Frequency Distributions


 Sybil Jones
 2 years ago
 Views:
Transcription
1 Displaying Data
2 Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data to get a general overview of the results. Remember, this is the goal of descriptive statistical techniques. One method for simplifying and organizing data is to construct a frequency distribution. Frequency describes the number of times or how often a category, score, or range of scores occurs Frequency distribution a summary display for a distribution of data
3 Frequency Distribution Tables Displaying Data & Central Tendency A simple frequency distribution table consists of two columns  one listing categories on the scale of measurement (x) and another for frequency (f). In the x column, values are listed in order from lowest to highest (or from highest to lowest) For the frequency column, tallies are determined for each value (how often each x value occurs in the data set). These tallies are the frequencies for each x value. The sum of the frequencies should equal N. Frequency distributions can be computed for grouped or ungrouped data
4 Regular (ungrouped) Frequency Distribution When a frequency distribution table lists all of the individual categories (x values) it is called a regular frequency distribution. Example: x = number of naps toddlers take per day x f N=40
5 Grouped Frequency Distribution Displaying Data & Central Tendency Sometimes, especially when dealing with continuous variables, a set of scores covers a wide range of values In these situations, a list of all the x values would be too long to allow a simple presentation of the data. In such cases, a grouped frequency distribution table is used. In a grouped table, the x column lists groups of scores, called class intervals, rather than individual values.
6 Example: x = college course enrollment Sorted values: Grouped frequency distribution x f N=40 Note: I prefer to use real limits when specifying intervals. Your book uses apparent limits. You can use either.
7 Grouped Frequency Distributions: Guidelines Sort your data first, it makes building the frequency distributions easier Decide on interval width and number of intervals You should have about 520 intervals All intervals should have the same width Your interval width should be a relatively simple number Examples: 10, 5, 2, 1, 0.5 Your set of intervals should cover all observed values and should not overlap I.e., no individual score should fall in more than one interval
8 Relative Frequencies & Percentages Displaying Data & Central Tendency Often, researchers are more interested in the relative frequency (or proportion) of individuals in each category than in the total number. Remember from the last lecture that we usually measure statistics on samples to infer parameters of populations The relative frequency of a sample approximates the relative frequency of the population, whereas the raw frequency of a sample does not. The relative frequency distribution table lists the proportion (p) for each category: p = f/n. The sum of the p column should equal Alternatively, the table could list the percentage of the distribution corresponding to each X value. The percentage is found by multiplying p by 100. The sum of the percentage column should equal 100%.
9 Relative Frequencies & Percentages Displaying Data & Central Tendency x f p (or f/n) % Total %
10 Cumulative Frequencies, Proportions, & Percentages Cumulative frequencies, proportions, or percentages describe the sum of frequencies, proportions, or percentages across a series of intervals Usually refers to bottomup sum of frequencies E.g., the number of college courses with at least k students
11 Cumulative Frequencies & Percentages x f Cumulative Freq. % Cumulative % % 12.5% % 67.5% % 72.5% % 85.0% % 85.0% % 87.5% % 90.0% % 97.5% % 100.0%
12 Frequency Distribution Graphs Displaying Data & Central Tendency In a frequency distribution graph, the score categories (X values) are listed on the X axis and the frequencies are listed on the Y axis. When the score categories consist of numerical scores from an interval or ratio scale, the graph should be either a histogram or a polygon.
13 Bar Plots & Histograms Bar plots are plots showing the relationship between two variables. Usually, the height of a bar represents the value of a dependent variable when the independent variable consists of nominal or ordinal category labels. Histograms are bar plots in which the rectangles are centered above each score (or class interval) and the heights of the bars correspond to the frequencies (or relative frequencies) of the scores. The widths of bars should extend to the real limits of the class intervals, so that adjacent bars touch. Note: Proper histograms actually represent frequencies in terms of the area rather than the height of bars, but we won t worry about that distinction in this course
14 Bar Plot Example: M&Ms Colors Displaying Data & Central Tendency x f brown 14 red 14 blue 10 orange 7 green 6 yellow 5 n=56
15 Histogram Example: Course Enrollment x f N=40
16 Line Plots & Frequency Polygons Displaying Data & Central Tendency Line plots are plots in which dots (rather than rectangles) are centered above one score in each of a pair of scores, with the height of the dot determined by the second score, and lines are drawn to connect the dots. A frequency polygon is a type of line plot analogous to a histogram, where the heights of the dots correspond to frequencies or relative frequencies of scores or intervals.
17 Line Plot Example: Monthly Avg. Temps in NJ
18 Frequency Polygons: Example Displaying Data & Central Tendency
19 Scatter Plots Displaying Data & Central Tendency A scatter plot (or scatter gram) displays discrete data points (x, y) to summarize the relationship between two variables Height Weight
20 Theoretical Distributions, Probability Densities & Smooth Curves If the scores in the population are continuous variables, then the theoretical distributions describing them will often be depicted as smooth curves Examples of this include the normal distribution (i.e., the bell curve ) as well as most of the test statistic distributions that we will deal with in this course (e.g., the t distribution, the F distribution, the chisquare distribution) The smooth curves represent the expectation that in a large population, relative frequencies should change smoothly as a function of a continuous variable. These smooth curves actually represent probability densities, which are related to relative frequencies
21 Displaying Data & Central Tendency
22 Displaying Data & Central Tendency
23 Displaying Data & Central Tendency
24 Displaying Data & Central Tendency
25 Displaying Data & Central Tendency
26 Frequency & Probability Distribution Graphs Frequency & probability distribution graphs are useful because they show the entire set of scores. At a glance, you can determine the highest score, the lowest score, and where the scores are centered. The graph also shows whether the scores are clustered together or scattered over a wide range.
27 Distribution Shape A graph shows the shape of the distribution. A distribution is symmetrical if the left side of the graph is (roughly) a mirror image of the right side. One example of a symmetrical distribution is the bellshaped normal distribution. On the other hand, distributions are skewed when scores pile up on one side of the distribution, leaving a "tail" of a few extreme values on the other side.
28 Distribution Shape In a positively skewed distribution, the scores tend to pile up on the left side of the distribution with the tail tapering off to the right. In a negatively skewed distribution, the scores tend to pile up on the right side and the tail points to the left. A unimodal distribution has one peak A bimodal (multimodal) distribution has two (multiple) peaks
29 Displaying Data & Central Tendency
30 Central Tendency
31 Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents the entire distribution of scores. The goal of central tendency is to identify the single value that is the best representative for the entire set of data.
32 Central Tendency By identifying the "average score," central tendency allows researchers to summarize or condense a large set of data into a single value. Thus, central tendency serves as a descriptive statistic because it allows researchers to describe or present a set of data in a very simplified, concise form. In addition, it is possible to compare two (or more) sets of data by simply comparing the average score (central tendency) for one set versus the average score for another set.
33 The Mean, the Median, and the Mode No single procedure always produces a good, representative value. Therefore, researchers have developed three commonly used techniques for measuring central tendency: the mean, the median, and the mode.
34 Displaying Data & Central Tendency
35 The Mean The mean is the most commonly used measure of central tendency. The population mean is denoted by: The sample mean is denoted by: M or X Computation of the mean requires scores that are numerical values measured on an interval or ratio scale. The mean is obtained by computing the sum, or total, for the entire set of scores, then dividing this sum by the number of scores. 1 N x
36 Displaying Data & Central Tendency
37 Changing the Mean Because the calculation of the mean involves every score in the distribution, changing the value of any score will change the value of the mean. Modifying a distribution by discarding scores or by adding new scores will usually change the value of the mean. To determine how the mean will be affected for any specific situation you must consider: 1) how the number of scores is affected, and 2) how the sum of the scores is affected.
38 Changing the Mean If a constant value is added to every score in a distribution, then the same constant value is added to the mean. Also, if every score is multiplied by a constant value, then the mean is also multiplied by the same constant value.
39 The Weighted Mean When combining data from samples with different sizes, you can compute the combined mean from the sample means using the following formula: 1 MW nm, where N n N For example, consider the following samples: Sample 1: x = {6,2,6,8,3}; M = 5.0; n = 5 Sample 2: x = {3,6,13,4}; M = 6.5; n = 4 Sample 3: x = {3,4,2}; M = 3.0; n = 3
40 When the Mean Won t Work Displaying Data & Central Tendency Although the mean is the most commonly used measure of central tendency, there are situations where the mean does not provide a good, representative value, or where you cannot compute a mean at all. When a distribution contains a few extreme scores (or is very skewed), the mean will be pulled toward the extremes. In these cases, the mean will not provide a "central" value. With data from a nominal scale it is impossible to compute a mean, and when data are measured on an ordinal scale (ranks), it is usually inappropriate to compute a mean. Thus, the mean does not always work as a measure of central tendency and it is necessary to have alternative procedures available.
41 The Median If the scores in a distribution are listed in order from smallest to largest, the median is defined as the midpoint of the list. This means that computation of the median requires scores that can be placed in rank order (i.e., ordinal, interval, or ratio) The median divides the scores so that 50% of the scores in the distribution have values that are equal to or less than the median. Usually, the median can be found by a simple counting procedure: 1. With an odd number of scores, list the values in order, and the median is the middle score in the list. 2. With an even number of scores, list the values in order, and the median is halfway between the middle two scores.
42 The Median One advantage of the median is that it is relatively unaffected by extreme scores. Thus, the median tends to stay in the "center" of the distribution even when there are a few extreme scores or when the distribution is very skewed. In these situations, the median serves as a good alternative to the mean.
43 The Mode The mode is defined as the most frequently occurring category or score in the distribution. In a frequency distribution graph, the mode is the category or score corresponding to the peak or high point of the distribution. The mode can be determined for data measured on any scale of measurement: nominal, ordinal, interval, or ratio. The mode is the only measure of central tendency that can be used for data measured on a nominal scale.
44 Bimodal Distributions It is possible for a distribution to have more than one mode. Such a distribution is called bimodal. (Note that a distribution can have only one mean and only one median.) In addition, the term "mode" is often used to describe a peak in a distribution that is not really the highest point. Thus, a distribution may have a major mode at the highest peak and a minor mode at a secondary peak in a different location.
45 Displaying Data & Central Tendency
46 Central Tendency and the Shape of the Distribution Because the mean, the median, and the mode are all measuring central tendency, the three measures are often systematically related to each other. In a symmetrical distribution, for example, the mean and median will always be equal.
47 Central Tendency and the Shape of the Distribution If a symmetrical distribution has only one mode, the mode, mean, and median will all have the same value. In a skewed distribution, the mode will be located at the peak on one side and the mean usually will be displaced toward the tail on the other side. The median is usually located between the mean and the mode.
48 Central Tendency and the Shape of the Distribution
Chapter 2  Graphical Summaries of Data
Chapter 2  Graphical Summaries of Data Data recorded in the sequence in which they are collected and before they are processed or ranked are called raw data. Raw data is often difficult to make sense
More informationCentral Tendency. n Measures of Central Tendency: n Mean. n Median. n Mode
Central Tendency Central Tendency n A single summary score that best describes the central location of an entire distribution of scores. n Measures of Central Tendency: n Mean n The sum of all scores divided
More informationFREQUENCY AND PERCENTILES
FREQUENCY DISTRIBUTIONS AND PERCENTILES New Statistical Notation Frequency (f): the number of times a score occurs N: sample size Simple Frequency Distributions Raw Scores The scores that we have directly
More informationDESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
More informationSession 1.6 Measures of Central Tendency
Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices
More informationSummarizing and Displaying Categorical Data
Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency
More informationLesson 4 Measures of Central Tendency
Outline Measures of a distribution s shape modality and skewness the normal distribution Measures of central tendency mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central
More informationGraphical and Tabular. Summarization of Data OPRE 6301
Graphical and Tabular Summarization of Data OPRE 6301 Introduction and Recap... Descriptive statistics involves arranging, summarizing, and presenting a set of data in such a way that useful information
More informationChapter 3: Data Description Numerical Methods
Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,
More informationDescriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
More informationReport of for Chapter 2 pretest
Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every
More informationIn this module, we will cover different approaches used to summarize test scores.
In this module, we will cover different approaches used to summarize test scores. 1 You will learn how to use different quantitative measures to describe and summarize test scores and examine groups of
More informationResearch Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement
Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.
More informationSTATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
More informationMeasures of Center Section 32 Definitions Mean (Arithmetic Mean)
Measures of Center Section 31 Mean (Arithmetic Mean) AVERAGE the number obtained by adding the values and dividing the total by the number of values 1 Mean as a Balance Point 3 Mean as a Balance Point
More informationDiagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
More informationStatistics Revision Sheet Question 6 of Paper 2
Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of
More informationData Analysis: Displaying Data  Graphs
Accountability Modules WHAT IT IS Return to Table of Contents WHEN TO USE IT TYPES OF GRAPHS Bar Graphs Data Analysis: Displaying Data  Graphs Graphs are pictorial representations of the relationships
More informationDescriptive Statistics and Measurement Scales
Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample
More information1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x  x) B. x 3 x C. 3x  x D. x  3x 2) Write the following as an algebraic expression
More informationChapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
More informationThere are some general common sense recommendations to follow when presenting
Presentation of Data The presentation of data in the form of tables, graphs and charts is an important part of the process of data analysis and report writing. Although results can be expressed within
More informationMEASURES OF CENTRAL TENDENCY
CHAPTER 5 MEASURES OF CENTRAL TENDENCY OBJECTIVES After completing this chapter, you should be able to define, discuss, and compute the most commonly encountered measures of central tendency the mean,
More informationMCQ S OF MEASURES OF CENTRAL TENDENCY
MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)
More informationStatistical Foundations: Measures of Location and Central Tendency and Summation and Expectation
Statistical Foundations: and Central Tendency and and Lecture 4 September 5, 2006 Psychology 790 Lecture #49/05/2006 Slide 1 of 26 Today s Lecture Today s Lecture Where this Fits central tendency/location
More informationChapter 3 : Central Tendency
Chapter 3 : Central Tendency Overview Definition: Central tendency is a statistical measure to determine a single score that t defines the center of a distribution. The goal of central tendency is to find
More informationF. Farrokhyar, MPhil, PhD, PDoc
Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How
More informationPie Charts. proportion of icecream flavors sold annually by a given brand. AMS5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.
Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of
More informationCentral Tendency and Variation
Contents 5 Central Tendency and Variation 161 5.1 Introduction............................ 161 5.2 The Mode............................. 163 5.2.1 Mode for Ungrouped Data................ 163 5.2.2 Mode
More informationSTATISTICS FOR PSYCH MATH REVIEW GUIDE
STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.
More informationTEACHER NOTES MATH NSPIRED
Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when
More informationSTA201TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA201TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
More informationChapter 2: Frequency Distributions and Graphs
Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct
More information2.3. Measures of Central Tendency
2.3 Measures of Central Tendency Mean A measure of central tendency is a value that represents a typical, or central, entry of a data set. The three most commonly used measures of central tendency are
More informationValor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab
1 Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab I m sure you ve wondered about the absorbency of paper towel brands as you ve quickly tried to mop up spilled soda from
More informationDescriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination
Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg  ) Chromium (mg kg  ) Copper (mg kg  ) Lead (mg kg  ) Mercury
More informationIntroduction to Statistics for Psychology. Quantitative Methods for Human Sciences
Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html
More informationData Analysis: Describing Data  Descriptive Statistics
WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most
More informationMBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 111) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
More informationGraphing Data Presentation of Data in Visual Forms
Graphing Data Presentation of Data in Visual Forms Purpose of Graphing Data Audience Appeal Provides a visually appealing and succinct representation of data and summary statistics Provides a visually
More informationBusiness Statistics & Presentation of Data BASIC MATHEMATHICS MATH0101
Business Statistics & Presentation of Data BASIC MATHEMATHICS MATH0101 1 STATISTICS??? Numerical facts eg. the number of people living in a certain town, or the number of cars using a traffic route each
More informationWHICH TYPE OF GRAPH SHOULD YOU CHOOSE?
PRESENTING GRAPHS WHICH TYPE OF GRAPH SHOULD YOU CHOOSE? CHOOSING THE RIGHT TYPE OF GRAPH You will usually choose one of four very common graph types: Line graph Bar graph Pie chart Histograms LINE GRAPHS
More information103 Measures of Central Tendency and Variation
103 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.
More informationSummarizing Your Data
Summarizing Your Data Key Info So now you have collected your raw data, and you have results from multiple trials of your experiment. How do you go from piles of raw data to summaries that can help you
More informationDescriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
More informationCALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 15 scale to 0100 scores When you look at your report, you will notice that the scores are reported on a 0100 scale, even though respondents
More informationVisualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures
Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the
More informationNumerical Summarization of Data OPRE 6301
Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting
More information6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More information4. Introduction to Statistics
Statistics for Engineers 41 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation
More informationIn this course, we will consider the various possible types of presentation of data and justification for their use in given situations.
PRESENTATION OF DATA 1.1 INTRODUCTION Once data has been collected, it has to be classified and organised in such a way that it becomes easily readable and interpretable, that is, converted to information.
More informationLecture 05 Measures of Central Tendency
Lecture 05 Measures of Central Tendency There are three main measures of central tendency: the mean, median, and mode. The purpose of measures of central tendency is to identify the location of the center
More informationGraphical methods for presenting data
Chapter 2 Graphical methods for presenting data 2.1 Introduction We have looked at ways of collecting data and then collating them into tables. Frequency tables are useful methods of presenting data; they
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationCommon Tools for Displaying and Communicating Data for Process Improvement
Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot
More informationCHAPTER THREE. Key Concepts
CHAPTER THREE Key Concepts interval, ordinal, and nominal scale quantitative, qualitative continuous data, categorical or discrete data table, frequency distribution histogram, bar graph, frequency polygon,
More informationHISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
More informationAP * Statistics Review. Descriptive Statistics
AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production
More informationSTAT 155 Introductory Statistics. Lecture 5: Density Curves and Normal Distributions (I)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 5: Density Curves and Normal Distributions (I) 9/12/06 Lecture 5 1 A problem about Standard Deviation A variable
More informationData Exploration Data Visualization
Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select
More informationHistogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004
Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights
More informationSta 309 (Statistics And Probability for Engineers)
Instructor: Prof. Mike Nasab Sta 309 (Statistics And Probability for Engineers) Chapter 2 Organizing and Summarizing Data Raw Data: When data are collected in original form, they are called raw data. The
More informationA Picture Really Is Worth a Thousand Words
4 A Picture Really Is Worth a Thousand Words Difficulty Scale (pretty easy, but not a cinch) What you ll learn about in this chapter Why a picture is really worth a thousand words How to create a histogram
More information18.2. STATISTICS 2 (Measures of central tendency) A.J.Hobson
JUST THE MATHS SLIDES NUMBER 18.2 STATISTICS 2 (Measures of central tendency) by A.J.Hobson 18.2.1 Introduction 18.2.2 The arithmetic mean (by coding) 18.2.3 The median 18.2.4 The mode 18.2.5 Quantiles
More informationStatistics Summary (prepared by Xuan (Tappy) He)
Statistics Summary (prepared by Xuan (Tappy) He) Statistics is the practice of collecting and analyzing data. The analysis of statistics is important for decision making in events where there are uncertainties.
More informationCHAPTER THREE COMMON DESCRIPTIVE STATISTICS COMMON DESCRIPTIVE STATISTICS / 13
COMMON DESCRIPTIVE STATISTICS / 13 CHAPTER THREE COMMON DESCRIPTIVE STATISTICS The analysis of data begins with descriptive statistics such as the mean, median, mode, range, standard deviation, variance,
More informationThe right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
More informationMathematics. Probability and Statistics Curriculum Guide. Revised 2010
Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction
More informationMeasures of Central Tendency
CHAPTER Measures of Central Tendency Studying this chapter should enable you to: understand the need for summarising a set of data by one single number; recognise and distinguish between the different
More informationFrequency Distributions
Descriptive Statistics Dr. Tom Pierce Department of Psychology Radford University Descriptive statistics comprise a collection of techniques for better understanding what the people in a group look like
More informationMEASURES OF CENTER AND SPREAD MEASURES OF CENTER 11/20/2014. What is a measure of center? a value at the center or middle of a data set
MEASURES OF CENTER AND SPREAD Mean and Median MEASURES OF CENTER What is a measure of center? a value at the center or middle of a data set Several different ways to determine the center: Mode Median Mean
More information13.2 Measures of Central Tendency
13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers
More informationMath 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5
ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has
More informationLecture 2. Summarizing the Sample
Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting
More informationBar Graphs and Dot Plots
CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs
More informationTECHNIQUES OF DATA PRESENTATION, INTERPRETATION AND ANALYSIS
TECHNIQUES OF DATA PRESENTATION, INTERPRETATION AND ANALYSIS BY DR. (MRS) A.T. ALABI DEPARTMENT OF EDUCATIONAL MANAGEMENT, UNIVERSITY OF ILORIN, ILORIN. Introduction In the management of educational institutions
More informationMath Review Large Print (18 point) Edition Chapter 4: Data Analysis
GRADUATE RECORD EXAMINATIONS Math Review Large Print (18 point) Edition Chapter 4: Data Analysis Copyright 2010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,
More informationModule 2: Introduction to Quantitative Data Analysis
Module 2: Introduction to Quantitative Data Analysis Contents Antony Fielding 1 University of Birmingham & Centre for Multilevel Modelling Rebecca Pillinger Centre for Multilevel Modelling Introduction...
More informationModule 4: Data Exploration
Module 4: Data Exploration Now that you have your data downloaded from the Streams Project database, the detective work can begin! Before computing any advanced statistics, we will first use descriptive
More informationExpression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
More informationCHINHOYI UNIVERSITY OF TECHNOLOGY
CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays
More informationRecitation, Week 3: Basic Descriptive Statistics and Measures of Central Tendency:
Recitation, Week 3: Basic Descriptive Statistics and Measures of Central Tendency: 1. What does Healey mean by data reduction? a. Data reduction involves using a few numbers to summarize the distribution
More informationBiostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS
Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS 1. Introduction, and choosing a graph or chart Graphs and charts provide a powerful way of summarising data and presenting them in
More informationMeans, standard deviations and. and standard errors
CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard
More informationChapter 15 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately
More informationTechnology StepbyStep Using StatCrunch
Technology StepbyStep Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More informationPresenting numerical data
Student Learning Development Presenting numerical data This guide offers practical advice on how to incorporate numerical information into essays, reports, dissertations, posters and presentations. The
More informationDescriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
More informationWhat Does the Normal Distribution Sound Like?
What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation
More informationNorthumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data  November 2012  This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1
Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 12 9 34 22 56
More informationUngrouped data. A list of all the values of a variable in a data set is referred to as ungrouped data.
1 Social Studies 201 September 21, 2006 Presenting data See text, chapter 4, pp. 87160. Data sets When data are initially obtained from questionnaires, interviews, experiments, administrative sources,
More informationLecture 1: Review and Exploratory Data Analysis (EDA)
Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course
More informationMeasures of Central Tendency and Variability: Summarizing your Data for Others
Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :
More informationChapter 2 Statistical Foundations: Descriptive Statistics
Chapter 2 Statistical Foundations: Descriptive Statistics 20 Chapter 2 Statistical Foundations: Descriptive Statistics Presented in this chapter is a discussion of the types of data and the use of frequency
More informationDensity Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
More information9 Descriptive and Multivariate Statistics
9 Descriptive and Multivariate Statistics Jamie Price Donald W. Chamberlayne * S tatistics is the science of collecting and organizing data and then drawing conclusions based on data. There are essentially
More informationThe Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)
Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,
More information