Forecasting, Ordering and Stock- Holding for Erratic Demand

Size: px
Start display at page:

Download "Forecasting, Ordering and Stock- Holding for Erratic Demand"

Transcription

1 ISF rd o 26 h June 2002 Forecasing, Ordering and Sock- Holding for Erraic Demand Andrew Eaves Lancaser Universiy / Andalus Soluions Limied

2 Inroducion Erraic and slow-moving demand Demand classificaion Spare pars invenory example Forecasing erraic demand Croson s mehod Modified mehods Means of comparison Forecas performance Implied sock-holdings Conclusions and quesions 2

3 Erraic and Slow-Moving Demand Erraic, or inermien, demand has infrequen ransacions wih variable demand sizes; ofen caused by: Many small cusomers and a few large Variaions magnified by muli-echelon sysem Correlaion beween cusomer requess Sympaheic replacemen of pars Aggregaion, or buckeing, of demand Slow-moving demand has infrequen ransacions wih low demand sizes. Common mehods for forecasing and sock-holding less effecive if demand no smooh and coninuous. 3

4 Demand Classificaion Lead-Time Demand Componen Transacion Variabiliy Demand Size Variabiliy Lead-Time Variabiliy Demand Paern Low Low Smooh Low Irregular Low Slow-moving Low Mildly Erraic ly Erraic Uilises an analyical mehod for classifying demand. Wha consiues Low and values are peculiar o he individual invenory. 4

5 Spare Pars Invenory Example Royal Air Force (RAF) invenory 684,000 consumable pars (or SKUs) 145 million unis of sock Toal value of 2.1 billion sock-holdings In case of war and disrupion o supply chain Long and variable replenishmen lead-imes procuremen cos afer iniial provisioning Low relaive cos of holding sock Demand over six years Demand Transacions 0 1 o 9 10 o Percenage of Line Iems 40.5% 37.3% 18.6% 3.5% Average Demand Size

6 Forecasing Erraic Demand Exponenial smoohing (ES) ofen used in realiy, bu Forecas highes afer a demand As order level broken by a demand occurrence here is a endency for unnecessarily high socks. Croson s mehod provides an alernaive Separaely applies ES o inerval beween demand and size of demands Only updaes if demand occurs y = demand for an iem a ime p = mean inerval beween ransacions z = mean demand size ŷ = mean demand per period (he forecas) q = ime inerval since las demand α = smoohing consan 6

7 Croson s Mehod If y = 0 hen p = p -1 z = z -1 q= q + 1 Else p = p -1 + α(q - p -1 ) z = z -1 + α(y -z -1 ) q = 1 Size and inerval combine as ŷ = z / p Croson s mehod reduces bias of ES bu does no eliminae i compleely. 7

8 Modified Mehods Syneos and Boylan (2001) seek o remove hisorical bias from he forecas. Revised Croson s mehod: yˆ = z p 1 c p 1 where c is an arbirarily large consan. Bias Reducion Mehod yˆ z α z 2 α ( p 1) p = 2 p Approximaion Mehod yˆ α = 1 2 z p 8

9 Means of Comparison Choice of radiional measures of forecas performance such as MAD, MSE, MAPE and MdAPE Choice of comparison beween acual value and forecas value One-period ahead demand Lead-ime demand in all periods Lead-ime demand in periods of demand only In a real seing i is demand over a leadime ha mus be caered for, herefore sensible o measure performance over his period. Replenishmen order is only placed afer a demand occurrence, herefore accurae forecas required a his ime. 9

10 Forecas Performance Using 18,750 line iems wih equal demand paern represenaion, resuls vary and no single mehod emerges as bes: Croson s mehod performs well for one-period ahead demand, paricularly wih weekly daa. ES compleely dominaes for lead-ime demand in all periods. Croson s mehod good for lead-ime demand in periods of demand only wih quarerly daa; simple previous year average mehod bes for monhly and weekly daa. Approximaion mehod consisenly beer han Croson s mehod bu no as good as ES for lead-ime demand in all periods. Differen conclusions arise depending on which measure is uilised an alernaive measure is required! 10

11 Implied Sock-Holdings Compare he average implied sockholdings from each forecasing mehod using common service level of 100 percen. Use back-simulaion o calculae exac safey margin ha gives a sock-ou quaniy of zero. More accurae forecasing require less sock. Able o aribue moneary coss o differences in accuracy Key invenory performance measure. Easily undersandable resuls. Approximaion mehod allows lowes sock-holdings across all demand paerns, wih greaes improvemens occurring wih erraic and slow-moving demand. 11

12 Conclusions Erraic and slow-moving demand common in spare pars invenories. ES ofen used for forecasing alhough Croson s mehod receiving increasing aenion. Recen modificaions o Croson s mehod provide viable alernaives. Opimal smoohing consan(s) can be obained from a hold-ou sample. Approximaion mehod provides bes resuls when assessed using implied sock-holdings - a key performance measure in he real world. 12

13 Furher Informaion Any quesions - now or laer? Andrew Eaves, Andalus Soluions Ld, 38 Salram Road, Farnborough, Hampshire GU14 7DX, England Telephone +44 (0) , or visi hp://www.andalus-soluions.com I hope you enjoy he res of ISF

INTRODUCTION TO FORECASTING

INTRODUCTION TO FORECASTING INTRODUCTION TO FORECASTING INTRODUCTION: Wha is a forecas? Why do managers need o forecas? A forecas is an esimae of uncerain fuure evens (lierally, o "cas forward" by exrapolaing from pas and curren

More information

Chapter 8 Student Lecture Notes 8-1

Chapter 8 Student Lecture Notes 8-1 Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop

More information

Planning Demand and Supply in a Supply Chain. Forecasting and Aggregate Planning

Planning Demand and Supply in a Supply Chain. Forecasting and Aggregate Planning Planning Demand and Supply in a Supply Chain Forecasing and Aggregae Planning 1 Learning Objecives Overview of forecasing Forecas errors Aggregae planning in he supply chain Managing demand Managing capaciy

More information

Time-Expanded Sampling (TES) For Ensemble-based Data Assimilation Applied To Conventional And Satellite Observations

Time-Expanded Sampling (TES) For Ensemble-based Data Assimilation Applied To Conventional And Satellite Observations 27 h WAF/23 rd NWP, 29 June 3 July 2015, Chicago IL. 1 Time-Expanded Sampling (TES) For Ensemble-based Daa Assimilaion Applied To Convenional And Saellie Observaions Allen Zhao 1, Qin Xu 2, Yi Jin 1, Jusin

More information

DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU

DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU Yugoslav Journal of Operaions Research 2 (22), Number, 6-7 DEERMINISIC INVENORY MODEL FOR IEMS WIH IME VARYING DEMAND, WEIBULL DISRIBUION DEERIORAION AND SHORAGES KUN-SHAN WU Deparmen of Bussines Adminisraion

More information

The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1

The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1 Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

Forecasting. Including an Introduction to Forecasting using the SAP R/3 System

Forecasting. Including an Introduction to Forecasting using the SAP R/3 System Forecasing Including an Inroducion o Forecasing using he SAP R/3 Sysem by James D. Blocher Vincen A. Maber Ashok K. Soni Munirpallam A. Venkaaramanan Indiana Universiy Kelley School of Business February

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

Chapter 5. Aggregate Planning

Chapter 5. Aggregate Planning Chaper 5 Aggregae Planning Supply Chain Planning Marix procuremen producion disribuion sales longerm Sraegic Nework Planning miderm shorerm Maerial Requiremens Planning Maser Planning Producion Planning

More information

Forecasting and Information Sharing in Supply Chains Under Quasi-ARMA Demand

Forecasting and Information Sharing in Supply Chains Under Quasi-ARMA Demand Forecasing and Informaion Sharing in Supply Chains Under Quasi-ARMA Demand Avi Giloni, Clifford Hurvich, Sridhar Seshadri July 9, 2009 Absrac In his paper, we revisi he problem of demand propagaion in

More information

Time-Series Forecasting Model for Automobile Sales in Thailand

Time-Series Forecasting Model for Automobile Sales in Thailand การประช มว ชาการด านการว จ ยด าเน นงานแห งชาต ประจ าป 255 ว นท 24 25 กรกฎาคม พ.ศ. 255 Time-Series Forecasing Model for Auomobile Sales in Thailand Taweesin Apiwaanachai and Jua Pichilamken 2 Absrac Invenory

More information

A New Type of Combination Forecasting Method Based on PLS

A New Type of Combination Forecasting Method Based on PLS American Journal of Operaions Research, 2012, 2, 408-416 hp://dx.doi.org/10.4236/ajor.2012.23049 Published Online Sepember 2012 (hp://www.scirp.org/journal/ajor) A New Type of Combinaion Forecasing Mehod

More information

SPECIAL REPORT May 4, Shifting Drivers of Inflation Canada versus the U.S.

SPECIAL REPORT May 4, Shifting Drivers of Inflation Canada versus the U.S. Paul Ferley Assisan Chief Economis 416-974-7231 paul.ferley@rbc.com Nahan Janzen Economis 416-974-0579 nahan.janzen@rbc.com SPECIAL REPORT May 4, 2010 Shifing Drivers of Inflaion Canada versus he U.S.

More information

An empirical analysis about forecasting Tmall air-conditioning sales using time series model Yan Xia

An empirical analysis about forecasting Tmall air-conditioning sales using time series model Yan Xia An empirical analysis abou forecasing Tmall air-condiioning sales using ime series model Yan Xia Deparmen of Mahemaics, Ocean Universiy of China, China Absrac Time series model is a hospo in he research

More information

Part 1: White Noise and Moving Average Models

Part 1: White Noise and Moving Average Models Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical

More information

Usefulness of the Forward Curve in Forecasting Oil Prices

Usefulness of the Forward Curve in Forecasting Oil Prices Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,

More information

The Application of Multi Shifts and Break Windows in Employees Scheduling

The Application of Multi Shifts and Break Windows in Employees Scheduling The Applicaion of Muli Shifs and Brea Windows in Employees Scheduling Evy Herowai Indusrial Engineering Deparmen, Universiy of Surabaya, Indonesia Absrac. One mehod for increasing company s performance

More information

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur Module 3 Design for Srengh Lesson 2 Sress Concenraion Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress

More information

Using Weather Ensemble Predictions in Electricity Demand Forecasting

Using Weather Ensemble Predictions in Electricity Demand Forecasting Using Weaher Ensemble Predicions in Elecriciy Demand Forecasing James W. Taylor Saïd Business School Universiy of Oxford 59 George Sree Oxford OX1 2BE, UK Tel: +44 (0)1865 288678 Fax: +44 (0)1865 288651

More information

Week #9 - The Integral Section 5.1

Week #9 - The Integral Section 5.1 Week #9 - The Inegral Secion 5.1 From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,

More information

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya. Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one

More information

COMPARISON OF AIR TRAVEL DEMAND FORECASTING METHODS

COMPARISON OF AIR TRAVEL DEMAND FORECASTING METHODS COMPARISON OF AIR RAVE DEMAND FORECASING MEHODS Ružica Škurla Babić, M.Sc. Ivan Grgurević, B.Eng. Universiy of Zagreb Faculy of ranspor and raffic Sciences Vukelićeva 4, HR- Zagreb, Croaia skurla@fpz.hr,

More information

INVENTORY COST CONSEQUENCES OF VARIABILITY DEMAND PROCESS WITHIN A MULTI-ECHELON SUPPLY CHAIN

INVENTORY COST CONSEQUENCES OF VARIABILITY DEMAND PROCESS WITHIN A MULTI-ECHELON SUPPLY CHAIN INVENTORY COST CONSEQUENCES OF VARIABILITY DEMAND PROCESS WITHIN A MULTI-ECHELON SUPPLY CHAIN Francisco Campuzano Bolarín Technical Universiy of Caragena Deparameno de Economía de la Empresa Campus Muralla

More information

Small and Large Trades Around Earnings Announcements: Does Trading Behavior Explain Post-Earnings-Announcement Drift?

Small and Large Trades Around Earnings Announcements: Does Trading Behavior Explain Post-Earnings-Announcement Drift? Small and Large Trades Around Earnings Announcemens: Does Trading Behavior Explain Pos-Earnings-Announcemen Drif? Devin Shanhikumar * Firs Draf: Ocober, 2002 This Version: Augus 19, 2004 Absrac This paper

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

A Further Examination of Insurance Pricing and Underwriting Cycles

A Further Examination of Insurance Pricing and Underwriting Cycles A Furher Examinaion of Insurance ricing and Underwriing Cycles AFIR Conference, Sepember 2005, Zurich, Swizerland Chris K. Madsen, GE Insurance Soluions, Copenhagen, Denmark Svend Haasrup, GE Insurance

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Revisions to Nonfarm Payroll Employment: 1964 to 2011

Revisions to Nonfarm Payroll Employment: 1964 to 2011 Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm

More information

ANALYSIS FOR FINDING AN EFFICIENT SALES FORECASTING METHOD IN THE PROCESS OF PRODUCTION PLANNING, OPERATION AND OTHER AREAS OF DECISION MAKING

ANALYSIS FOR FINDING AN EFFICIENT SALES FORECASTING METHOD IN THE PROCESS OF PRODUCTION PLANNING, OPERATION AND OTHER AREAS OF DECISION MAKING Inernaional Journal of Mechanical and Producion Engineering Research and Developmen (IJMPERD ) Vol.1, Issue 2 Dec 2011 1-36 TJPRC Pv. Ld., ANALYSIS FOR FINDING AN EFFICIENT SALES FORECASTING METHOD IN

More information

Vector Autoregressions (VARs): Operational Perspectives

Vector Autoregressions (VARs): Operational Perspectives Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians

More information

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments

BALANCE OF PAYMENTS. First quarter 2008. Balance of payments BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se

More information

Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds

Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds OPERATIONS RESEARCH Vol. 54, No. 6, November December 2006, pp. 1079 1097 issn 0030-364X eissn 1526-5463 06 5406 1079 informs doi 10.1287/opre.1060.0338 2006 INFORMS Invenory Planning wih Forecas Updaes:

More information

The effect of demand distributions on the performance of inventory policies

The effect of demand distributions on the performance of inventory policies DOI 10.2195/LJ_Ref_Kuhn_en_200907 The effec of demand disribuions on he performance of invenory policies SONJA KUHNT & WIEBKE SIEBEN FAKULTÄT STATISTIK TECHNISCHE UNIVERSITÄT DORTMUND 44221 DORTMUND Invenory

More information

Appendix D Flexibility Factor/Margin of Choice Desktop Research

Appendix D Flexibility Factor/Margin of Choice Desktop Research Appendix D Flexibiliy Facor/Margin of Choice Deskop Research Cheshire Eas Council Cheshire Eas Employmen Land Review Conens D1 Flexibiliy Facor/Margin of Choice Deskop Research 2 Final Ocober 2012 \\GLOBAL.ARUP.COM\EUROPE\MANCHESTER\JOBS\200000\223489-00\4

More information

CLASSICAL TIME SERIES DECOMPOSITION

CLASSICAL TIME SERIES DECOMPOSITION Time Series Lecure Noes, MSc in Operaional Research Lecure CLASSICAL TIME SERIES DECOMPOSITION Inroducion We menioned in lecure ha afer we calculaed he rend, everyhing else ha remained (according o ha

More information

Performance Center Overview. Performance Center Overview 1

Performance Center Overview. Performance Center Overview 1 Performance Cener Overview Performance Cener Overview 1 ODJFS Performance Cener ce Cener New Performance Cener Model Performance Cener Projec Meeings Performance Cener Execuive Meeings Performance Cener

More information

How Useful are the Various Volatility Estimators for Improving GARCH-based Volatility Forecasts? Evidence from the Nasdaq-100 Stock Index

How Useful are the Various Volatility Estimators for Improving GARCH-based Volatility Forecasts? Evidence from the Nasdaq-100 Stock Index Inernaional Journal of Economics and Financial Issues Vol. 4, No. 3, 04, pp.65-656 ISSN: 46-438 www.econjournals.com How Useful are he Various Volailiy Esimaors for Improving GARCH-based Volailiy Forecass?

More information

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand 36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,

More information

Research on Inventory Sharing and Pricing Strategy of Multichannel Retailer with Channel Preference in Internet Environment

Research on Inventory Sharing and Pricing Strategy of Multichannel Retailer with Channel Preference in Internet Environment Vol. 7, No. 6 (04), pp. 365-374 hp://dx.doi.org/0.457/ijhi.04.7.6.3 Research on Invenory Sharing and Pricing Sraegy of Mulichannel Reailer wih Channel Preference in Inerne Environmen Hanzong Li College

More information

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783 Sock raing wih Recurren Reinforcemen Learning (RRL) CS9 Applicaion Projec Gabriel Molina, SUID 555783 I. INRODUCION One relaively new approach o financial raing is o use machine learning algorihms o preic

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Cointegration: The Engle and Granger approach

Cointegration: The Engle and Granger approach Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

More information

A Probability Density Function for Google s stocks

A Probability Density Function for Google s stocks A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

More information

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look

More information

Markit Excess Return Credit Indices Guide for price based indices

Markit Excess Return Credit Indices Guide for price based indices Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semi-annual

More information

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni

Supply Chain Management Using Simulation Optimization By Miheer Kulkarni Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical

More information

SPEC model selection algorithm for ARCH models: an options pricing evaluation framework

SPEC model selection algorithm for ARCH models: an options pricing evaluation framework Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

The impact of the trading systems development on bid-ask spreads

The impact of the trading systems development on bid-ask spreads Chun-An Li (Taiwan), Hung-Cheng Lai (Taiwan)* The impac of he rading sysems developmen on bid-ask spreads Absrac Following he closure, on 30 June 2005, of he open oucry sysem on he Singapore Exchange (SGX),

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

Glenn P. Jenkins Queen s University, Kingston, Canada and Eastern Mediterranean University, North Cyprus

Glenn P. Jenkins Queen s University, Kingston, Canada and Eastern Mediterranean University, North Cyprus COST-BENEFIT ANALYSIS FOR INVESTMENT DECISIONS, CHAPTER 3: THE FINANCIAL APPRAISAL OF PROJECTS Glenn P. Jenkins Queen s Universiy, Kingson, Canada and Easern Medierranean Universiy, Norh Cyprus Developmen

More information

Information technology and economic growth in Canada and the U.S.

Information technology and economic growth in Canada and the U.S. Canada U.S. Economic Growh Informaion echnology and economic growh in Canada and he U.S. Informaion and communicaion echnology was he larges conribuor o growh wihin capial services for boh Canada and he

More information

Hotel Room Demand Forecasting via Observed Reservation Information

Hotel Room Demand Forecasting via Observed Reservation Information Proceedings of he Asia Pacific Indusrial Engineering & Managemen Sysems Conference 0 V. Kachivichyanuul, H.T. Luong, and R. Piaaso Eds. Hoel Room Demand Forecasing via Observed Reservaion Informaion aragain

More information

Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1

Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1 Absrac number: 05-0407 Single-machine Scheduling wih Periodic Mainenance and boh Preempive and Non-preempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy

More information

1. The graph shows the variation with time t of the velocity v of an object.

1. The graph shows the variation with time t of the velocity v of an object. 1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially

More information

An Analysis of Tax Revenue Forecast Errors

An Analysis of Tax Revenue Forecast Errors An Analysis of Tax Revenue Forecas Errors Marin Keene and Peer Thomson N EW Z EALAND T REASURY W ORKING P APER 07/02 M ARCH 2007 NZ TREASURY WORKING PAPER 07/02 An Analysis of Tax Revenue Forecas Errors

More information

Chapter 1.6 Financial Management

Chapter 1.6 Financial Management Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

More information

Math 201 Lecture 12: Cauchy-Euler Equations

Math 201 Lecture 12: Cauchy-Euler Equations Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

More information

Double Entry System of Accounting

Double Entry System of Accounting CHAPTER 2 Double Enry Sysem of Accouning Sysem of Accouning \ The following are he main sysem of accouning for recording he business ransacions: (a) Cash Sysem of Accouning. (b) Mercanile or Accrual Sysem

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

As widely accepted performance measures in supply chain management practice, frequency-based service

As widely accepted performance measures in supply chain management practice, frequency-based service MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 6, No., Winer 2004, pp. 53 72 issn 523-464 eissn 526-5498 04 060 0053 informs doi 0.287/msom.030.0029 2004 INFORMS On Measuring Supplier Performance Under

More information

TEACHER NOTES HIGH SCHOOL SCIENCE NSPIRED

TEACHER NOTES HIGH SCHOOL SCIENCE NSPIRED Radioacive Daing Science Objecives Sudens will discover ha radioacive isoopes decay exponenially. Sudens will discover ha each radioacive isoope has a specific half-life. Sudens will develop mahemaical

More information

Why Did the Demand for Cash Decrease Recently in Korea?

Why Did the Demand for Cash Decrease Recently in Korea? Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

More information

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Inernaional Journal of Accouning Research Vol., No. 7, 4 SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Mohammad Ebrahimi Erdi, Dr. Azim Aslani,

More information

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely

More information

Time Series Analysis using In a Nutshell

Time Series Analysis using In a Nutshell 1 Time Series Analysis using In a Nushell dr. JJM J.J.M. Rijpkema Eindhoven Universiy of Technology, dep. Mahemaics & Compuer Science P.O.Box 513, 5600 MB Eindhoven, NL 2012 j.j.m.rijpkema@ue.nl Sochasic

More information

Inventory Management and Demand Prediction System for Reagents and Consumables

Inventory Management and Demand Prediction System for Reagents and Consumables Invenory Managemen and Demand Predicion Sysem for Reagens and Consumables Tzu-Chuen Lu, Shih-Chieh Lai, 3 Chun-Ya Tseng *, Firs Auhor, Corresponding Auhor Deparmen of Informaion Managemen, Chaoyang Universiy

More information

CRISES AND THE FLEXIBLE PRICE MONETARY MODEL. Sarantis Kalyvitis

CRISES AND THE FLEXIBLE PRICE MONETARY MODEL. Sarantis Kalyvitis CRISES AND THE FLEXIBLE PRICE MONETARY MODEL Saranis Kalyviis Currency Crises In fixed exchange rae regimes, counries rarely abandon he regime volunarily. In mos cases, raders (or speculaors) exchange

More information

Information Systems for Business Integration: ERP Systems

Information Systems for Business Integration: ERP Systems Informaion Sysems for Business Inegraion: ERP Sysems (December 3, 2012) BUS3500 - Abdou Illia, Fall 2012 1 LEARNING GOALS Explain he difference beween horizonal and verical business inegraion. Describe

More information

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005 FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a

More information

Capacity Planning and Performance Benchmark Reference Guide v. 1.8

Capacity Planning and Performance Benchmark Reference Guide v. 1.8 Environmenal Sysems Research Insiue, Inc., 380 New York S., Redlands, CA 92373-8100 USA TEL 909-793-2853 FAX 909-307-3014 Capaciy Planning and Performance Benchmark Reference Guide v. 1.8 Prepared by:

More information

Why Do Real and Nominal. Inventory-Sales Ratios Have Different Trends?

Why Do Real and Nominal. Inventory-Sales Ratios Have Different Trends? Why Do Real and Nominal Invenory-Sales Raios Have Differen Trends? By Valerie A. Ramey Professor of Economics Deparmen of Economics Universiy of California, San Diego and Research Associae Naional Bureau

More information

Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypothesis Testing in Regression Models Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

More information

Making a Faster Cryptanalytic Time-Memory Trade-Off

Making a Faster Cryptanalytic Time-Memory Trade-Off Making a Faser Crypanalyic Time-Memory Trade-Off Philippe Oechslin Laboraoire de Securié e de Crypographie (LASEC) Ecole Polyechnique Fédérale de Lausanne Faculé I&C, 1015 Lausanne, Swizerland philippe.oechslin@epfl.ch

More information

CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE

CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE Kaarína Sakálová 1. Classificaions of reinsurance There are many differen ways in which reinsurance may be classified or disinguished. We will discuss briefly

More information

Setting Accuracy Targets for. Short-Term Judgemental Sales Forecasting

Setting Accuracy Targets for. Short-Term Judgemental Sales Forecasting Seing Accuracy Targes for Shor-Term Judgemenal Sales Forecasing Derek W. Bunn London Business School Sussex Place, Regen s Park London NW1 4SA, UK Tel: +44 (0)171 262 5050 Fax: +44(0)171 724 7875 Email:

More information

USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES

USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES Mehme Nuri GÖMLEKSİZ Absrac Using educaion echnology in classes helps eachers realize a beer and more effecive learning. In his sudy 150 English eachers were

More information

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios

More information

Acceleration Lab Teacher s Guide

Acceleration Lab Teacher s Guide Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

More information

Segmentation, Probability of Default and Basel II Capital Measures. for Credit Card Portfolios

Segmentation, Probability of Default and Basel II Capital Measures. for Credit Card Portfolios Segmenaion, Probabiliy of Defaul and Basel II Capial Measures for Credi Card Porfolios Draf: Aug 3, 2007 *Work compleed while a Federal Reserve Bank of Philadelphia Dennis Ash Federal Reserve Bank of Philadelphia

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Understanding the Profit and Loss Distribution of Trading Algorithms

Understanding the Profit and Loss Distribution of Trading Algorithms Undersanding he Profi and Loss Disribuion of Trading Algorihms Rober Kissell Vice Presiden, JPMorgan Rober.Kissell@JPMChase.com Robero Malamu, PhD Vice Presiden, JPMorgan Robero.Malamu@JPMChase.com February

More information

Reporting to Management

Reporting to Management CHAPTER 31 Reporing o Managemen Inroducion The success or oherwise of any business underaking depends primarily on earning revenue ha would generae sufficien resources for sound growh. To achieve his objecive,

More information

Measuring the Services of Property-Casualty Insurance in the NIPAs

Measuring the Services of Property-Casualty Insurance in the NIPAs 1 Ocober 23 Measuring he Services of Propery-Casualy Insurance in he IPAs Changes in Conceps and Mehods By Baoline Chen and Dennis J. Fixler A S par of he comprehensive revision of he naional income and

More information

Stock Price Prediction Using the ARIMA Model

Stock Price Prediction Using the ARIMA Model 2014 UKSim-AMSS 16h Inernaional Conference on Compuer Modelling and Simulaion Sock Price Predicion Using he ARIMA Model 1 Ayodele A. Adebiyi., 2 Aderemi O. Adewumi 1,2 School of Mahemaic, Saisics & Compuer

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 2010 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

More information

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

More information

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

More information

Classification based Expert Selection for Accurate Sales Forecasting

Classification based Expert Selection for Accurate Sales Forecasting Inernaional Journal of Compuer Applicaions (0975 8887) Classificaion based Exper Selecion for Accurae Sales Forecasing Darshana D. Chande Compuer Engineering Deparmen, Governmen polyechnic, Thane M.Vijayalakshmi

More information

Price Controls and Banking in Emissions Trading: An Experimental Evaluation

Price Controls and Banking in Emissions Trading: An Experimental Evaluation This version: March 2014 Price Conrols and Banking in Emissions Trading: An Experimenal Evaluaion John K. Sranlund Deparmen of Resource Economics Universiy of Massachuses-Amhers James J. Murphy Deparmen

More information

A New Schedule Estimation Technique for Construction Projects

A New Schedule Estimation Technique for Construction Projects A New Schedule Esimaion Technique for Consrucion Projecs Roger D. H. Warburon Deparmen of Adminisraive Sciences, Meropolian College Boson, MA 02215 hp://people.bu.edu/rwarb DOI 10.5592/omcj.2014.3.1 Research

More information

1. Fund types and population covered

1. Fund types and population covered Performance and financial overview of invesmen funds - France 1 March 016 The Banque de France draws up he following informaion for invesmen funds: 1 monhly saisics on fund ousandings and flows, and on

More information

LINKING STRATEGIC OBJECTIVES TO OPERATIONS: TOWARDS A MORE EFFECTIVE SUPPLY CHAIN DECISION MAKING. Changrui Ren Jin Dong Hongwei Ding Wei Wang

LINKING STRATEGIC OBJECTIVES TO OPERATIONS: TOWARDS A MORE EFFECTIVE SUPPLY CHAIN DECISION MAKING. Changrui Ren Jin Dong Hongwei Ding Wei Wang Proceedings of he 2006 Winer Simulaion Conference L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoo, eds. LINKING STRATEGIC OBJECTIVES TO OPERATIONS: TOWARDS A MORE EFFECTIVE

More information

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

More information