# ANNOTATED OUTPUT--SPSS Simple Linear (OLS) Regression

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Simple Linear (OLS) Regression Regression is a method for studying the relationship of a dependent variable and one or more independent variables. Simple Linear Regression tells you the amount of variance accounted for by one variable in predicting another variable. In this example, we are interested in predicting the frequency of sex among a national sample of adults. The dependent variable is frequency of sex. The independent variables are: age, race, general happiness, church attendance, and marital status. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.0) /NOORIGIN /DEPENDENT sexfreq /METHOD=ENTER age Married White happy attend. Variables Entered/Removed b Variables Entered CHURCH ATTENDA NCE, RACE (White =), GENERAL HAPPINES S, AGE, MARITAL (Married =) a Variables Removed a. All requested variables entered. Method. Enter b. Dependent Variable: FREQUENCY OF SEX DURING LAST YEAR Center for Family and Demographic Research Page

2 Summary Adjusted Std. Error of R Square R Square the Estimate R -a- -b- -c-.572 a a. Predictors: (Constant), CHURCH ATTENDANCE, RACE (White =), GENERAL HAPPINESS, AGE, MARITAL (Married =) a. R Square = tells us how much of the variance of the dependent variable can be explained by the independent variable(s). Basically, it compares the model with the independent variables to a model without the independent variables. In this case, 33% of the variance is explained by differences in all included variables. b. Adjusted R Square = As predictors are added to the model, each predictor will explain some of the variance in the dependent variable simply due to chance. The Adjusted R Square attempts to produce a more honest value to estimate R Square for the population. In this example, the difference between R Square and Adjusted R Square is minimal. c. Std. Error = The standard error of the estimate (aka, the root mean square error), is the standard deviation of the error term, and is the square root of the Mean Square Residual (or Error). Center for Family and Demographic Research Page 2

3 ANOVA b Sum of Squares -f- df Mean Square F -g- Sig. Regression -d a Residual -e Total a. Predictors: (Constant), CHURCH ATTENDANCE, RACE (White =), GENERAL HAPPINESS, AGE, MARITAL (Married =) b. Dependent Variable: FREQUENCY OF SEX DURING LAST YEAR d. The output for Regression displays information about the variation accounted for by the model. e. The output for Residual displays information about the variation that is not accounted for by your model. And the output for Total is the sum of the information for Regression and Residual. f. A model with a large regression sum of squares in comparison to the residual sum of squares indicates that the model accounts for most of variation in the dependent variable. Very high residual sum of squares indicate that the model fails to explain a lot of the variation in the dependent variable, and you may want to look for additional factors that help account for a higher proportion of the variation in the dependent variable. In this example, we see that 32.7% of the total sum of squares is made up from the regression sum of squares. You may notice that the R 2 for this model is also.327 (this is not a coincidence!). g. If the significance value of the F statistic is small (smaller than say 0.05) then the independent variables do a good job explaining the variation in the dependent variable. If the significance value of F is larger than say 0.05 then the independent variables do not explain the variation in the dependent variable. For this example the model does a good job explaining the variation in the dependent variable. Center for Family and Demographic Research Page 3

4 (Constant) -h- AGE MARITAL (Married =) RACE (White =) GENERAL HAPPINESS CHURCH ATTENDANCE a Unstandardized -i- a. Dependent Variable: FREQUENCY OF SEX DURING LAST YEAR Standardized -j- B Std. Error Beta t -k- Sig. -l h. Constant represents the Y-intercept, the height of the regression line when it crosses the Y axis. In this example, it is the predicted value of the dependent variable, frequency of sex, when all other values are zero (0). In this example, the value is i. These are the values for the regression equation for predicting the dependent variable from the independent variable(s). These are unstandardized (B) coefficients because they are measured in natural units, and therefore cannot be compared to one another to determine which is more influential. j. The standardized coefficients or betas are an attempt to make the regression coefficients more comparable. Here we can see that the Beta for age has the largest absolute value (-.475), which can be interpreted as having the greatest impact on frequency of sex compared to the other variables in the model. The race variable has the smallest absolute value (-.045) and can be interpreted as having the smallest impact of the dependent variable. k. The t statistics can help you determine the relative importance of each variable in the model. The t-statistic is calculated by divided the variable s unstandardized coefficient by its standard error. As a guide regarding useful predictors, look for t values well below -.96 or above As you can see, the race variable is the only t-value not within this range (note also that this is the only variable that is not significant). l. The significance column indicates whether or not a variable is a significant predictor of the dependent variable. The p-value (significance) is the probability that your sample could have been drawn from the population(s) being tested (or that a more improbable sample could be drawn) given the assumption that the null hypothesis is true. A p-value of.05, for example, indicates that you would have only a 5% chance of drawing the sample being tested if the null hypothesis was actually true. As sociologists, we typically look for p-values below.05. For example, in this model the race variable is not significant (p =.086), while the other variables are significant. Center for Family and Demographic Research Page 4

5 Regression Equation SEXFREQ predicted = *age.372*marital -.25*race.262*happy.067*attend If we plug in values in for the independent variables (age = 35 years; marital = currently married-; race = white-; happiness = very happy-; church attendance = never attends-0), we can predict a value for frequency of sex: SEXFREQ predicted = *35.372* -.25* -.262* -.067*0 = As this variable is coded, a 35-year old, White, married person with high levels of happiness and who never attends church would be expected to report their frequency of sex between values 4 (weekly) and 5 (2-3 times per week). If we plug in 70 years, instead, we find that frequency of sex is predicted at 2.53, or approximately -2 times per month. Interpretation Constant = The predicted value of frequency of sex, when all other variables are 0. Important to note, values of 0 for all variables is not interpretable either (i.e., age cannot equal 0 since in our sample all respondents are between the ages of 8 and 89). Age = For every unit increase in age (in this case, year), frequency of sex will decrease by.055 units. Marital Status = For every unit increase in marital status, frequency of sex will decrease by.372 units. Since marital status has only two categories, we can conclude that currently married persons have more sex than currently unmarried persons. Race = For every unit increase in race, frequency of sex will decrease by.25 units. Since race has only two categories, we can conclude that non- White persons have more sex than White persons. Happiness = For every unit increase in happiness, frequency of sex will decrease by.262 units. Recall that happiness is coded such that higher scores indicate less happiness. For this example, then, higher levels of happiness predict higher frequency of sex. Church Attendance = For every unit increase in church attendance, frequency of sex decreases by.067 units. Center for Family and Demographic Research Page 5

6 Simple Linear Regression (with nonlinear variables) It is known that some variables are often non-linear, or curvilinear. Such variables may be age or income. In this example, we include the original age variable and an age squared variable. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.0) /NOORIGIN /DEPENDENT sexfreq /METHOD=ENTER age Married White happy attend agesquare. a (Constant) AGE MARITAL (Married =) RACE (White =) GENERAL HAPPINESS CHURCH ATTENDANCE AGE-SQUARED Unstandardized Standardized a. Dependent Variable: FREQUENCY OF SEX DURING LAST YEAR B Std. Error Beta t Sig The age squared variable is significant, indicating that age is non-linear. Center for Family and Demographic Research Page 6

7 Simple Linear Regression (with interaction term) In a linear model, the effect of each independent variable is always the same. However, it could be that the effect of one variable depends on another. In this example, we might expect that the effect of marital status is dependent on gender. In the following example, we include an interaction term, male*married. To test for two-way interactions (often thought of as a relationship between an independent variable (IV) and dependent variable (DV), moderated by a third variable), first run a regression analysis, including both independent variables (IV and moderator) and their interaction (product) term. It is highly recommended that the independent variable and moderator are standardized before calculation of the product term, although this is not essential. For this example, two dummy variables were created, for ease of interpretation. Gender was coded such that =Male and 0=Female. Marital status was coded such that =Currently married and 0=Not currently married. The interaction term is a cross-product of these two dummy variables. Regression (without interactions) REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.0) /NOORIGIN /DEPENDENT sexfreq /METHOD=ENTER age White happy attend Male Married. (Constant) AGE RACE (White =) GENERAL HAPPINESS CHURCH ATTENDANCE GENDER (Male =) MARITAL (Married =) a Unstandardized Standardized a. Dependent Variable: FREQUENCY OF SEX DURING LAST YEAR B Std. Error Beta t Sig Center for Family and Demographic Research Page 7

8 Regression (with interactions) REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.0) /NOORIGIN /DEPENDENT sexfreq /METHOD=ENTER age White happy attend Male Married Interaction. a (Constant) AGE RACE (White =) GENERAL HAPPINESS CHURCH ATTENDANCE GENDER (Male =) MARITAL (Married =) Male x Married Interaction Term Unstandardized Standardized a. Dependent Variable: FREQUENCY OF SEX DURING LAST YEAR B Std. Error Beta t Sig The product term should be significant in the regression equation in order for the interaction to be interpretable. This indicates that the effect of being married is significantly different (p <.05) for males and females. Marital status has a significant weaker effect for males than females. Regression Equation SEXFREQ predicted = *age -.263*race -.25*happy -.053*attend +.630*married + ( *married) * male Interpretation Main Effects The married coefficient represents the main effect for females (the 0 category). The effect for females is then.63, or the marital coefficient. The effect for males is , or.987. The gender coefficient represents the main effect for unmarried persons (the 0 category). The effect for unmarried is then.673, or the sex coefficient. The effect for married is , or.03. Center for Family and Demographic Research Page 8

9 Interaction Effects For a simple interpretation of the interaction term, plug values into the regression equation above. Married Men = SEXFREQ predicted = * * -.25* -.053* * + ( *) * = Married Women = SEXFREQ predicted = * * -.25* -.053* * + ( *) * 0 = Unmarried Men = SEXFREQ predicted = * * -.25* -.053* *0 + ( *0) * = Unmarried Women = SEXFREQ predicted = * * -.25* -.053* *0 + ( *0) * 0 = In this example (age = 35 years; race = white-; happiness = very happy-; church attendance = never attends-0), we can see that () for both married and unmarried persons, males are reporting higher frequency of sex than females, and (2) married persons report higher frequency of sex than unmarried persons. The interaction tells us that the gender difference is greater for married persons than for unmarried persons. Center for Family and Demographic Research Page 9

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### SPSS BASICS. (Data used in this tutorial: General Social Survey 2000 and 2002) Ex: Mother s Education to eliminate responses 97,98, 99;

SPSS BASICS (Data used in this tutorial: General Social Survey 2000 and 2002) How to do Recoding Eliminating Response Categories Ex: Mother s Education to eliminate responses 97,98, 99; When we run a frequency

### Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2

Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA

### Moderation. Moderation

Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### Binary Logistic Regression

Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including

### This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

### Exploring Relationships using SPSS inferential statistics (Part II) Dwayne Devonish

Exploring Relationships using SPSS inferential statistics (Part II) Dwayne Devonish Reminder: Types of Variables Categorical Variables Based on qualitative type variables. Gender, Ethnicity, religious

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Row vs. Column Percents. tab PRAYER DEGREE, row col

Bivariate Analysis - Crosstabulation One of most basic research tools shows how x varies with respect to y Interpretation of table depends upon direction of percentaging example Row vs. Column Percents.

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

### SPSS: Descriptive and Inferential Statistics. For Windows

For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### Simple Linear Regression in SPSS STAT 314

Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,

### Introduction to Stata

Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the mid-range of how easy it is to use. Other options include SPSS,

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### Regression Analysis. Data Calculations Output

Regression Analysis In an attempt to find answers to questions such as those posed above, empirical labour economists use a useful tool called regression analysis. Regression analysis is essentially a

### MULTIPLE REGRESSION WITH CATEGORICAL DATA

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

### ANOVA - Analysis of Variance

ANOVA - Analysis of Variance ANOVA - Analysis of Variance Extends independent-samples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare

### Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### Finding Supporters. Political Predictive Analytics Using Logistic Regression. Multivariate Solutions

Finding Supporters Political Predictive Analytics Using Logistic Regression Multivariate Solutions What is Logistic Regression? In a political application, logistic regression can describe the outcome

### Comparing Regression Lines From Independent Samples

Comparing Regression Lines From Independent Samples The analysis discussed in this document is appropriate when one wishes to determine whether the linear relationship between one continuously distributed

### Multiple Regression. Page 24

Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)

### REGRESSION LINES IN STATA

REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

### 1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand

### Moderator and Mediator Analysis

Moderator and Mediator Analysis Seminar General Statistics Marijtje van Duijn October 8, Overview What is moderation and mediation? What is their relation to statistical concepts? Example(s) October 8,

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### Mind on Statistics. Chapter 3

Mind on Statistics Chapter 3 Section 3.1 1. Which one of the following is not appropriate for studying the relationship between two quantitative variables? A. Scatterplot B. Bar chart C. Correlation D.

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.

SPSS Regressions Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objective This course is designed

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Once saved, if the file was zipped you will need to unzip it.

1 Commands in SPSS 1.1 Dowloading data from the web The data I post on my webpage will be either in a zipped directory containing a few files or just in one file containing data. Please learn how to unzip

### Lesson Lesson Outline Outline

Lesson 15 Linear Regression Lesson 15 Outline Review correlation analysis Dependent and Independent variables Least Squares Regression line Calculating l the slope Calculating the Intercept Residuals and

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM

EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable

### Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### RELATIONSHIP BETWEEN EXAMINATION ANXIETY AND STUDENTS ACADEMIC PERFORMANCE IN A PSYCHOLOGY COURSE

RELATIONSHIP BETWEEN EXAMINATION ANXIETY AND STUDENTS ACADEMIC PERFORMANCE IN A PSYCHOLOGY COURSE Dr. Grace N. Okorodudu and Dr. Moses C. Ossai Abstract The relationship between examination anxiety and

### Survival Analysis Using SPSS. By Hui Bian Office for Faculty Excellence

Survival Analysis Using SPSS By Hui Bian Office for Faculty Excellence Survival analysis What is survival analysis Event history analysis Time series analysis When use survival analysis Research interest

### MULTIPLE REGRESSION EXAMPLE

MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if

### 1.1. Simple Regression in Excel (Excel 2010).

.. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > Add-Ins > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### ANOVA Analysis of Variance

ANOVA Analysis of Variance What is ANOVA and why do we use it? Can test hypotheses about mean differences between more than 2 samples. Can also make inferences about the effects of several different IVs,

### Statistics and research

Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,

### Multiple Regression: What Is It?

Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in

### POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

### Correlation and Regression Analysis: SPSS

Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things,

### Hypothesis Testing - Relationships

- Relationships Session 3 AHX43 (28) 1 Lecture Outline Correlational Research. The Correlation Coefficient. An example. Considerations. One and Two-tailed Tests. Errors. Power. for Relationships AHX43

### 5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

### Using Correlation and Regression: Mediation, Moderation, and More

Using Correlation and Regression: Mediation, Moderation, and More Part 2: Mediation analysis with regression Claremont Graduate University Professional Development Workshop August 22, 2015 Dale Berger,

### Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,

### MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

### SPSS TUTORIAL & EXERCISE BOOK

UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### AGE AND EMOTIONAL INTELLIGENCE

White Paper Research on Emotional Intelligence AGE AND EMOTIONAL INTELLIGENCE Lorenzo Fariselli, Massimiliano Ghini, Joshua Freedman Publication Date: May 16, 2006 Last Updated: Jan 8, 2008 Abstract: There

### Multiple Regression Analysis (ANCOVA)

Chapter 16 Multiple Regression Analysis (ANCOVA) In many cases biologists are interested in comparing regression equations of two or more sets of regression data. In these cases, the interest is in whether

### Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### SPSS-Applications (Data Analysis)

CORTEX fellows training course, University of Zurich, October 2006 Slide 1 SPSS-Applications (Data Analysis) Dr. Jürg Schwarz, juerg.schwarz@schwarzpartners.ch Program 19. October 2006: Morning Lessons

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

Using Your TI-83/84 Calculator: Linear Correlation and Regression Elementary Statistics Dr. Laura Schultz This handout describes how to use your calculator for various linear correlation and regression

### Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

### Solución del Examen Tipo: 1

Solución del Examen Tipo: 1 Universidad Carlos III de Madrid ECONOMETRICS Academic year 2009/10 FINAL EXAM May 17, 2010 DURATION: 2 HOURS 1. Assume that model (III) verifies the assumptions of the classical

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### Statistical matching: Experimental results and future research questions

Statistical matching: Experimental results and future research questions 2015 19 Ton de Waal Content 1. Introduction 4 2. Methods for statistical matching 5 2.1 Introduction to statistical matching 5 2.2

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY

CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples

### Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish

Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)

### ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R.

ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R. 1. Motivation. Likert items are used to measure respondents attitudes to a particular question or statement. One must recall

### A Guide for a Selection of SPSS Functions

A Guide for a Selection of SPSS Functions IBM SPSS Statistics 19 Compiled by Beth Gaedy, Math Specialist, Viterbo University - 2012 Using documents prepared by Drs. Sheldon Lee, Marcus Saegrove, Jennifer

### ANALYSIS OF USER ACCEPTANCE OF A NETWORK MONITORING SYSTEM WITH A FOCUS ON ICT TEACHERS

ANALYSIS OF USER ACCEPTANCE OF A NETWORK MONITORING SYSTEM WITH A FOCUS ON ICT TEACHERS Siti Rahayu Abdul Aziz 1, Mohamad Ibrahim 2, and Suhaimi Sauti 3 1 Universiti Teknologi MARA, Malaysia, rahayu@fskm.uitm.edu.my

### Using R for Linear Regression

Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional