CRITICAL STUDY OF RCC BALANCING TANK

Size: px
Start display at page:

Download "CRITICAL STUDY OF RCC BALANCING TANK"

Transcription

1 CRITICAL STUDY OF RCC BALANCING TANK 1 PRIYANKA DEEPAK HARKAL, 2 M. M. MAHAJAN 1 M. Tech. Student, Visvesvaraya National Institute of Technology, Nagpur 2 Professor, Visvesvaraya National Institute of Technology, Nagpur 1 priyankaharkal@gmail.com, 2 mukundmmahajan@gmail.com Abstract Water supply system is the important part of the society. This system has various stages to supply water from source to population. One of the important stage is balancing tank which receives the water from main source under the gravity flow or pressure flow and pumped to the next level. Analysis and design of such reservoir is important as any failure to reservoir will directly affect on water requirement of community. An excel program has been made for analysis and design of cantilever type retaining wall of balancing tank for various probable critical cases and load combinations. Effect of different soil parameters such as cohesive and non cohesive soil around tank on wall stability has been studied which shows that cohesive soil around the soil gives higher section of tank wall than non cohesive soil. Also the comparison made between IS 1893:1984 and IS 1893:Part3;2014 for cohesive soil and non cohesive soil. Uplift effect due to seepage and water bodies near tank wall such as canal has been studied for static, earthquake analysis with seismic acceleration coefficient 0.15 for 5.5m and 6.5m height of tank wall. Effect of shear key on stability of tank wall studied for different soil parameters, uplift due to various critical conditions, and height of tank wall. It is observed that when shear key provided, section size ultimately concrete quantity reduces. Index Terms Balancing Tank, Cantilever Retaining Wall, Cohesive Soil, Non Cohesive Soil, Uplift. I. INTRODUCTION Balancing tank is huge widely spread tank on ground whose plan area is in square km which stores the huge amount of water during water supply scheme. There are many structural systems which stores or retain the water such structures are known as water retaining structures. The wall of tank is retaining wall which may be gravity retaining wall, cantilever retaining wall, counter fort retaining wall, and buttress retaining wall. In this paper focus of study is on cantilever type retaining wall for various critical situations and soil parameters considered outside of tank wall. The various critical load combinations are studied from start of construction to final working condition of balancing tank for stability and safety. Tank is also studied for variation of height of tank, effect of shear key on stability of wall, different types of soil such as non cohesive and cohesive soil to be filled from outside of tank after hydraulic testing. Also the effect of uplift pressure due to seepage and water bodies such as canal nearby tank wall. II. SYSTEMATIC APPROACH TO STABILITY CHECK A. Selection of type of tank wall For construction of balancing tank gravity retaining wall, counter fort wall, buttress wall, cantilever wall are chosen according to size, height and capacity of tank. B. Geometry fixation-capacity and plan Geometry of tank is dependent on the ground profile and capacity of tank. The shape of tank may be or may not be regular as it varies according to undulation of ground and availability of land. C. Stability Checks Stability check is performed for tank wall for all expected and critical loads such as dead load, hydrostatic load, soil pressure, wind load, earthquake load, uplift etc. and their combinations. D. Expected loads Expected loads are the loads which are generally acts on tank wall which includes dead load i.e. self weight of tank wall, live load i.e. hydrostatic pressure when tank is filled with water, soil pressure when soil is present outside of tank wall. E. Critical loads Critical loads include the wind load and earthquake loads according to tank situated in different region and different earthquake zone. Wind load is considered when tank is empty i.e. no water inside and no soil outside of tank. While earthquake is considered when tank is empty as well as tank is full with water and soil so dynamic earth pressure and hydrodynamic pressure will act on wall. III. PARAMETERS CONSIDERED FOR ANALYSIS Following parameters are considered for carrying out analysis. i. Safe bearing capacity 250kN/m 2, coefficient of friction between soil and concrete =0.5, unit weight of water =10 kn/m 3, angle of internal friction for soil below foundation 30 0, unit weight of soil below foundation =18 kn/m 3, intensity of wind=1.4 kn/m 2, free board for water=0.5m, height of water to be stored=5m, 6m, horizontal seismic coefficient=0.15, friction angle δ= 2/3φ ii. Soil properties outside tank wall Two types of soils are considered around the 63

2 tank wall, non cohesive soil (six types of non cohesive soil) and cohesive soil (two types of cohesive soil) listed in Table I. I. Soil properties around tank wall Fig.1 and Fig. 2 shows the levels of water and soil for 5.5m and 6.5m height of wall respectively. This is typical shape of tank wall and shape of toe, heel, and stem can vary to rectangular or trapezoidal. Fig. 3 Water levels prior to hydraulic testing (y 3=5m,6m,y 4=1m) After complete construction of tank wall, hydraulic testing is carried out and water levels are observed. In Fig. 3 water levels for hydraulic testing are shown. γ -Unit weight of soil in kn/m 3 ф-angle of internal friction in degrees c-cohesion in kn/m 2 Fig. 4 Canal flowing near tank wall (X 1=distance of canal from tank wall=100m,x 2=X 1+Base width of tank wall, y=water level in canal from datum when canal full, y 1=Water height when tank is empty =1m,y 2=Water level due to hydraulic grade line) Fig. 1 General fig. and levels for height 5.5m Fig. 2 General fig. and levels for height 6.5m Here critical case is considered that canal is running at some distance and water levels are shown in Fig. 4 The safety factors are considered for overturning 1.4, sliding 1.4, maximum pressure less than safe bearing capacity, and minimum pressure greater than zero. Design is carried out by working stress method. An excel program has been prepared for carrying out analysis. iii. Load cases and load combinations Table II shows the possible load cases which will occur from start of construction to final working stage of balancing tank. A] Construction Phase Analysis is carried out for tank wall when it is in construction phase for wind and earthquake. During construction phase tank having no water inside and no soil outside of tank but there are chances of wind and earthquake load acting on tank wall. B] Construction stage prior to testing After completion of construction of tank and before actual working condition of tank hydraulic testing is carried out by filling the tank with water only and levels of water are observed. In this case analysis is 64

3 carried out for hydrostatic, hydrodynamic and uplift pressure. C] Regular After hydraulic testing area inside the tank wall is treated with geo membrane and tank is filled with water and soil from outside of tank wall. In this tank full with water and full soil from outside analysis is carried out for static and earthquake loads. D] Tank empty When tank is empty and soil from outside of tank, analysis is carried out for static and earthquake loads. II. Load cases and combinations in static and earthquake case Fig. 6 Percentage saving in concrete quantity due to shear key when uplift is not considered b. Uplift due to seepage prior to hydraulic testing Tank wall which is already safe in no uplift condition is analyzed for uplift effect. Uplift pressure will act during the hydraulic testing of tank. Due to uplift section which was safe in no uplift condition is failing in meeting the safety criteria so modified and anchor bars are provided in the base wall as shown in Fig. 7. These anchor bars are inserted in ground through base slab for 1m depth in duracon grouting. Fig.7 Location of anchor bolts IV. ANALYSIS RESULTS Concrete quantity is worked out in cubic meter per 100m length of tank wall. i. Non cohesive soil outside of tank wall a. No uplift considered: Analysis is carried out load cases listed in Table II with and without shear key when non cohesive soil outside of tank wall and uplift is neglected. Fig. 5 shows concrete quantity in static and earthquake case with and without shear key. Fig. 6 gives the percentage saving in concrete quantity due to shear key. Fig. 8 shows concrete quantity in static and earthquake case with and without shear key. Fig. 9 gives the percentage saving in concrete quantity due to shear key. Fig.8 Effect of shear key when uplift considered and anchor bolts used Fig. 5 Effect of shear key on concrete quantity when uplift is not considered Fig. 9 Percentage saving in concrete quantity due to shear key when uplift considered 65

4 Fig. 10 shows the effect of uplift on tank wall when earthquake is considered. Fig. 11 shows the percentage increase in concrete quantity due to uplift. when only soil is outside of tank wall, IS 1893:1984 gives higher section for cohesive soil than revised code. Fig. 10 Effect of uplift on concrete quantity due to earthquake Fig.12 Concrete quantity for cohesive soil when IS 1893:1984 and IS 1893:Part 3;2014 used b. Uplift due to seepage prior to testing: Cohesive soil is considered around the tank wall and analysis is carried out for static load only listed in table II as provision for calculation of dynamic passive soil pressure is not given in IS 1893:Part 3;2014. Comparison is made in Fig 13 for concrete quantity when no uplift and with uplift. Fig.11 Percentage increase in concrete quantity due to uplift when earthquake considered c. Uplift due to canal flowing near tank wall Critical study is carried out considering canal flowing near tank wall and uplift effect is observed while canal running full and canal empty. Sections which were safe in static and earthquake cases for hydraulic testing analyzed for uplift effect due to canal. It is observed that when canal is running full, sections which were safe in static and earthquake case doesn t meet the safety criteria. Hence, provision is made for anchor bolts as shown in Fig.7 are made and shear key is provided. ii. Cohesive soil outside of tank wall a. Comparison between IS 1893:1984 and IS 1893:Part 3;2014: In IS 1893 the provision for calculation of active earth pressure for cohesive soil due to earthquake is not given while in revised code of IS 1893:Part 3;2014, provision is made. When this provision was not in code and cohesive backfill with earthquake is to be analyzed then IS 1893:1984 code is used neglecting cohesion. Also the same cohesive soil is analyzed using revised code and comparison done between these two analyses for concrete quantity. Fig. 12 shows the comparison of concrete quantity for IS 1893:1984 and is 1893:Part3;2014. Only case 4 i.e. tank empty condition is analyzed for comparison. Fig. 12 shows the concrete quantity. It is observed that Fig. 13 Effect of shear key on concrete quantity when uplift considered Percentage saving in concrete quantity is shown in Fig. 14. Fig. 14 Percentage saving in concrete quantity due to shear key when uplift considered iii. Effect of soil parameter around the tank wall: Here comparison is made between non cohesive and cohesive soil outside the tank wall in static case when uplift is considered and analysis is carried out for load 66

5 cases listed in Table II for static load cases only. Concrete quantities are worked out for height 5.5m and 6.5m when non cohesive soil is outside of tank and when cohesive soil outside of tank wall. Fig. 15 shows the concrete quantities for soil parameters around the tank wall. parameters are considered outside of tank wall gives higher section size higher than non cohesive soil is outside the tank so careful soil investigation is necessary for soil around the tank. Uplift is the most dangerous phenomenon to structure which reduces the structural stability. When uplift and earthquake effect has been considered in the study it is observed that, to make the structure safe anchor bars are required. Study shows that when water bodies near tank such as canal makes the tank wall unsafe due to uplift when canal is flowing full. If in future such water bodies are going to incorporate or already present, it is necessary to take effect of such water bodies. REFERENCES Fig.15 Effect of soil parameter around the tank wall Percentage increase in concrete quantity shown in Fig. 16. It is observed that when cohesive soil is around the tank wall it gives higher section for tank wall than non cohesive soil. Fig.16 Percentage increase in concrete quantity due to soil parameter around the tank wall CONCLUSION Form analysis results it is observed that when shear key provided in wall it reduces the section size both in static and earthquake cases. When height of wall increases the percentage saving in concrete quantity due to shear key is also increases and there is considerable more saving in concrete quantity when earthquake effect is taken into account. So it is beneficial to use shear key. When cohesive soil [1] IS Criteria for earthquake resistant Design of Structure: Bridges and retaining walls, Fourth Revision, UDC : [2] IS: 1893:Part 3;2014, Criteria for earthquake resistant design of Structures (Part 3)- Bridges and retaining walls, Doc : CED 39(7739). [3] IS Plain and reinforced cement concrete-code of practice, Fourth revision ICS [4] IS3370:Part1(2009) Concrete structures for storage of liquids-general requirements, First revision, ICS I; [5] B. C. Punmia, A.K. Jain, RCC Designs, Eight edition, Laxmi Publications (p), Ltd., Chapter 18, pp August [6] R. Chandra, Limit state design, First edition, Standard book house, chapter 16, pp , September [7] Saran, S. Analysis and design of substructure, second edition, Oxford and IBH Publications Pvt. Ltd.,Chapter 11, pp , [8] Prakash, S. Analysis of Rigid Retaining Walls During Earthquakes, first international conference on advances in geotechnical engineering and soil dynamics, April26-3May, [9] Choudhury, D., Subba Rao, K. S., and Ghosh, S. Passive earth pressure distribution under seismic condition 15th Engineering Mechanics Conference of ASCE, Columbia University, New York,2002. [10] Choudhury, D., Seismic passive resistance at soil-wall interface, 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada, Paper No. 2746, August 1-6, [11] Zangar Hydrodynamic pressure on dam due to horizontal earthquake effect, Engineering monograph by United states department of Interior Bureau of Reclamation [12] Khassaf Al-Saadi,(2011) Optimum Location and Angle of Inclination of Cut-off to Control Exit Gradient and Uplift Pressure Head under Hydraulic Structures, Jordan Journal of Civil Engineering, Volume 5, No. 3,

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA

More information

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

More information

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

Seismic Analysis and Design of Steel Liquid Storage Tanks

Seismic Analysis and Design of Steel Liquid Storage Tanks Vol. 1, 005 CSA Academic Perspective 0 Seismic Analysis and Design of Steel Liquid Storage Tanks Lisa Yunxia Wang California State Polytechnic University Pomona ABSTRACT Practicing engineers face many

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE

SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Vol., Issue, April 1 SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE M.R.NAVANEETHA KRISHNAN 1,

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety

More information

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 3 Number 12 (2014) pp. 950-961 http://www.ijcmas.com Original Research Article Rehabilitation of Existing Foundation

More information

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4

More information

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

More information

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage 3.3. Evaluation of Building Foundation Damage Basic Terminology: Damage: Destruction, deformation, inclination and settlement of a building foundation caused by an earthquake. Damage grade: Degree of danger

More information

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 21-31, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

ICOLD POSITION PAPER ON DAM SAFETY AND EARTHQUAKES

ICOLD POSITION PAPER ON DAM SAFETY AND EARTHQUAKES ICOLD POSITION PAPER ON DAM SAFETY AND EARTHQUAKES August 2012 Dam Safety and Earthquakes Position Paper of International Commission on Large Dams (ICOLD) Prepared by ICOLD Committee on Seismic Aspects

More information

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

NUMERICAL ANALYSIS OF SEEPAGE THROUGH EMBANKMENT DAMS (CASE STUDY: KOCHARY DAM, GOLPAYEGAN)

NUMERICAL ANALYSIS OF SEEPAGE THROUGH EMBANKMENT DAMS (CASE STUDY: KOCHARY DAM, GOLPAYEGAN) NUMERICAL ANALYSIS OF SEEPAGE THROUGH EMBANKMENT DAMS (CASE STUDY: KOCHARY DAM, GOLPAYEGAN) *Reza Naghmehkhan Dahande 1 and Ahmad Taheri 2 1 Department of Civil Engineering-Water Management, Islamic Azad

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center

PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

Overturning Stability of Offshore Wind Power Substructure with Bucket Foundation

Overturning Stability of Offshore Wind Power Substructure with Bucket Foundation Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 5, Issue 10, October 2015) Overturning Stability of Offshore Wind Power Substructure with Bucket Foundation Young-Jun You

More information

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur Module 3 Irrigation Engineering Principles Lesson 9 Regulating Structures for Canal Flows Instructional objectives On completion of this lesson, the student shall be able to learn: 1. The necessity of

More information

Wang, L., Gong, C. "Abutments and Retaining Structures." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Wang, L., Gong, C. Abutments and Retaining Structures. Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000 Wang, L., Gong, C. "Abutments and Retaining Structures." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 000 9 Abutments and Retaining Structures Linan Wang California

More information

Chapter 2 Basis of design and materials

Chapter 2 Basis of design and materials Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural

More information

DIRECTIONAL DRILLING

DIRECTIONAL DRILLING DIRECTIONAL DRILLING 1. General. Installation of pipelines through the levee embankment using directional drilling technology is prohibited. Installation of pipelines through a flood control project foundation

More information

HOW TO DESIGN CONCRETE STRUCTURES Foundations

HOW TO DESIGN CONCRETE STRUCTURES Foundations HOW TO DESIGN CONCRETE STRUCTURES Foundations Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and

More information

L_All_Vocatinal_Ed_Construction. Sector: Construction. Sr. No Specialisation Page No 1 Construction and Building Technology 02.

L_All_Vocatinal_Ed_Construction. Sector: Construction. Sr. No Specialisation Page No 1 Construction and Building Technology 02. L_All_Vocatinal_Ed_Construction Sector: Construction Sr. No Specialisation Page No 1 Construction and Building Technology 02 1 P a g e 2 P a g e VOCATIONAL EDUCATIONAL QUALIFICATION FRAMEWORK (Sector -

More information

CHAPTER III GRAVITY DAMS. (Revised October 2002)

CHAPTER III GRAVITY DAMS. (Revised October 2002) CHAPTER III GRAVITY DAMS (Revised October 2002) Chapter III Gravity Dams 3-0 Contents Title Page 3-1 Purpose and Scope 3-1 3-1.1 General 3-1 3-1.2 Review Procedures 3-1 3-2 Forces 3-2 3-2.1 General 3-2

More information

CH. 2 LOADS ON BUILDINGS

CH. 2 LOADS ON BUILDINGS CH. 2 LOADS ON BUILDINGS GRAVITY LOADS Dead loads Vertical loads due to weight of building and any permanent equipment Dead loads of structural elements cannot be readily determined b/c weight depends

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

Technical handbook Panel Anchoring System

Technical handbook Panel Anchoring System 1 Basic principles of sandwich panels 3 Design conditions 4 Basic placement of anchors and pins 9 Large elements (muliple rows) 10 Small elements (two rows) 10 Turned elements 10 Slender elements 10 Cantilevering

More information

Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions

Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions Peyman Amini Motlagh, Ali Pak Abstract Seismic retrofitting of important structures is essential in seismological

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

ick Foundation Analysis and Design

ick Foundation Analysis and Design ick Foundation Analysis and Design Work: ick Foundation Location: Description: Prop: Detail analysis and design of ick patented foundation for Wind Turbine Towers Gestamp Hybrid Towers Date: 31/10/2012

More information

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission.

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission. SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS Prepared by Risi Stone Systems Used by permission. 1-800-UNILOCK www.unilock.com FOREWORD This outline specification has been prepared for

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

6 RETROFITTING POST & PIER HOUSES

6 RETROFITTING POST & PIER HOUSES Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This

More information

A N Beal EARTH RETAINING STRUCTURES - worked examples 1

A N Beal EARTH RETAINING STRUCTURES - worked examples 1 A N Beal EARTH RETAINING STRUCTURES - worked examples 1 Worked examples of retaining wall design to BS8002 The following worked examples have been prepared to illustrate the application of BS8002 to retaining

More information

Lecture 4. Case Study of 16 th C Church in Old Goa

Lecture 4. Case Study of 16 th C Church in Old Goa Lecture 4 Case Study of 16 th C Church in Old Goa Case Study: 16 th C. Church in Goa,, India 16th C. Church in Goa,, India 16th C. Church in Goa,, India 13.4 m 15.2 m 12.5 m 2.7 m 9.0 m 2.7 m Unit weight

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Seismic Response of Concrete Gravity Dam

Seismic Response of Concrete Gravity Dam Seismic Response of Concrete Gravity Dam Kaushik Das M-tech Students(CIVIL) NIT,Agartala kaushikbondster@gmail.com Pankaj Kumar Das Assistant professor Mechanical Engg Department NIT Agartala Pankaj_642004@yahoo.co.in

More information

Chapter 9. Steady Flow in Open channels

Chapter 9. Steady Flow in Open channels Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

More information

EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND

EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 373 384, Article ID: IJCIET_07_03_038 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

A CASE-STUDY OF CUA_DAT CFRD IN VIETNAM

A CASE-STUDY OF CUA_DAT CFRD IN VIETNAM A CASE-STUDY OF CUA_DAT CFRD IN VIETNAM Giang Pham Hong, Michel Hotakhanh, Nga Pham Hong, Hoai Nam Nguyen, Abstract:Dams have been taken an important role in time and surface redistribution of water for

More information

HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long

HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long HYDRAULICS H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long 1. General The series of channels H91.8D has been designed by Didacta Italia to study the hydrodynamic

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

EARTH PRESSURE AND HYDRAULIC PRESSURE

EARTH PRESSURE AND HYDRAULIC PRESSURE CHAPTER 9 EARTH PRESSURE AND HYDRAULIC PRESSURE - C9-1 - CHAPTER 9 EARTH PRESSURE AND HYDRAULIC PRESSURE General This chapter deals with earth pressure and hydraulic pressure acting on exterior basement

More information

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training Foundations 65 5 FOUNDATIONS by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. 66 Foundations Foundations 67 FOUNDATIONS Let's assume that the retrofit has been done correctly from the roofline

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts.

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. The design of any foundation consists of following two parts. 8.7. Design procedure for foundation The design of any foundation consists of following two parts. 8.7.1 Stability analysis Stability analysis aims at removing the possibility of failure of foundation

More information

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall

More information

Critical Facility Round Table

Critical Facility Round Table Critical Facility Round Table October 16, 2003 San Francisco Seismic Risk for Data Centers David Bonneville Senior Principal Degenkolb Engineers San Francisco, California Presentation Outline Seismic Risk

More information

SEISMIC RETROFITTING OF STRUCTURES

SEISMIC RETROFITTING OF STRUCTURES SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present

More information

Chapter 3 FOUNDATIONS AND FOUNDATION WALLS

Chapter 3 FOUNDATIONS AND FOUNDATION WALLS Chapter 3 FOUNDATIONS AND FOUNDATION WALLS This chapter discusses foundations and foundation walls constructed using the two most common foundation materials concrete and masonry. Although the IRC permits

More information

September 2007. September 2013. Consulting Structural and Civil Engineers. 100 St John Street London EC1M 4EH. info @ akt-uk.com www.akt-uk.

September 2007. September 2013. Consulting Structural and Civil Engineers. 100 St John Street London EC1M 4EH. info @ akt-uk.com www.akt-uk. Consulting Structural and Civil Engineers 100 St John Street London EC1M 4EH T +44 (0) 20 7250 7777 F +44 (0) 20 7250 7555 info @ akt-uk.com www.akt-uk.com 3290 A031234 The 196-222 Joseph Kings Bloggs

More information

CHAPTER: 6 FLOW OF WATER THROUGH SOILS

CHAPTER: 6 FLOW OF WATER THROUGH SOILS CHAPTER: 6 FLOW OF WATER THROUGH SOILS CONTENTS: Introduction, hydraulic head and water flow, Darcy s equation, laboratory determination of coefficient of permeability, field determination of coefficient

More information

2.0 External and Internal Forces act on structures

2.0 External and Internal Forces act on structures 2.0 External and Internal Forces act on structures 2.1 Measuring Forces A force is a push or pull that tends to cause an object to change its movement or shape. Magnitude, Direction, and Location The actual

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method.

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method. PERMEABILITY TEST A. CONSTANT HEAD OBJECTIVE To determine the coefficient of permeability of a soil using constant head method. need and Scope The knowledge of this property is much useful in solving problems

More information

Page & Turnbull imagining change in historic environments through design, research, and technology

Page & Turnbull imagining change in historic environments through design, research, and technology DCI+SDE STRUCTURAL EVALUATIONS OFFICE BUILDING, TOOL SHED & WATER TANK, AND BLACKSMITH & MACHINE SHOP BUILDINGS SAN FRANCISCO, CALIFORNIA [14290] PRIMARY PROJECT CONTACT: H. Ruth Todd, FAIA, AICP, LEED

More information

ALLOWABLE LOADS ON A SINGLE PILE

ALLOWABLE LOADS ON A SINGLE PILE C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

More information

SOILS AND FOUNDATIONS

SOILS AND FOUNDATIONS CHAPTER 1 SOILS AND FOUNDATIONS SECTION 101 GENERAL 101.1 Scope. The provisions of this chapter shall apply to building and foundation systems in those areas not subject to scour or water pressure by wind

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

Recommended Specifications, Commentaries, and Example Problems

Recommended Specifications, Commentaries, and Example Problems Draft Final Report Volume 2 to the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM (NCHRP) on Project 12-70 Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments Recommended

More information

A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN.

A Solid Foundation Solution for Homeowners. from. Our products are made with 90% Recycled Material Down. Right. Solid. GREEN. A Solid Foundation Solution for Homeowners from Our products are made with 90% Recycled Material Down. Right. Solid. GREEN. Stop the damaging effects of foundation settling... Sinking foundations, cracked

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS

THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS Technical Innovation Consultancy Emeritus Professor of Civil Engineering Kingston University, London.

More information

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Retrofitting of Fire Affected Structural Member in Multistorey Buildings Chandrakant PG Scholar, Department of Civil Engineering S.D.M. College of Engineering

More information

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION TECHNICAL NOTE On Cold-Formed Steel Construction 1201 15th Street, NW, Suite 320 W ashington, DC 20005 (202) 785-2022 $5.00 Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006

More information

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Doug Jenkins 1, Chris Lawson 2 1 Interactive Design Services, 2 Reinforced

More information

EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS

EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS in the Euro-Mediterranean Area EGYPTIAN CODES FOR DESIGN AND CONSTRUCTION OF BUILDINGS By Prof. Amr Ezzat Salama Chairman of Housing, Building National Center Cairo, Egypt Former Minister of High Education

More information

Geotechnical Building Works (GBW) Submission Requirements

Geotechnical Building Works (GBW) Submission Requirements Building Control (Amendment) Act 2012 and Regulations 2012: Geotechnical Building Works (GBW) Submission Requirements Building Engineering Group Building and Construction Authority May 2015 Content : 1.

More information

NUMERICAL ANALYSIS OF A HORIZONTALLY CURVED BRIDGE MODEL

NUMERICAL ANALYSIS OF A HORIZONTALLY CURVED BRIDGE MODEL 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska NUMERICAL ANALYSIS OF A HORIZONTALLY CURVED BRIDGE MODEL K. Kinoshita

More information

CHAPTER 2 QUANTITY TAKE-OFF

CHAPTER 2 QUANTITY TAKE-OFF CHAPTER 2 QUANTITY TAKEOFF The quantity takeoff is an important part of the cost estimate. It must be as accurate as possible and should be based on all available engineering and design data. Use of appropriate

More information

EVALUATION OF PERFORMANCE OF INTAKE TOWER DAM FOR RECENT EARTHQUAKE IN INDIA

EVALUATION OF PERFORMANCE OF INTAKE TOWER DAM FOR RECENT EARTHQUAKE IN INDIA EVALUATION OF PERFORMANCE OF INTAKE TOWER DAM FOR RECENT EARTHQUAKE IN INDIA Chethan kumar B 1, M.R Suresh 2, Ravikumar HS 3, B Sivakumara swamy 4 1 Postgraduate student, Structural engineering, Dept of

More information

Elevating Your House. Introduction CHAPTER 5

Elevating Your House. Introduction CHAPTER 5 CHAPTER 5 Elevating Your House Introduction One of the most common retrofitting methods is elevating a house to a required or desired Flood Protection Elevation (FPE). When a house is properly elevated,

More information

Engineering Geological Asset Management for Large Dams. Yasuhito SASAKI (1)

Engineering Geological Asset Management for Large Dams. Yasuhito SASAKI (1) Engineering Geological Asset Management for Large Dams Yasuhito SASAKI (1) (1) Geology Research Team, Public Works Research Institute, Japan E-mail:ya-sasa@pwri.go.jp Abstract Comprehensive inspection

More information

Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

More information

Hydraulics Laboratory Experiment Report

Hydraulics Laboratory Experiment Report Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients

More information

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

Five reasons buildings fail in an earthquake and how to avoid them

Five reasons buildings fail in an earthquake and how to avoid them Five reasons buildings fail in an earthquake and how to avoid them by Jeff White, AIA Published in Healthcare Design magazine There s a saying among seismologists: Earthquakes don t kill people. Buildings

More information

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

More information

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils

Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Design, Testing and Automated Monitoring of ACIP Piles in Residual Soils Stephen W. Lacz 1, M. ASCE, P.E. and Richard C. Wells 2, F. ASCE, P.E. 1 Senior Professional, Trigon Kleinfelder, Inc., 313 Gallimore

More information

Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,

Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December, Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydro-environmental

More information

Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise (4): Open Channel Flow - Gradually Varied Flow Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

More information

OWNER S/OPERATOR S - PARTS MANUAL CEMENT MIXER MODEL MX-80

OWNER S/OPERATOR S - PARTS MANUAL CEMENT MIXER MODEL MX-80 OWNER S/OPERATOR S - PARTS MANUAL CEMENT MIXER MODEL MX-80 Read the Operator s Manual entirely. When you see this symbol, be aware that the subsequent instructions and warnings are serious - follow without

More information

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile J. Sherstobitoff Ausenco Sandwell, Vancouver, Canada P. Cajiao AMEC, Vancouver, Canada P. Adebar University of British

More information

[TECHNICAL REPORT I:]

[TECHNICAL REPORT I:] [Helios Plaza] Houston, Texas Structural Option Adviser: Dr. Linda Hanagan [TECHNICAL REPORT I:] Structural Concepts & Existing Conditions Table of Contents Executive Summary... 2 Introduction... 3 Structural

More information

Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles

Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles Helical Piles Howard A. Perko Copyright 0 2009 by John Wiley & Sons, Inc. All rights reserved. C h a p t e r 14 Underpinning Systems There has been tremendous growth in the use of helical piles for underpinning

More information

Predicting Seismic Vulnerable Zones using GIS. Outline of the presentation. Objectives. Risk Mapping Overview Factor Maps. Three levels of Zonation

Predicting Seismic Vulnerable Zones using GIS. Outline of the presentation. Objectives. Risk Mapping Overview Factor Maps. Three levels of Zonation Predicting Seismic Vulnerable Zones using GIS by K.S.A. Dinesh Kumar Research Scholar, Anna University & Lecturer in Civil Engineering Dept. National Institute of Technical Teachers Training & Research

More information