiionally, we use a -es o examine wheher MCS prices converge o Black-Scholes ype of closed-form soluion prices. The empirical evidence does no sugges any significan difference beween hose prices. Moreover, he resuls show ha hese wo ypes of prices converge as he number of pahs in simulaions increases. The layou of his paper is as follows: secion provides a quick lieraure review. Secion 3 examines variance reducion and price convergence of MCS. Secion 4 provides he conclusions. LITERATURE REVIEW Originaed from sudies in physics, MCS have been very successfully applied in finance. Hull and Whie (1987) use MCS o price opions wih sochasic volailiies. Schwarz and Torous (1989) apply MCS o he valuaion of morgaged-backed securiies. Boyle e al. (1997) use MCS o price American opions. On he oher hand, he disadvanages of MCS are also discussed in some sudies. Clewlow and Srickland (1998) and Hull (000) argue ha MCS are compuaionally inefficien due o he generaed high variances. THE EFFICIENCY AND ACCURACY OF MONTE CARLO SIMULATIONS Variance Reducion The efficiency of MCS increases wih he number of pahs used in he simulaions. Since MCS are sampling random variables, opion prices are random as well. The esimaed sandard error (ESE) is calculaed as he sample 1 A barrier opion is a coningen claim whose payoff depends on wheher he underlying asse has reached a cerain pre-deermined level for a specific pah. See Jackel (00) for a horough summary of he applicaions of MCS in finance. 1

2 sandard deviaion of MCS opion prices (SD) divided by he square-roo of he number of pahs (m): ESE SD / m (1) From equaion (1), ESE will decrease wih an increase in he number of pahs. Theoreically, if sample sandard deviaion of MCS opion prices (SD) is unchanged, when we increase m from 100 o 400, he ESE should be reduced by 50%. We demonsrae his negaive relaionship by using an example. The resuls are lised in Table 1. Table 1: Esimaed Sandard Errors of a European Pu Opion Price in Mone Carlo Simulaions The esimaed sandard error (ESE) is given by: ESE sample sandard deviaion ( SD) / number of pahs ( m) The inpu parameers are as follows: curren sock price s=10, exercise price x=10, ime o mauriy =0.5 year, risk-free rae r=0.1, sock reurn volailiy =0.4, and m=number of pahs. Sample sandard deviaion of Mone Carlo simulaion opion prices (SD) Esimaed sandard error of Mone Carlo simulaion opion prices (ESE) Case A (m=100) Case B (m=400) Case C (m=500) Theoreical sandard error reducion* Pracical esimaed sandard error reducion** * Theoreical sandard error reducion is he square roo of m in base case divided by he square roo of m in he referring case. For example, in case B, he heoreical sandard error reducion is 100 / ** Pracical esimaed sandard error reducion is he esimaed sandard error (ESE) in each case divided by he esimaed sandard error of he base case. For example, in case C, he pracical sandard error reducion is 0.048/0.187 = Table 1 shows he values of ESE for a hypoheical European pu opion for differen pahs. The heoreical sandard error reducion in each case is defined as he square roo of m in base case divided by he square roo of m in he corresponding case. In addiion, for comparison purposes, we calculae he pracical esimaed sandard error reducion, defined as he ESE of a case divided by he SD of he base case. Table 1 clearly shows how he errors of opion prices can be reduced as he number of pahs increases. For example, ESE can be effecively reduced from 1.87% in case A (wih 100 pahs) o only.48% in case C (wih 500 pahs). In addiion, he heoreical sandard error reducion (0% for case C) is very close o he pracical esimaed sandard error reducion (19.6%). The difference is due o he fac ha he SD is no he same in cases A and C. Price Convergence Price convergence is measured as he magniude of he differences in sample means of wo groups: MCS and Black-Scholes ype of closed-form soluion prices. If hese prices converge, he means of prices should be approximaely he same. For illusraion purposes, we choose pah dependen opions, specifically a down and ou call opion as our pricing arge. We will limi our example o he European syle o be consisen wih he assumpion of Black-Scholes ype of closed-form soluion. In a Black-Scholes framework, he sock price follows a geomeric Brownian moion. Tha is:

3 ds rs d S dw () where S is hesock price a ime, r is he risk free rae, σ is he volailiy, and W is a Wiener process a ime Using Wilmo (1998) approach, he value of a down and ou European call opion is given by: S V ( S, ) C( S, ) ( X ) ( k 1) X * C( S, ) (3) where k r /, V ( S, ) is he value of down and ou European call opion wih underlying asse price S and ime, C( S, ) is he value of vanilla European call opion wih underlying asse price S and ime, X is he barrier price, and C( X / S, ) is he value of vanilla European call opion wih underlying asse price X / S and ime. The European down and ou call opion is a pah dependen opion. In his sense, we need o check if he sock his he hreshold, a pre-se barrier price. If i does, he opion ceases and has zero value. If no, he opion survives and he final value of he underlying asse can be deermined. Once we know he final value of he underlying asse, he payoff and he price of he barrier opion can be calculaed. By repeaing he same procedure wih various realizaions, we can generae differen samples which allow us o compare he relaion beween price convergence and he number of pahs. Figure 1 compares he MCS opion prices wih he Black-Scholes ype of closed-form soluion prices in hree differen cases wih 100, 400, and 500 pahs. I also presens he inrinsic values excess of sock price over exercise price or zero. Because down and ou barrier opion has zero value unless he underlying sock exceeds he barrier price, i.e. 8 in his example, we esimae he opion value only when sock prices surpass he barrier. To examine he price convergence beween MCS and Black-Scholes ype prices, we apply a -es o compare he means. We assume an exercise price of $10, a ime o mauriy of six monhs, a barrier price of $8, a risk-free rae of 10%, and a volailiy of 40%. We use fory observaions of MCS prices wih respec o sock prices by changing he underlying asse price from $8 by $. unil i reaches $16. 3 As shown in figure 1, i is easy o see ha he MCS prices end o converge o he Black-Scholes ype of closed-form soluion prices as he number of pahs increases. To confirm his behavior, we es he following hypohesis: H0: mean of MCS prices = mean of closed-form soluion (Black-Scholes ype) prices H1: mean of MCS prices mean of closed-form soluion (Black-Scholes ype) prices The wo-ail null hypohesis es is rejeced if he -saisic is larger han he corresponding criical value, 1.96, under a 95% confidence inerval. Table summarizes he resuls. Firs we noice ha he sample sandard deviaion of MCS opion prices (SD) decreases wih he increase in he number of pahs. This is consisen wih he resuls in Table 1. Second, we find ha all he -saisics are less han he criical value This resul suggess ha we can no find saisically significan evidence o rejec he null hypohesis. Only a 10% level of significance (i.e. criical value 1.645) can he null hypohesis be rejeced in he case of 100 pahs. In pracice, since he number of pahs is usually larger han 100, i is reasonable o conclude ha he MCS prices are no significanly differen from he Black-Scholes ype prices. Furhermore, we find he p-values increasing wih he numbers of pahs in simulaions. The large p-value implies ha he likelihood of failing o rejec he false hypohesis (Type II error) is low. This indicaes 3 According o Griffihs e al. (1993), for applying a -es, a sample size of hiry observaions is considered large enough o saisfy he normal disribuion assumpion. 3

4 Figure 1: The Relaionship Beween Mone Carlo Simulaion Opion Prices and Black-Scholes Type Prices This figure depics he inrinsic value, he Mone Carlo simulaion opion prices (denoed by MC) and he Black-Scholes ype closed-form opion prices (denoed by closed-form soluion) of a European down and ou call opion wih 100, 400, and 500 pahs. The inpu parameers are: barrier price (x) =8, ime o mauriy () =0.5, exercise price (e) =10, risk-free rae (r) =0.1, volailiy (sigma) =0.4. Diagram A (Number of pahs =100) Diagram B (Number of pahs =400) Diagram C (Number of pahs =500) 4

5 ha he confidence level of our conclusion on no rejecing he null hypohesis increases wih he p-value. In oher words, he more simulaions are execued, he more accurae he null hypohesis is, and he more evidence on he convergence of MCS prices o Black-Scholes ype prices. Table : Two-ail Tes for Price Convergence (sample size = 40) This able shows any significan difference beween Mone Carlo simulaion prices and Black-Scholes ype prices. The pricing arge is a European down and ou call opion. The inpu parameers are: barrier price (x) =8, ime o mauriy () =0.5, exercise price (e) =10, risk-free rae (r) =0.1, volailiy (sigma) =0.4. Case 1, and 3 are characerized by various numbers of pahs in simulaion, m. Each case has fory-paired observaions. The null hypohesis for he wo-ail es is: H0: mean of MCS prices = mean of closed-form soluion (Black-Scholes ype) prices H1: mean of MCS prices mean of closed-form soluion (Black-Scholes ype) prices Case 1 (m=100) Case (m=400) Case 3 (m=500) Sample sandard deviaion of Mone Carlo simulaion opion prices (SD) Mean of he difference beween MCS and BS ype prices Variance of he difference beween MCS and BS ype prices Number of samples saisic/p-value* 1.79/ / /0.684 Hypohesis esing** canno rejec null hypohesis canno rejec null hypohesis * Under he null hypohesis, he -saisic is esimaed as follows: Mean of he difference beween MCS and BS ype prices Variance of he difference beween MCS and BS ype prices / Number of samples ** Based on a wo-ail 95% confidence inerval. canno rejec null hypohesis CONCLUSIONS In his paper, we address he issues of efficiency and accuracy of Mone Carlo simulaions in opion pricing from he perspecives of variance reducion and price convergence. We demonsrae ha increasing he number of pahs in simulaions will increase compuaional efficiency. Moreover, using -es, we examine he endency of price convergence, measured as he difference beween sample means of opion prices. Our resuls did no find significan evidence o rejec he null hypohesis ha he Mone Carlo simulaion prices and he Black-Scholes ype prices have he same mean. REFERENCES 1. Clewlow, L. and C. Srickland, Implemening derivaives models, (1998), John Wiley & Son Ld.. Black, F. and M. Scholes, (1973), The pricing of opions and corporae liabiliies, Journal of Poliical Economy, 81, Boyle, P., M. Broadie, and P. Glasserman, (1997), Mone Carlo mehods for securiy pricing, Journal of Economic Dynamics and Conrol, 1, Griffihs, W., R. C. Hill, and G. Judge, Learning and pracicing economerics, (1993), John Wiley & Son Ld. 5. Hull, J., Opions, fuures and oher derivaives, fourh ediion,(000), Prenice-Hall Inc. 6. Hull, J. and A. Whie, (1987), The pricing of opions on asses wih sochasic volailiies, Journal of Finance 4, Jackel, P., Mone Carlo mehod in finance, (00), John Wiley & Son Ld. 5

6 8. Schwarz, E. and W. Torous, (1989), Prepaymen and he valuaion of morgaged-backed securiies, Journal of Finance 44, Wilmo, P., Derivaives: he heory and pracice of financial engineering, (1998), John Wiley & Son Ld. NOTES 6

Option Pricing Under Stochastic Interest Rates

Option Pricing Under Stochastic Interest Rates I.J. Engineering and Manufacuring, 0,3, 8-89 ublished Online June 0 in MECS (hp://www.mecs-press.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecs-press.ne/ijem Opion ricing Under Sochasic Ineres

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

Skewness and Kurtosis Adjusted Black-Scholes Model: A Note on Hedging Performance

Skewness and Kurtosis Adjusted Black-Scholes Model: A Note on Hedging Performance Finance Leers, 003, (5), 6- Skewness and Kurosis Adjused Black-Scholes Model: A Noe on Hedging Performance Sami Vähämaa * Universiy of Vaasa, Finland Absrac his aricle invesigaes he dela hedging performance

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005 FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a

More information

Multiple Structural Breaks in the Nominal Interest Rate and Inflation in Canada and the United States

Multiple Structural Breaks in the Nominal Interest Rate and Inflation in Canada and the United States Deparmen of Economics Discussion Paper 00-07 Muliple Srucural Breaks in he Nominal Ineres Rae and Inflaion in Canada and he Unied Saes Frank J. Akins, Universiy of Calgary Preliminary Draf February, 00

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS HE PERFORMANE OF OPION PRIING MODEL ON HEDGING EXOI OPION Firs Draf: May 5 003 his Version Oc. 30 003 ommens are welcome Absrac his paper examines he empirical performance of various opion pricing models

More information

SPEC model selection algorithm for ARCH models: an options pricing evaluation framework

SPEC model selection algorithm for ARCH models: an options pricing evaluation framework Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,

More information

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b LIFE ISURACE WITH STOCHASTIC ITEREST RATE L. oviyani a, M. Syamsuddin b a Deparmen of Saisics, Universias Padjadjaran, Bandung, Indonesia b Deparmen of Mahemaics, Insiu Teknologi Bandung, Indonesia Absrac.

More information

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July

More information

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se

More information

A general decomposition formula for derivative prices in stochastic volatility models

A general decomposition formula for derivative prices in stochastic volatility models A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 5-7 85 Barcelona Absrac We see ha he price of an european call opion

More information

Stochastic Optimal Control Problem for Life Insurance

Stochastic Optimal Control Problem for Life Insurance Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

More information

Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypothesis Testing in Regression Models Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

More information

Dynamic Option Adjusted Spread and the Value of Mortgage Backed Securities

Dynamic Option Adjusted Spread and the Value of Mortgage Backed Securities Dynamic Opion Adjused Spread and he Value of Morgage Backed Securiies Mario Cerrao, Abdelmadjid Djennad Universiy of Glasgow Deparmen of Economics 27 January 2008 Absrac We exend a reduced form model for

More information

Research Article Optimal Geometric Mean Returns of Stocks and Their Options

Research Article Optimal Geometric Mean Returns of Stocks and Their Options Inernaional Journal of Sochasic Analysis Volume 2012, Aricle ID 498050, 8 pages doi:10.1155/2012/498050 Research Aricle Opimal Geomeric Mean Reurns of Socks and Their Opions Guoyi Zhang Deparmen of Mahemaics

More information

An accurate analytical approximation for the price of a European-style arithmetic Asian option

An accurate analytical approximation for the price of a European-style arithmetic Asian option An accurae analyical approximaion for he price of a European-syle arihmeic Asian opion David Vyncke 1, Marc Goovaers 2, Jan Dhaene 2 Absrac For discree arihmeic Asian opions he payoff depends on he price

More information

A Note on the Impact of Options on Stock Return Volatility. Nicolas P.B. Bollen

A Note on the Impact of Options on Stock Return Volatility. Nicolas P.B. Bollen A Noe on he Impac of Opions on Sock Reurn Volailiy Nicolas P.B. Bollen ABSTRACT This paper measures he impac of opion inroducions on he reurn variance of underlying socks. Pas research generally finds

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

The option pricing framework

The option pricing framework Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

More information

4. The Poisson Distribution

4. The Poisson Distribution Virual Laboraories > 13. The Poisson Process > 1 2 3 4 5 6 7 4. The Poisson Disribuion The Probabiliy Densiy Funcion We have shown ha he k h arrival ime in he Poisson process has he gamma probabiliy densiy

More information

Pricing Black-Scholes Options with Correlated Interest. Rate Risk and Credit Risk: An Extension

Pricing Black-Scholes Options with Correlated Interest. Rate Risk and Credit Risk: An Extension Pricing Black-choles Opions wih Correlaed Ineres Rae Risk and Credi Risk: An Exension zu-lang Liao a, and Hsing-Hua Huang b a irecor and Professor eparmen of inance Naional Universiy of Kaohsiung and Professor

More information

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees.

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees. The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling 1 Insiu für Finanz- und Akuarwissenschafen, Helmholzsraße 22, 89081

More information

Lecture 18. Serial correlation: testing and estimation. Testing for serial correlation

Lecture 18. Serial correlation: testing and estimation. Testing for serial correlation Lecure 8. Serial correlaion: esing and esimaion Tesing for serial correlaion In lecure 6 we used graphical mehods o look for serial/auocorrelaion in he random error erm u. Because we canno observe he u

More information

Investor sentiment of lottery stock evidence from the Taiwan stock market

Investor sentiment of lottery stock evidence from the Taiwan stock market Invesmen Managemen and Financial Innovaions Volume 9 Issue 1 Yu-Min Wang (Taiwan) Chun-An Li (Taiwan) Chia-Fei Lin (Taiwan) Invesor senimen of loery sock evidence from he Taiwan sock marke Absrac This

More information

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees

The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees 1 The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling Insiu für Finanz- und Akuarwissenschafen, Helmholzsraße 22, 89081

More information

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Inernaional Journal of Accouning Research Vol., No. 7, 4 SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Mohammad Ebrahimi Erdi, Dr. Azim Aslani,

More information

Time Series Analysis Using SAS R Part I The Augmented Dickey-Fuller (ADF) Test

Time Series Analysis Using SAS R Part I The Augmented Dickey-Fuller (ADF) Test ABSTRACT Time Series Analysis Using SAS R Par I The Augmened Dickey-Fuller (ADF) Tes By Ismail E. Mohamed The purpose of his series of aricles is o discuss SAS programming echniques specifically designed

More information

The Kinetics of the Stock Markets

The Kinetics of the Stock Markets Asia Pacific Managemen Review (00) 7(1), 1-4 The Kineics of he Sock Markes Hsinan Hsu * and Bin-Juin Lin ** (received July 001; revision received Ocober 001;acceped November 001) This paper applies he

More information

Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...

Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100... Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The Black-Scholes Shl Ml Moel... pricing opions an calculaing

More information

ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION

ABSTRACT KEYWORDS. Term structure, duration, uncertain cash flow, variable rates of return JEL codes: C33, E43 1. INTRODUCTION THE VALUATION AND HEDGING OF VARIABLE RATE SAVINGS ACCOUNTS BY FRANK DE JONG 1 AND JACCO WIELHOUWER ABSTRACT Variable rae savings accouns have wo main feaures. The ineres rae paid on he accoun is variable

More information

The Relationship between Stock Return Volatility and. Trading Volume: The case of The Philippines*

The Relationship between Stock Return Volatility and. Trading Volume: The case of The Philippines* The Relaionship beween Sock Reurn Volailiy and Trading Volume: The case of The Philippines* Manabu Asai Faculy of Economics Soka Universiy Angelo Unie Economics Deparmen De La Salle Universiy Manila May

More information

How Useful are the Various Volatility Estimators for Improving GARCH-based Volatility Forecasts? Evidence from the Nasdaq-100 Stock Index

How Useful are the Various Volatility Estimators for Improving GARCH-based Volatility Forecasts? Evidence from the Nasdaq-100 Stock Index Inernaional Journal of Economics and Financial Issues Vol. 4, No. 3, 04, pp.65-656 ISSN: 46-438 www.econjournals.com How Useful are he Various Volailiy Esimaors for Improving GARCH-based Volailiy Forecass?

More information

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

Stochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract

Stochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract Sochasic Volailiy Models: Consideraions for he Lay Acuary 1 Phil Jouber Coomaren Vencaasawmy (Presened o he Finance & Invesmen Conference, 19-1 June 005) Absrac Sochasic models for asse prices processes

More information

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? *

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? * Does Opion Trading Have a Pervasive Impac on Underlying Sock Prices? * Neil D. Pearson Universiy of Illinois a Urbana-Champaign Allen M. Poeshman Universiy of Illinois a Urbana-Champaign Joshua Whie Universiy

More information

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

More information

Options and Volatility

Options and Volatility Opions and Volailiy Peer A. Abken and Saika Nandi Abken and Nandi are senior economiss in he financial secion of he Alana Fed s research deparmen. V olailiy is a measure of he dispersion of an asse price

More information

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

SAMUELSON S HYPOTHESIS IN GREEK STOCK INDEX FUTURES MARKET

SAMUELSON S HYPOTHESIS IN GREEK STOCK INDEX FUTURES MARKET 154 Invesmen Managemen and Financial Innovaions, Volume 3, Issue 2, 2006 SAMUELSON S HYPOTHESIS IN GREEK STOCK INDEX FUTURES MARKET Chrisos Floros, Dimirios V. Vougas Absrac Samuelson (1965) argues ha

More information

GOOD NEWS, BAD NEWS AND GARCH EFFECTS IN STOCK RETURN DATA

GOOD NEWS, BAD NEWS AND GARCH EFFECTS IN STOCK RETURN DATA Journal of Applied Economics, Vol. IV, No. (Nov 001), 313-37 GOOD NEWS, BAD NEWS AND GARCH EFFECTS 313 GOOD NEWS, BAD NEWS AND GARCH EFFECTS IN STOCK RETURN DATA CRAIG A. DEPKEN II * The Universiy of Texas

More information

Volatility Forecasting Techniques and Volatility Trading: the case of currency options

Volatility Forecasting Techniques and Volatility Trading: the case of currency options Volailiy Forecasing Techniques and Volailiy Trading: he case of currency opions by Lampros Kalivas PhD Candidae, Universiy of Macedonia, MSc in Inernaional Banking and Financial Sudies, Universiy of Souhampon,

More information

Measuring the Downside Risk of the Exchange-Traded Funds: Do the Volatility Estimators Matter?

Measuring the Downside Risk of the Exchange-Traded Funds: Do the Volatility Estimators Matter? Proceedings of he Firs European Academic Research Conference on Global Business, Economics, Finance and Social Sciences (EAR5Ialy Conference) ISBN: 978--6345-028-6 Milan-Ialy, June 30-July -2, 205, Paper

More information

The performance of popular stochastic volatility option pricing models during the Subprime crisis

The performance of popular stochastic volatility option pricing models during the Subprime crisis The performance of popular sochasic volailiy opion pricing models during he Subprime crisis Thibau Moyaer 1 Mikael Peijean 2 Absrac We assess he performance of he Heson (1993), Baes (1996), and Heson and

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

The Interest Rate Risk of Mortgage Loan Portfolio of Banks

The Interest Rate Risk of Mortgage Loan Portfolio of Banks The Ineres Rae Risk of Morgage Loan Porfolio of Banks A Case Sudy of he Hong Kong Marke Jim Wong Hong Kong Moneary Auhoriy Paper presened a he Exper Forum on Advanced Techniques on Sress Tesing: Applicaions

More information

The Choice of Stochastic Process in Real Option Valuation

The Choice of Stochastic Process in Real Option Valuation 1 The Choice of Sochasic Process in Real Opion Valuaion Luiz de Magalhães Ozorio Faculdade de Economia Ibmec Av. Presidene Wilson 118 - Cenro - Rio de Janeiro, 20030-020, RJ, Brasil +55 21 9923-1747 lmozorio@ibmecrj.br

More information

Optimal Time to Sell in Real Estate Portfolio Management

Optimal Time to Sell in Real Estate Portfolio Management Opimal ime o Sell in Real Esae Porfolio Managemen Fabrice Barhélémy and Jean-Luc Prigen hema, Universiy of Cergy-Ponoise, Cergy-Ponoise, France E-mails: fabricebarhelemy@u-cergyfr; jean-lucprigen@u-cergyfr

More information

Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C.

Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C. Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. Volailiy, Money Marke Raes, and he Transmission of Moneary Policy Seh

More information

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? *

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? * Does Opion Trading Have a Pervasive Impac on Underlying Soc Prices? * Neil D. Pearson Universiy of Illinois a Urbana-Champaign Allen M. Poeshman Universiy of Illinois a Urbana-Champaign Joshua Whie Universiy

More information

Predicting Stock Market Index Trading Signals Using Neural Networks

Predicting Stock Market Index Trading Signals Using Neural Networks Predicing Sock Marke Index Trading Using Neural Neworks C. D. Tilakarane, S. A. Morris, M. A. Mammadov, C. P. Hurs Cenre for Informaics and Applied Opimizaion School of Informaion Technology and Mahemaical

More information

Pricing Fixed-Income Derivaives wih he Forward-Risk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK-8 Aarhus V, Denmark E-mail: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs

More information

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,

More information

Machine Learning in Pairs Trading Strategies

Machine Learning in Pairs Trading Strategies Machine Learning in Pairs Trading Sraegies Yuxing Chen (Joseph) Deparmen of Saisics Sanford Universiy Email: osephc5@sanford.edu Weiluo Ren (David) Deparmen of Mahemaics Sanford Universiy Email: weiluo@sanford.edu

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES Nadine Gazer Conac (has changed since iniial submission): Chair for Insurance Managemen Universiy of Erlangen-Nuremberg Lange Gasse

More information

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand 36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,

More information

The Interaction of Guarantees, Surplus Distribution, and Asset Allocation in With Profit Life Insurance Policies

The Interaction of Guarantees, Surplus Distribution, and Asset Allocation in With Profit Life Insurance Policies 1 The Ineracion of Guaranees, Surplus Disribuion, and Asse Allocaion in Wih Profi Life Insurance Policies Alexander Kling * Insiu für Finanz- und Akuarwissenschafen, Helmholzsr. 22, 89081 Ulm, Germany

More information

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate Valuaion of Life Insurance Conracs wih Simulaed uaraneed Ineres Rae Xia uo and ao Wang Deparmen of Mahemaics Royal Insiue of echnology 100 44 Sockholm Acknowledgmens During he progress of he work on his

More information

Variance Swap. by Fabrice Douglas Rouah

Variance Swap. by Fabrice Douglas Rouah Variance wap by Fabrice Douglas Rouah www.frouah.com www.volopa.com In his Noe we presen a deailed derivaion of he fair value of variance ha is used in pricing a variance swap. We describe he approach

More information

Determinants of Capital Structure: Comparison of Empirical Evidence from the Use of Different Estimators

Determinants of Capital Structure: Comparison of Empirical Evidence from the Use of Different Estimators Serrasqueiro and Nunes, Inernaional Journal of Applied Economics, 5(1), 14-29 14 Deerminans of Capial Srucure: Comparison of Empirical Evidence from he Use of Differen Esimaors Zélia Serrasqueiro * and

More information

INVESTMENT GUARANTEES IN UNIT-LINKED LIFE INSURANCE PRODUCTS: COMPARING COST AND PERFORMANCE

INVESTMENT GUARANTEES IN UNIT-LINKED LIFE INSURANCE PRODUCTS: COMPARING COST AND PERFORMANCE INVESMEN UARANEES IN UNI-LINKED LIFE INSURANCE PRODUCS: COMPARIN COS AND PERFORMANCE NADINE AZER HAO SCHMEISER WORKIN PAPERS ON RISK MANAEMEN AND INSURANCE NO. 4 EDIED BY HAO SCHMEISER CHAIR FOR RISK MANAEMEN

More information

Testing the linearity of a time series. Some Monte Carlo and Empirical Tests

Testing the linearity of a time series. Some Monte Carlo and Empirical Tests Tesing he lineariy of a ime series. Some Mone Carlo and Empirical Tess By Efsraios Tserkezos (Corresponding auhor). Mahemaical Modelling in new Technologies and Economy Posgraduae Programme. Applied Mahemaics

More information

Heterogeneous Basket Options Pricing Using Analytical Approximations

Heterogeneous Basket Options Pricing Using Analytical Approximations Canada Research Chair in Risk Managemen Working paper 6- Heerogeneous Baske Opions Pricing Using Analyical Approximaions Georges Dionne, Geneviève Gauhier, Nadia Ouerani and Nabil Tahani * February 6 Absrac

More information

THE DETERMINATION OF PORT FACILITIES MANAGEMENT FEE WITH GUARANTEED VOLUME USING OPTIONS PRICING MODEL

THE DETERMINATION OF PORT FACILITIES MANAGEMENT FEE WITH GUARANTEED VOLUME USING OPTIONS PRICING MODEL 54 Journal of Marine Science and echnology, Vol. 13, No. 1, pp. 54-60 (2005) HE DEERMINAION OF POR FACILIIES MANAGEMEN FEE WIH GUARANEED VOLUME USING OPIONS PRICING MODEL Kee-Kuo Chen Key words: build-and-lease

More information

Carol Alexander ICMA Centre, University of Reading. Aanand Venkatramanan ICMA Centre, University of Reading

Carol Alexander ICMA Centre, University of Reading. Aanand Venkatramanan ICMA Centre, University of Reading Analyic Approximaions for Spread Opions Carol Alexander ICMA Cenre, Universiy of Reading Aanand Venkaramanan ICMA Cenre, Universiy of Reading 15h Augus 2007 ICMA Cenre Discussion Papers in Finance DP2007-11

More information

An Empirical Study on Capital Structure and Financing Decision- Evidences from East Asian Tigers

An Empirical Study on Capital Structure and Financing Decision- Evidences from East Asian Tigers An Empirical Sudy on Capial Srucure and Financing Decision- Evidences from Eas Asian Tigers Dr. Jung-Lieh Hsiao and Ching-Yu Hsu, Naional Taipei Universiy, Taiwan Dr. Kuang-Hua Hsu, Chaoyang Universiy

More information

Market Efficiency or Not? The Behaviour of China s Stock Prices in Response to the Announcement of Bonus Issues

Market Efficiency or Not? The Behaviour of China s Stock Prices in Response to the Announcement of Bonus Issues Discussion Paper No. 0120 Marke Efficiency or No? The Behaviour of China s Sock Prices in Response o he Announcemen of Bonus Issues Michelle L. Barnes and Shiguang Ma May 2001 Adelaide Universiy SA 5005,

More information

DELTA-GAMMA-THETA HEDGING OF CRUDE OIL ASIAN OPTIONS

DELTA-GAMMA-THETA HEDGING OF CRUDE OIL ASIAN OPTIONS ACA UNIVERSIAIS AGRICULURAE E SILVICULURAE MENDELIANAE BRUNENSIS Volume 63 04 Number 6, 05 hp://dx.doi.org/0.8/acaun056306897 DELA-GAMMA-HEA HEDGING OF CRUDE OIL ASIAN OPIONS Juraj Hruška Deparmen of Finance,

More information

Cointegration: The Engle and Granger approach

Cointegration: The Engle and Granger approach Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

A Re-examination of the Joint Mortality Functions

A Re-examination of the Joint Mortality Functions Norh merican cuarial Journal Volume 6, Number 1, p.166-170 (2002) Re-eaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali

More information

Research Question Is the average body temperature of healthy adults 98.6 F? Introduction to Hypothesis Testing. Statistical Hypothesis

Research Question Is the average body temperature of healthy adults 98.6 F? Introduction to Hypothesis Testing. Statistical Hypothesis Inroducion o Hypohesis Tesing Research Quesion Is he average body emperaure of healhy aduls 98.6 F? HT - 1 HT - 2 Scienific Mehod 1. Sae research hypoheses or quesions. µ = 98.6? 2. Gaher daa or evidence

More information

Optimal Investment and Consumption Decision of Family with Life Insurance

Optimal Investment and Consumption Decision of Family with Life Insurance Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

More information

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates Pricing Guaraneed Minimum Wihdrawal Benefis under Sochasic Ineres Raes Jingjiang Peng 1, Kwai Sun Leung 2 and Yue Kuen Kwok 3 Deparmen of Mahemaics, Hong Kong Universiy of Science and echnology, Clear

More information

House Price Index (HPI)

House Price Index (HPI) House Price Index (HPI) The price index of second hand houses in Colombia (HPI), regisers annually and quarerly he evoluion of prices of his ype of dwelling. The calculaion is based on he repeaed sales

More information

Revisions to Nonfarm Payroll Employment: 1964 to 2011

Revisions to Nonfarm Payroll Employment: 1964 to 2011 Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm

More information

Default Risk in Equity Returns

Default Risk in Equity Returns Defaul Risk in Equiy Reurns MRI VSSLOU and YUHNG XING * BSTRCT This is he firs sudy ha uses Meron s (1974) opion pricing model o compue defaul measures for individual firms and assess he effec of defaul

More information

The predictive power of volatility models: evidence from the ETF market

The predictive power of volatility models: evidence from the ETF market Invesmen Managemen and Financial Innovaions, Volume, Issue, 4 Chang-Wen Duan (Taiwan), Jung-Chu Lin (Taiwan) The predicive power of volailiy models: evidence from he ETF marke Absrac This sudy uses exchange-raded

More information

Cointegration Analysis of Exchange Rate in Foreign Exchange Market

Cointegration Analysis of Exchange Rate in Foreign Exchange Market Coinegraion Analysis of Exchange Rae in Foreign Exchange Marke Wang Jian, Wang Shu-li School of Economics, Wuhan Universiy of Technology, P.R.China, 430074 Absrac: This paper educed ha he series of exchange

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment. . Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

More information

CVA calculation for CDS on super senior ABS CDO

CVA calculation for CDS on super senior ABS CDO MPRA Munich Personal RePEc Archive CVA calculaion for CDS on super senior AS CDO Hui Li Augus 28 Online a hp://mpra.ub.uni-muenchen.de/17945/ MPRA Paper No. 17945, posed 19. Ocober 29 13:33 UC CVA calculaion

More information

Using Monte Carlo Method to Compare CUSUM and. EWMA Statistics

Using Monte Carlo Method to Compare CUSUM and. EWMA Statistics Using Mone Carlo Mehod o Compare CUSUM and EWMA Saisics Xiaoyu Shen Zhen Zhang Absrac: Since ordinary daases usually conain change poins of variance, CUSUM and EWMA saisics can be used o deec hese change

More information

Forecasting Malaysian Gold Using. GARCH Model

Forecasting Malaysian Gold Using. GARCH Model Applied Mahemaical Sciences, Vol. 7, 2013, no. 58, 2879-2884 HIKARI Ld, www.m-hikari.com Forecasing Malaysian Gold Using GARCH Model Pung Yean Ping 1, Nor Hamizah Miswan 2 and Maizah Hura Ahmad 3 Deparmen

More information

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical

More information

Implied Equity Duration: A New Measure of Equity Risk *

Implied Equity Duration: A New Measure of Equity Risk * Implied Equiy Duraion: A New Measure of Equiy Risk * Paricia M. Dechow The Carleon H. Griffin Deloie & Touche LLP Collegiae Professor of Accouning, Universiy of Michigan Business School Richard G. Sloan

More information

Chapter 7: Estimating the Variance of an Estimate s Probability Distribution

Chapter 7: Estimating the Variance of an Estimate s Probability Distribution Chaper 7: Esimaing he Variance of an Esimae s Probabiliy Disribuion Chaper 7 Ouline Review o Clin s Assignmen o General Properies of he Ordinary Leas Squares (OLS) Esimaion Procedure o Imporance of he

More information

Analysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer

Analysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer Recen Advances in Business Managemen and Markeing Analysis of Pricing and Efficiency Conrol Sraegy beween Inerne Reailer and Convenional Reailer HYUG RAE CHO 1, SUG MOO BAE and JOG HU PARK 3 Deparmen of

More information

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios

More information

Agnes Joseph, Dirk de Jong and Antoon Pelsser. Policy Improvement via Inverse ALM. Discussion Paper 06/2010-085

Agnes Joseph, Dirk de Jong and Antoon Pelsser. Policy Improvement via Inverse ALM. Discussion Paper 06/2010-085 Agnes Joseph, Dirk de Jong and Anoon Pelsser Policy Improvemen via Inverse ALM Discussion Paper 06/2010-085 Policy Improvemen via Inverse ALM AGNES JOSEPH 1 Universiy of Amserdam, Synrus Achmea Asse Managemen

More information

Bid-ask Spread and Order Size in the Foreign Exchange Market: An Empirical Investigation

Bid-ask Spread and Order Size in the Foreign Exchange Market: An Empirical Investigation Bid-ask Spread and Order Size in he Foreign Exchange Marke: An Empirical Invesigaion Liang Ding* Deparmen of Economics, Macaleser College, 1600 Grand Avenue, S. Paul, MN55105, U.S.A. Shor Tile: Bid-ask

More information

Breakeven Determination of Loan Limits for Reverse Mortgages under Information Asymmetry

Breakeven Determination of Loan Limits for Reverse Mortgages under Information Asymmetry IRES011-016 IRES Working Paper Series Breakeven Deerminaion of Loan Limis for Reverse Morgages under Informaion Asymmery Ming Pu Gang-Zhi Fan Yongheng Deng December, 01 Breakeven Deerminaion of Loan Limis

More information

Distance to default. Credit derivatives provide synthetic protection against bond and loan ( ( )) ( ) Strap? l Cutting edge

Distance to default. Credit derivatives provide synthetic protection against bond and loan ( ( )) ( ) Strap? l Cutting edge Srap? l Cuing edge Disance o defaul Marco Avellaneda and Jingyi Zhu Credi derivaives provide synheic proecion agains bond and loan defauls. A simple example of a credi derivaive is he credi defaul swap,

More information

Why we have always used the Black-Scholes-Merton option pricing formula

Why we have always used the Black-Scholes-Merton option pricing formula Why we have always used he Black-Scholes-Meron opion pricing formula Charles J. Corrado Deakin Universiy Melbourne, Ausralia April 4, 9 Absrac Derman and aleb (he Issusions of Dynamic Hedging, 5 uncover

More information

Sample Level 2 Editing

Sample Level 2 Editing Sample Level 2 Ediing A Laice Model for Opion Pricing Under GARCH-Jump Processes ABSTRACT This sudy posis a need for an innovaive discree-ime laice model This sudy inegraes he GARCH opion pricing ree of

More information

FX OPTION PRICING: RESULTS FROM BLACK SCHOLES, LOCAL VOL, QUASI Q-PHI AND STOCHASTIC Q-PHI MODELS

FX OPTION PRICING: RESULTS FROM BLACK SCHOLES, LOCAL VOL, QUASI Q-PHI AND STOCHASTIC Q-PHI MODELS FX OPTION PRICING: REULT FROM BLACK CHOLE, LOCAL VOL, QUAI Q-PHI AND TOCHATIC Q-PHI MODEL Absrac Krishnamurhy Vaidyanahan 1 The paper suggess a new class of models (Q-Phi) o capure he informaion ha he

More information