Module 7 (Lecture 26) RETAINING WALLS


 Martin Banks
 1 years ago
 Views:
Transcription
1 Module 7 (Lecture 26) RETAINING WALLS Topics 1.1 COMMENTS RELATING TO STABILITY 1.2 DRAINAGE FROM THE BACKFILL OF THE RETAINING WALL 1.3 PROVISION OF JOINTS IN RETAININGWALL CONSTRUCTION 1.4 GRAVITY RETAININGWALL DESIGN FOR EARTHQUAKE CONDITIONS 1.5 MECHANICALLY STABILIZED RETAINING WALLS 1.6 GENERAL DESIGN CONSIDERATIONS COMMENTS RELATING TO STABILITY When a weak soil layer is located at a shallow depththat is, within a depth of about 1.5 times the width of the retaining wallthe bearing capacity of the weak layer should be carefully investigated. The possibility of excessive settlement also should be considered. In some cases, the use of lightweight backfill material behind the retaining wall may solve the problem. In many instances, piles are used to transmit the foundation load to a firmer layer. However, often the thrust of the sliding wedge of soil, in the case of deep shear failure, bends the piles and eventually causes them to fail. Careful attention should be given to this possibility when considering the option of pile foundations for retaining walls. (Pile foundations may be required for bridge abutments to avoid the problem of scouring). As illustrated in examples 1, 2, and 3 the active earth pressure coefficient is used to determine the lateral force of the backfill. The active state of the backfill can be established only if the wall yields sufficiently, which happen in all cases. The degree of wall yielding will depend on its height and the section modulus. Furthermore, the lateral force of the backfill will depend on several factors, as identified by Casagrande (1973):
2 a. Effect of temperature b. Groundwater fluctuation c. Readjustment of the soil particles due to creep and prolonged rainfall d. Tidal changes e. Heavy wave action f. Traffic vibration g. Earthquakes Insufficient wall yielding when combined with other unforeseen factors may generate a larger force on the retaining structure compared to that obtained from the active earth pressure theory. Casagrande (1973) investigated the distribution of lateral earth pressure behind a bridge abutment (in Germany) with a slag backfill, as shown in figure Laboratory tests on the slag backfill gave angles of friction between 37 and 45, depending on the degree of compaction. For purposes of comparison, the variation of the Rankine active earth pressure with φφ = 37 and φφ = 45 is also shown in figure Comparing the actual and theoretical pressure distribution diagrams indicates: a. The actual lateral earth pressure distribution may not be triangular. b. The lateral earth pressure distribution may change with time. c. The actual active force is greater than the minimum theoretical active force. The primary reason that many retaining walls designed with theoretical active earth pressure perform satisfactorily is the use of a large factor of safety. Recently, Goh (1993) analyzed the behavior of a retaining wall using the finite element method and proposed the simplified earth pressure distribution shown in figure Figure 7.17 Bridge abutment on piles backfilled with granulated slag )after Casagrande, 1973)
3 Figure 7.18 Simplified lateral earth pressure (σσ h ) profile: (a) retaining wall; (b) pressure distribution behind wall stem; (c) pressure distribution behind virtual wall (after Goh, 1993) Figure Continued
4 DRAINAGE FROM THE BACKFILL OF THE RETAINING WALL As the result of rainfall or other wet conditions, the backfill material for a retaining wall may become saturated. Saturation will increase the pressure on the wall and may create an unstable condition. For this reason, adequate drainage must be provided by means of weepholes and/or perforated drainage pipes (see figure 7. 19). The weepholes, if provided, should have a minimum diameter of about 4 in. (0.1 m) and be adequately spaced. Note that there is always a possibility that the backfill material may be washed into weepholes or drainage pipes and ultimately clog them. Thus a filter material needs to be placed behind the weepholes or around the drainage piles, as the case may be; geotextiles now were that purpose. Whenever granular soil is used as a filter, the principles. Should be followed. Example 4 gives the procedure for designing a filter. Example 4 Figure 7.19 Drainage provisions for the backfill of a retaining wall Figure shows the grainsize distribution of a backfill material. Using the conditions outlined in section 10, determine the range of the grainsize distribution for the filter material.
5 Figure 7.20 Solution From the grainsize distribution curve given in figure 7. 20, the following values can be determined, DD 15(BB) = 0.04 mm DD 85(BB) = 0.25 mm DD 50(BB) = 0.13 mm Conditions of Filter 1. DD 15(FF) should be less than 5DD 85(FF) that is, = 1.25 mm 2. DD 15(FF) should be greater than 4DD 15(BB) that is, = mm 3. DD 50(FF) Should be less than 25DD 50(BB) that is, = 3.25 mm. 4. DD 15(FF) should be less than 20DD 15(BB) that is, = 0.8 mm These limiting points are plotted in figure Through these points two curves can be drawn that are similar in nature to the gainsize distribution curve of the backfill material. These curves define the range for the filter material to be used.
6 PROVISION OF JOINTS IN RETAININGWALL CONSTRUCTION A retaining wall may be constructed with one or more the following joints: 1. Construction joints (figure 7. 21a) are vertical and horizontal joints that are placed between two successive pours of concrete. To increase the shear at the joints, keys may be used. If keys are not used, the surface of the first pour is cleaned and roughened before the next pour of concrete. 2. Contraction joints (figure 7. 21b) are vertical joints (grooves) placed in the face of a wall (from the top of the base slab to the top of the wall) allow the concrete to shrink without noticeable harm. The grooves may be about 0.25 to 0.3 ( 6 to 8 mm) wide and 0.5 to 0.6 in. ( 12 to 16 mm) deep. 3. Expansion joints (figure 7. 21c) allow for the expansion of concrete caused by temperature changes; vertical expansion joints from the base to the top of the wall may also be used. These joints may be filled with flexible joint filers. In most cases, horizontal reinforcing steel bars running across the stem are continuous through all joints. The steel is greased to allow the concrete to expand. 4. Figure 7.21 (a) Construction joints; (b) contraction joint; (c) expansion joint GRAVITY RETAININGWALL DESIGN FOR EARTHQUAKE CONDITIONS Even in mild earthquakes, most retaining walls undergo limited lateral displacement. Richards and Elms (1979) proposed a procedure for designing gravity retaining walls for earthquake conditions that allows limited lateral displacement. This procedure takes into consideration the wall inertia effect. Figure shows a retaining wall with various forces acting on it, which are as follows (per unit length of the wall):
7 Figure 7.22 Stability of a retaining wall under earthquake forces a. WW ww = weight of the wall b. PP aaaa = active force with earthquake condition taken into consideration The backfill of the wall and the soil on which the wall is retaining are assumed cohesionless. Considering the equilibrium of the wall, it can be shown that WW ww = 1 2 γγ 1HH 2 (1 kk vv )KK aaaa CC IIII [7.27] Where γγ 1 = unit weight of the backfill CC IIII = sin (β δ) cos (β δ)tan φφ 2 (1 kk vv )(tan φφ 2 tan θθ ) [7.28] And θθ = tan 1 kk h (1 kk vv ) For detailed derivation of equation (28), see Das (1983). Based on equation (27 and 28), the following procedure may be used to determine the weight of the retaining wall, WW ww, for tolerable displacement that may take place during an earthquake. 1. Determine the tolerable displacement of the wall, Δ. 2. Obtain a design value of kk h from kk h = AA aa 0.24 vv 2 AA aa Δ 0.25 [7.29]
8 In equation (29), AA aa and AA vv are effective acceleration coefficients and Δ is displacement in inches. The magnitudes of AA aa and AA vv are given by the Applied Technology Council (1978) for various regions of the United States. 3. Assume that kk vv = 0, and, with the value of kk h obtained, calculate KK aaaa from equation (32). 4. Use the value of KK aaaa determined in step 3 to obtain the weight of the wall (WW ww ). 5. Apply a factor of safety to the value of WW ww obtained in step 4. Example 5 Refer to figure For kk vv = 0 and kk h = 0.3, determine: Figure 7.23 a. Weight of the wall for static condition. b. Weight of the wall for zero displacement during an earthquake c. Earthquake of the wall for lateral displacement of 1.5 in. during an earthquake For part c, assume that AA aa = 0.2 and AA vv = 0.2. for parts a, b, and c, use a factor of safety of 1.5.
9 Solution Part a For static conditions, θθ = 0 and equation (28) becomes CC IIII = sin (β δ) cos (β δ)tan φφ 2 tan φφ 2 For ββ = 90, δδ = 24 and φφ = 36, CC IIII = sin (90 24) cos (90 24) tan 36 tan 36 For static conditions, KK aaaa = KK aa, so = 0.85 WW ww = 1 2 γγhh2 KK aa CC IIII For KK aa [table 5 from chapter 6], WW ww = 1 2 (16)(5)2 (0.2349)(0.85) = 39.9 kn/m With a factor of safety of 1.5, WW ww = (39.9)(1.5) = 59.9 kn/m Part b For zero displacement, kk vv = 0, CC IIII = sin (β δ) cos (β δ)tan φφ 2 tan φφ 2 tan θθ tan θθ = CC IIII = kk h = 0.3 = kk vv 1 0 sin (90 24) cos (90 24) tan 36 tan = 1.45 For kk h = 0.3, φφ 1 = 36 and δδ = 2φφ/3, the value of KK aaaa 0.48 (table 7 chapter 6). WW ww = 1 2 γγ 1HH 2 (1 kk vv )KK aaaa CC IIII = 1 2 (16)(5)2 (1 0)(0.48)(1.45) = 139 kn/m With a factor of safety of 1.5, WW ww = kn/m Part c For a lateral displacement of 1.5, in., kk h = AA aa 0.2AA vv 2 AA aa Δ 0.25 = (0.2) (0.2)(0.2) 2 (0.2)(1.5) 0.25 = 0.081
10 tan θθ = CC IIII = kk h = = kk vv 1 0 sin (90 24) cos (90 24) tan 36 tan = WW ww = 1 2 γγ 2HH 2 KK aaaa CC IIII 0.29 [Table 7] WW ww = 1 2 (16)(5)2 (0.29)(0.957) = 55.5 kn/m With a factor of safety of 1.5, WW ww = 83.3 kn/m MECHANICALLY STABILIZED RETAINING WALLS GENERAL DESIGN CONSIDERATIONS The general design procedure of any mechanically stabilized retaining wall can be divided into two parts: 1. Satisfying internal stability requirements 2. Checking the external stability of the wall The internal stability checks involve determining tension and pullout resistance in the reinforcing elements and the integrity of facing elements. The external stability checks include checks for overturning, sliding and bearing capacity failure (figure 7. 24). The following sections will discuss the retaining wall design procedures with metallic strips, geotextiles, and geogrids. Figure 7.24 External stability checks (after Transportation Research Board 1995)
11
Module 7 (Lecture 24 to 28) RETAINING WALLS
Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5
More informationREINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach  Fifth Edition. Walls are generally used to provide lateral support for:
HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering
More informationEarth Pressure and Retaining Wall Basics for NonGeotechnical Engineers
PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for NonGeotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA
More informationModule 5 (Lectures 17 to 19) MAT FOUNDATIONS
Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS
More informationPART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone
GEOSYNTHETIC SOIL REINFORCEMENT Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone DESIGN MANUAL & KEYWALL OPERATING GUIDE GEOSYNTHETIC SOIL REINFORCEMENT Keystone retaining walls
More informationCOSMOS 2012: Earthquakes in Action COSMOS 2012
COSMOS 2012 What is SFSI and why is it important? Soil issues in Earthquakes Structures where SFSI important Retaining structures (lateral earth pressure) Foundations (spread and pile footings, bearing
More informationK x ' Retaining. Walls ENCE 461. Foundation Analysis and Design. Mohr s Circle. and Lateral Earth. Pressures. Lateral Earth Pressure.
Lateral Earth Pressure Coefficient K x ' z ' K = lateral earth pressure coefficient x = horizontal effective stress Mohr s Circle and Lateral Earth Pressures x ' = = z ' ENCE 461 Foundation Analysis and
More informationWorked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites
Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining
More informationNational Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination
Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8hour Vertical Forces (Gravity/Other)
More informationFric3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
More informationCONCRETE SEGMENTAL RETAINING WALL SYSTEM
CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Classic 8 with PCS unit segmental retaining wall
More informationCONCRETE SEGMENTAL RETAINING WALL SYSTEM
CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Vintage TM unit segmental retaining wall (SRW)
More informationGiven informations about construction on foundation plan:
FOUNDATIONS Foundations are structure members having different types of design that carry and transmit the dead, live and earthquake loads of structure. Foundation plans are drawn with 1/50 or 1/100 scale
More informationAnnouncements. Dry Friction
Announcements Dry Friction Today s Objectives Understand the characteristics of dry friction Draw a FBD including friction Solve problems involving friction Class Activities Applications Characteristics
More informationFoundations over Piles. Constructing Load Transfer Platforms over weak ground with piled foundations
Foundations over Piles Constructing Load Transfer Platforms over weak ground with piled foundations 2 Tensar Technology  proven practical solutions and the knowhow to get them built Based on the characteristic
More informationSIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission.
SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS Prepared by Risi Stone Systems Used by permission. 1800UNILOCK www.unilock.com FOREWORD This outline specification has been prepared for
More informationEFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3
More informationLecture 4. Case Study of 16 th C Church in Old Goa
Lecture 4 Case Study of 16 th C Church in Old Goa Case Study: 16 th C. Church in Goa,, India 16th C. Church in Goa,, India 16th C. Church in Goa,, India 13.4 m 15.2 m 12.5 m 2.7 m 9.0 m 2.7 m Unit weight
More informationPDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center
PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 220306658 Phone & Fax: 7039880088 www.pdhonline.org
More informationPDCA DrivenPile Terms and Definitions
PDCA DrivenPile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified
More informationHow To Retaining Wall Guide
How To Retaining Wall Guide Before you start: Consents and Engineering Building Consent Retaining walls over 1.5m high will require a building consent from the Local Body Council. Walls that carry extra
More informationReport on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars
Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of
More informationDESIGN GUIDELINES FOR EARTH RETENTION
DESIGN GUIDELINES FOR EARTH RETENTION Strata Systems, Inc. 380 Dahlonega Rd., Suite 200 Cumming, GA 30040 USA www.geogrid.com TABLE OF CONTENTS MECHANICS OF RETAINING WALLS... 3 THE STRATAWEB SOLUTION...4
More informationDRIVEN PIPE PILES IN DENSE SAND
DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA ABSTRACT: Piles are often driven open ended into dense sand with the aim of increasing the ease of penetration
More informationDesign Example 1 Reinforced Concrete Wall
Design Example 1 Reinforced Concrete Wall OVERVIEW The structure in this design example is an eightstory office with loadbearing reinforced concrete walls as its seismicforceresisting system. This
More informationALLOWABLE LOADS ON A SINGLE PILE
C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 51. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationDimensional and Structural Data for Elliptical Pipes. PD 26 rev D 21/09/05
Dimensional and Structural Data for Elliptical Pipes 21/09/05 Page 1 of 15 1. Foreword This document details a method for the structural design of Stanton Bonna Elliptical pipes for the common conditions
More informationSPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)
Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks
More informationDESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN
DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4
More informationSPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS
SPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing segmental retaining wall (SRW) units to the lines and grades designated on
More informationFluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today
More informationFoundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training
Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline
More information10.1 Powder mechanics
Fluid and Particulate systems 424514 /2014 POWDER MECHANICS & POWDER FLOW TESTING 10 Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 10.1 Powder mechanics RoNz 2/38 Types of flow of
More informationvulcanhammer.net This document downloaded from
This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works
More informationTasman and Norfolk Retaining Wall. Evaluation and Installation Guide
BAINES MASONRY www.bainesmasonry.com.au Tasman and Norfolk Retaining Wall Evaluation and Installation Guide This installation guide demonstrates the basics on how to construct A. Segmental Concrete Gravity
More informationFoundation Experts, LLC Specializes in Foundation Repair and Waterproofing
1 Most basements show some signs of leaking and cracking. Through the years, problems with water, poor soils, grading, drainage and possible settling affect the integrity of a basement. Being able to recognize
More informationSOLUTIONS TO PROBLEM SET 4
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.
More informationTYPES OF FOUNDATIONS
TYPES OF FOUNDATIONS 1 Foundation Systems Shallow Foundation Deep Foundation Pile Foundation Pier (Caisson) Foundation Isolated spread footings Wall footings Combined footings Cantilever or strap footings
More informationSUPPLEMENTAL TECHNICAL SPECIFICATIONS BIDIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS
July 14, 2015 1.0 GENERAL BIDIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bidirectional
More informationRETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL. Featuring Highland Stone. anchorwall.com
RETAINING WALL CONSTRUCTION DETAILS 2006 ESTIMATING AND INSTALLATION MANUAL 11 Featuring Highland Stone anchorwall.com TABLE OF CONTENTS 2 TABLE OF CONTENTS BEFORE YOU BEGIN............................
More informationSTRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.
STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill
More informationPrinting Letters Correctly
Printing Letters Correctly The ball and stick method of teaching beginners to print has been proven to be the best. Letters formed this way are easier for small children to print, and this print is similar
More informationSwinburne University of Technology. Centre for Sustainable Infrastructure
Swinburne University of Technology Centre for Sustainable Infrastructure Swinburne University of Technology is undergoing rapid growth, particularly in the area of engineering research and education. Advanced
More informationLABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO
LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO STANDARD IS: 2720 (Part 16) 1979. DEFINITION California bearing ratio is the ratio of force per unit area required to penetrate in to a soil mass with
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More information40 ltr Domestic Grease Trap GTO1. 200 ltr Commercial Grease Trap GTO2. Rotational Moulders providing State of the Art Product Design and Developement.
Rotational Moulders providing State of the Art Product Design and Developement. The JFC Grease Trap system is designed: GREASE TRAPS A major problem in the drainage systems of dwelling houses, restaurants,
More informationVERTICAL STRESS INCREASES IN SOILS TYPES OF LOADING
14.53 THEORETICAL SOIL MECHANICS VERTICAL STRESS INCREASES IN SOILS TYPES OF LOADING Point Loads (P) Line Loads (q/unit length) Figure 6.11. Das FGE (005). Examples: Posts Figure 6.1. Das FGE (005). Examples:
More informationAdvanced Geotechnical Laboratory
Swinburne University of Technology Repeated Load Triaxial Test, swellshrinkage, shear wave velocity, soil suction, flexible wall hydraulic conductivity. Advanced Geotechnical Systems Tier is supported
More informationProgram COLANY Stone Columns Settlement Analysis. User Manual
User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY
More informationOpen channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
More informationLANDSCAPING AQUA SPORT. Rainwater treatment using filter substrate channel. DIBt approval applied for
CIVILS LANDSCAPING AQUA SPORT Drainfix Clean Rainwater treatment using filter substrate channel DIBt approval applied for CIVILS LANDSCAPING AQUA SPORT Drainfix Clean Application areas For the treatment
More informationDesign and plan for blocks
Student Design and plan for blocks What you will learn When you have fi nished this section, you should be able to: Work out how many blocks you need Plan how the blocks will fi t together Describe the
More information1. ASTM C 140  Sampling and Testing Concrete Masonry Units 2. ASTM C 1372 Standard Specification for DryCast Segmental Retaining Wall Units
SPECIFICATION FOR SEGMENTAL RETAINING WALL SYSTEMS PART 1: GENERAL 1.01 Description A. Work shall consist of furnishing materials, labor, equipment and supervision to install a segmental retaining wall
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationPILE FOUNDATIONS FM 5134
C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 61. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics
More informationSKER HUESKER HUESKER geogrid HUESKER HUESKER for HUESKERHUES SKER HUESKER HUESKER HUESKERHUES SKER HUESKER HUESKER HUESKER HUESKER HUESKERHUES
rhuesker HUESKER Fortrac HUESKER HUESKER HUESKER HUESKERr rhuesker Flexible HUESKER HUESKER lowextension HUESKER HUESKER HUESKERr SKER HUESKER HUESKER geogrid HUESKER HUESKER for HUESKERHUES SKER HUESKERHUES
More information13.1 SCOPE...131 13.2 DEFINITIONS...131 13.3 NOTATION...131 13.4 DETERMINATION OF SOIL PROPERTIES...132
SECTION 13: FOUNDATION DESIGN TABLE OF CONTENTS 13 13.1 SCOPE...131 13.2 DEFINITIONS...131 13.3 NOTATION...131 13.4 DETERMINATION OF SOIL PROPERTIES...132 13.5 FOUNDATION BEARING CAPACITY...132 13.5.1
More informationPullout Testing of Xgrid PET PVC 40/20 IT and Xgrid PET PVC 80/30 IT In Sand
Xgrid PET PVC 40 30 IT and PET PVC 80 30 IT in Sand  Pullout Testing Page 1 Pullout Testing of Xgrid PET PVC 40/20 IT and Xgrid PET PVC 80/30 IT In Sand February, 2006 Submitted to: TEMA Technologies
More informationBUTE Department of Construction Management and Technology
BUTE Department of Construction Management and Technology 02.10.2012 Definition 1: Foundation: The structure, that transmits the load of the building to the soil Definition 2: Load bearing soil (strata):
More informationCH. 2 LOADS ON BUILDINGS
CH. 2 LOADS ON BUILDINGS GRAVITY LOADS Dead loads Vertical loads due to weight of building and any permanent equipment Dead loads of structural elements cannot be readily determined b/c weight depends
More informationInstallation Guidelines for Segmental Block Wall. Contents 1. INTRODUCTION... 2 2. MATERIALS... 2
Johannesburg +27 (0)11 922 3300 Pinetown +27 (0)31 717 2300 Cape Town +27 (0)21 531 8110 East London +27 (0)43 727 1055 www.kaytech.co.za Installation Guidelines for Segmental Block Wall Contents 1. INTRODUCTION...
More informationStabilenka HUESKER. and Separation. Engineering with Geosynthetics SKER HUESKER HUESKER HUESKER HUESKERHUES
HUESKER Engineering with Geosynthetics rhuesker HUESKER HUESKER HUESKER HUESKER HUESKERr rhuesker HUESKER Woven HUESKER HUESKER Fabrics HUESKER HUESKERr SKER HUESKER HUESKER HUESKER HUESKERHUES rhuesker
More informationGEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design
GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1
More informationDesigned and Engineered to Perform
History EARTH CONTACT PRODUCTS, L.L.C., is a family owned company, based in Olathe, Kansas. This company was built upon Don May s U.S. Patented fourthgeneration Steel Piering System that has led to the
More informationConstruction Planning, Equipment, and Methods
CHAPTER Construction Planning, Equipment, and Methods Sixth Edition GEOTECHNICAL MATERIALS, COMPACTION, AND STABILIZATION A. J. Clark School of Engineering Department of Civil and Environmental Engineering
More information1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona
for Earthen Material and Straw Bale Structures SECTION 70  GENERAL "APPENDIX CHAPTER 7  EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety
More informationFOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples
FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 141 Load Path and Transfer to
More informationINTRODUCTION TO SOIL MODULI. JeanLouis BRIAUD 1
INTRODUCTION TO SOIL MODULI By JeanLouis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:
More informationUNDER DRAINAGE AND FILTER DESIGN
UNDER DRAINAGE AND FILTER DESIGN Tailings and HLP Workshop 28 April to 1 May 2010 INTRODUCTION The internal drainage is of crucial importance to the reliability and safety of a tailings dam throughout
More informationCHAPTER 9 FEM MODELING OF SOILSHEET PILE WALL INTERACTION
391 CHAPTER 9 FEM MODELING OF SOILSHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOILSTRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soilstructure interaction
More informationSEISMIC RETROFITTING OF STRUCTURES
SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present
More informationAppendix A Sub surface displacements around excavations Data presented in Xdisp sample file
Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus
More informationCEEN 162  Geotechnical Engineering Laboratory Session 7  Direct Shear and Unconfined Compression Tests
PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the
More informationp atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
More informationGENERAL CONCEPTS OF EARTHQUAKE RESISTANT DESIGN
GENERAL CONCEPTS OF EARTHQUAKE RESISTANT DESIGN Chapter 3 GENERAL CONCEPTS OF EARTHQUAKE RESISTANT DESIGN 3.1 INTRODUCTION Experience in past earthquakes has demonstrated that many common buildings and
More informationReinforced Concrete Design to BS8110 Structural Design 1 Lesson 5
Lesson 5: Deflection in reinforced concrete beams Content 4.1 Introduction 4. Definitions 4..1 Tension 4.. Compression 4.3 Initial sizing 4.3.1 Worked example 4.4 Reinforcement details 4.5 Anchorage at
More informationJune 2007 CHAPTER 7  CULVERTS 7.0 CHAPTER 7  CULVERTS 7.1 GENERAL
7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction
More informationLongterm serviceability of the structure Minimal maintenance requirements Economical construction Improved aesthetics and safety considerations
Design Step 7.1 INTEGRAL ABUTMENT DESIGN General considerations and common practices Integral abutments are used to eliminate expansion joints at the end of a bridge. They often result in Jointless Bridges
More informationHead Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
More informationOptimum proportions for the design of suspension bridge
Journal of Civil Engineering (IEB), 34 (1) (26) 114 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering
More informationA study on the causes of troubles in shield tunneling site with numerical analysis
A study on the causes of troubles in shield tunneling site with numerical analysis 1 B.K. Rho, 2 S.Y. Choo, 2 M.K. Song Korea Rail Network Authority, Daejeon, Korea 1 ; Danwoo E&C Co., Ltd., Sungnam, Korea
More informationOhio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES
Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering Geotechnical Bulletin GB 1 PLAN SUBGRADES Geotechnical Bulletin GB1 was jointly developed by the Offices
More informationEN 19971 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland
EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 1820 February 2008 Dissemination of information workshop 1 EN 19971 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section
More informationCITY UTILITIES DESIGN STANDARDS MANUAL
CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.
More informationDraft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 31814
Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 31814 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318
More informationSPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT
SPECIFICATION FOR DYNAMIC CONSOLIDATION / DYNAMIC REPLACEMENT 1.0 SOIL IMPROVEMENT 1.1 General Soil Investigation Information are provided in Part B1 annex as a guide to the Contractor for his consideration
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
More informationValue of Instrumentation Systems and RealTime Monitoring: An Owner s Perspective
Value of Instrumentation Systems and RealTime Monitoring: An Owner s Perspective FHWA NATIONAL GEOTECHNICAL PROGRAM www.fhwa.dot.gov/engineering/geotech Why Geotechnical Instrumentation? Provide warning
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationDIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA
DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST OBJEVTIVES To determine the shear strength parameters for a
More informationA perforated conduit such as pipe, tubing or tile installed beneath the ground to intercept and convey ground water. or structures.
BMP: SUBSURFACE DRAIN Definition A perforated conduit such as pipe, tubing or tile installed beneath the ground to intercept and convey ground water. PurRoses 1. To prevent sloping soils from becoming
More informationSpecification Guidelines: Allan Block Modular Retaining Wall Systems
Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's
More informationSlab Track Austria. System ÖBBPORR elastically supported slab
Slab Track Austria System ÖBBPORR elastically supported slab 5. 2. 3. 4. 7. 6. Five holes for spindles 2. ÖBBPORR slab 3. elastomeric layer 4. concrete joint sealing compound 5. rail support seat 6.
More informationGuideline for Installation of Standpipe Well (SW) and Standpipe Piezometer (SP)
Guideline for Installation of Standpipe Well (SW) and Standpipe Piezometer (SP) 1. GENERAL Both standpipe well and standpipe piezometer are used to measure ground water levels. The common characteristic
More informationSTRUCTURAL DESIGN BRIEF  SURREY WORKS YARD REDEVELOPMENT
1. GENERAL The following brief outlines the design considerations being used to inform the structural design of the project. It will describe, in general terms, the structural systems of each building
More informationENGI 8673 Subsea Pipeline Engineering Faculty of Engineering and Applied Science
GUIDANCE NOTE LECTURE 12 THERMAL EXPANSION ANALYSIS OVERVIEW The calculation procedure for determining the longitudinal pipeline response can be formulated on the basis of strain. The longitudinal strain
More informationCalculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer
Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer 1,2 Li Zhong, 2Chen Siyang, 3Yan Peiwu, 1Zhu Yanpeng School of Civil Engineering, Lanzhou University
More informationManaging North Carolina's MSE Wall Assets through Design, Construction and Performance
Managing North Carolina's MSE Wall Assets through Design, Construction and Performance Robert A. Gladstone, P.E. Executive Director Association for Metallically Stabilized Earth 2013 Early Earth Reinforcement
More information