Introduction HIRLAM 7.2

Size: px
Start display at page:

Download "Introduction HIRLAM 7.2"

Transcription

1 Introduction HIRLAM 7.2 Differences between the current operational HIRLAM version 7.0 and the next operational version 7.2 are described in this document. I will try to describe the effect of this change on the output of the model, so these changes are known and can be taken into account in the operational applications. In this document I will also point to two web sites that contain more information on the change from HIRLAM version 7.0 to 7.2. What remains the same? The upgrade to HIRLAM version 7.2 is not going to be accompanied by changes to the model grid on which the products are available for the KNMI customers. Due to time constraints at our high performance computer and the increased cost of HIRLAM 7.2 in comparison with HIRLAM 7.0 we have to decrease the total calculation area with 50 points along all the edges. But that still means that the HIRLAM products that are delivered by KNMI fall well inside this calculation domain. Therefore, for end users of the HIRLAM model output, nothing changes technically, except for the model version number which is increased by 1 to 8 for the large domain and 108 for the smaller domain. What does change? The results of 2 years HIRLAM research are included in HIRLAM 7.2. This version of HIRLAM was officially released in the Autumn of 2008 and KNMI started running this version already during summer of Therefore we already have quite some experience with the output from this model version and are able to share this information with the users of the HIRLAM output. The most important differences between HIRLAM 7.2 and HIRLAM 7.0 are: - Change in convection and condensation scheme from STRACO to Kain-Fritsch Rasch-Kristjansson - Improved mixing in of ECMWF analysis - Improved boundary condition at the model top that prevents crashes in Winter - Different tuning of the vertical diffusion scheme and the removal of the turning of the surface stress - 6-hour assimilation cycle instead of 3-hour cycle - Increased use of satellite data in analysis - Extended and improved postprocessing Impact of changes for the behaviour of the model With a few examples I will try to make clear the impact of the changes. Most changes are not easily seen in the model output. The largest impact is coming from the change in convection and condensation scheme. This changes the model behaviour 1

2 for precipitation as well as for the dynamics of the model, especially in cases with a combination of strong winds and convection (e.g. in a northwesterly flow of cold air over a warm sea). Impact of Kain-Fritsch Rasch-Kristjansson In 2007, after a large intercomparison exercise, it was decided to Kain-Fritsch Rasch-Kristjansson the reference HIRLAM convection and condensation schemes. In this intercomparison two months were used in every season and the final decision was made based on a objective composite score. Subjectively it was already clear that there are very large differences between STRACO and KF-RK. One of the main differences between KF-RK and STRACO is that STRACO allows the model to generate convection cells on the model grid scale, cells that have their impact on the pressure and wind pattern. Especially in situations with unstable air masses and strong winds this is found. Figure 1 shows the vertical motion (omega, hpa/hour) in HIRLAM 7.0 (left) and HIRLAM 7.0 with KF-RK (right). This figure show a cross section from 20 W to 4 E along 60 N. At around 5 W a cold front is positioned. Cold air is being advected and the cold layer increases in depth going towards the West and in this cold air open cell convection is found, as can be seen in satellite images. In the STRACO run cells with relatively strong upward and downward motion can be found in the area between 18 W and 8 W. Figure 1: Cross section of omega (hpa/hour) in HIRLAM 7.0 with STRACO (left) and with KF-RK (right) from 20 W to 4 E along 60 N based on the run of 12 UTC on 8 February 2008 valid 24 hours later. The fact that strong vertical motions are found in an area where you would like the convection scheme to do all the vertical exchanges is not so much of a problem, when it would not have any consequences for the pressure and wind. In HIRLAM with STRACO, however, small low pressure areas that have a clear impact on the wind can be found, with sometimes strong local increases in the wind speed. The wind in these areas often is stronger than observed and especially in extreme conditions, close to weather alert criteria, this leads to a overforecasting of extreme events. 2

3 Figure 2 shows the impact of these convective cells on the wind speed, in this case the wind gusts based on the average wind speed and Turbulent Kinetic Energy. On 29 February 2008 a low pressure system passed north of the Netherlands and behind this system a strong northwesterly flow developed. The average wind speed reached values of 21 m/s. In the run with STRACO wind speeds up to 25 m/s were found and wind gusts up to 34 m/s were forecasted (figure 2 left). In the KF-RK run the wind speed was much weaker, around 20 m/s, resulting in wind gusts up to 28 m/s (figure 2 right). The observed maximum gust was 29 m/s in the North of the Netherlands in this case. Farther to the South the wind gusts were stronger, especially in the southwestern part of the Netherlands, but these wind gusts occurred on a line with strong convection. For these type of gusts the TKE method is not applicable. Figure 2: Wind gust forecast (m/s) based on TKE valid for 29 Februari UTC based on HIRLAM 7.0 with STRACO (left) and KF-RK (right). Note the different scales in the plots. Figure 3 is an example of the differences between HIRLAM 7.0 and HIRLAM 7.2, whereas the previous figures were both based on HIRLAM 7.0. In this figure the difference between HIRLAM 7.0 (left) and HIRLAM 7.2 (right) is also clear. In the area west of France the HIRLAM 7.0 wind field looks much more irregular than the 7.2 version. Where HIRLAM 7.2 has large areas with e.g. wind force 7 or 8 (lavender and purple colors), is the wind in HIRLAM 7.0 changing from wind force 6 to 9 in small spots. The differences in the behaviour of the wind and surface pressure are caused by the different convection schemes that are used in both runs. The STRACO scheeme 3

4 HiRLAM version H7.2 / 15 October 2009 (Smooth TRansition COnvection) somehow is not able to remove the instability in a proper way and allows the model to produce its own resolved convection. This gives rise to the development of long lived convective cells that develop into small scale lows that have their own wind fields. Figure 3: +24 forecast of PMSL (hpa) and wind speed (m/s) from HIRLAM 7.0 (left) and HIRLAM 7.2 (right) alid on 4 March 2009, 00 UTC. The difference in convective character between HIRLAM 7.0 and 7.2 is visible also in the precipitation fields and in the division between the convective and stratiform part of the precipitation. With STRACO both precipitation forms are almost always visible in the time series of precipitation. KF-RK makes a much clearer distinction between the two. In the unstable air behind a cold front KF-RK will mainly give convective precipitation while STRACO often also gives stratiform precipitation there. 4

5 Figure 4: +24 forecast of the 1-hour accumulated precipitation in HIRLAM 7.0 (left) and 7.2 (right) valid on 2 December 2008 at 00 UTC. Another difference is the horizontal distribution of the precipitation. Figure 4 shows that HIRLAM 7.0 has many small scale convective cells west of France and Ireland, whereas HIRLAM 7.2 has convective precipitation organized more in bands. Another difference is the behaviour of the model when the surface forcing of the convection is taken away, e.g. when air flows from warm water to a cold land surface. HIRLAM 7.0 has the tendency to let this convection get inland too far. HIRLAM 7.2 more often confines the precipitation to the coastal areas. Figure 5: +7 forecast of the one hour precipitation accumulation in HIRLAM 7.0 (left) and HIRLAM 7.2 (right) valid on 20 August 2009, 7 UTC. Figure 5 shows the precipitation forecast on the very warm 20 August 2009, when there were some small showers developing in the morning due to mid level convection with one stronger thunderstorm that developed over Limburg and moved northeast over Germany. HIRLAM 7.0 did not give this precipitation at all while HIRLAM 7.2 gave an indication of light rain with one stronger shower embedded (in the wrong place). HIRLAM 7.2 therefore gave a much better warning for the light rain than HIRLAM 7.0. The forecast for the afternoon was quite similar in both runs, they both overforecasted the intensity of the thunderstorms on the convergence zone, where showers only developed in the North of the Netherlands and the strong gusts that were forecasted did not materialize. Another problem of HIRLAM 7.0, that is improved in HIRLAM 7.2, is the sometimes significant precipitation from showers that are too shallow and warm (cloud top 5

6 HiRLAM version H7.2 / 15 October 2009 close to or above 0 C) to give more that a few drops of precipitation. Figure 6 shows such a situation. Figure 6: +12 forecast of the 1 hour precipitation accumulation in HIRLAM 7.0 (left) and 7.2 (right) valid on 21 August 2009, 12 UTC. Figuur 7: +6 (links) en +12 (rechts) verwachting van CAPE voor HIRLAM 7.0 (links) en HIRLAM 7.2 (rechts) geldig voor 12 UTC op 24 augustus

7 Other improvements in HIRLAM 7.2 compared to HIRLAM 7.0 are to be found in the postprocessing. One example is the calculation of CAPE. In HIRLAM 7.0 there is a problem with the stop criterium of these calculations. In areas with a thicker CINlayer (more than 2 layers thick), no CAPE is calculated. In HIRLAM 7.2 this is improved, causing the different air masses and frontal zones to be much more coherent than in the old HIRLAM version. HIRLAM 7.2 also gives the opportunity to get extra postprocessing from the model like the minimum and maximum temperature and wind speed over certain time intervals, plus the instantaneous and maximum mechanical wind gust, based on TKE (so without the convective component that can give the gusts extra strength) What is worse in HIRLAM 7.2 compared to HIRLAM 7.0? So far I have only mentioned the good things about HIRLAM 7.2, but as with any large change there are also aspects that become worse with the introduction of HIRLAM 7.2. One of the things that become worse with the new version of HIRLAM is the precipitation, especially in summer. There are more occasions with small precipitation amounts in HIRLAM 7.2 than in HIRLAM 7.0. In winter the opposite is the case, but overall there is an increase in small precipitation amounts. Another difference is the inland penetration of convection in case of unstable air traveling over a warm sea and reaching a cold land surface. In HIRLAM 7.0 this precipitation tended to get inland too far. In HIRLAM 7.2 the opposite may be the case with the precipitation getting inland not far enough. However, it still is the case that HIRLAM 7.2 is quite quick with convection developing, especially in comparison with other models. Therefore it still can be used for warnings on the possibility of convective activity. Verification On the webpage there is quite some material on the verification of HIRLAM 7.2 (CIS in these plots) against HIRLAM 7.0. Here near surface scores for Europe (EWGLAM stations and the Netherlands) and scores against profiles (all radiosoundings in the domain), precipitation contingency tables and frequency plots can be found. This information shall be extended in the future with months that are complete then. The verification for the Netherlands shows that the pressure in this HIRLAM version is in general a little bit better than in HIRLAM 7.0. This also is true for the temperature, except in the months of April and May (see figure 8), that are worse as they are too warm and too dry. It looks like there is too little evaporation, something that may be improved by changes in the vegetation characteristics. 7

8 Figure 8: Verification of the temperature as function of the forecast length for HIRLAM 7.0 (red) and HIRLAM 7.2 (blue) for the Netherlands and direct surroundings for May The dewpoint is better in HIRLAM 7.2 than in HIRLAM 7.0 so far for all the months that we have available in the verification. The wind speed is a little bit better in HIRLAM 7.2 due to a smaller bias but the wind direction bias is increased a little bit compared to HIRLAM 7.0. Looking at the verification over all EWGLAM stations the PMSL has improved a little bit, but especially the 2m temperature and the 2m dewpoint temperature are much better in spring. In some months the bias has been reduced by almost 1 C. For the upper air (visible in the profiles) the standard deviation has been reduced in general. The contingency tables of the precipitation show that HIRLAM 7.2 has more dry forecasts in winter, while the opposite is true in summer. Still, both models are much too wet in winter and in summer. Especially in summer there are more cases with the correct amount of precipitation in HIRLAM 7.2, there are larger numbers on the diagonals in the contingency tables for precipitation amounts larger than 2 mm per 12 hours for HIRLAM 7.2 (CIS). 8

9 Figure 9: Verification of the temperature as function of the forecast length for HIRLAM 7.0 (red) and HIRLAM 7.2 (blue) for the EWGLAM stations for May Webadresses with information about HIRLAM 7.2: Comparison of todays runs (as long as both model versions are running): Verification HIRLAM 7.2: Older verification (from last year with disfunctional archiving system, therefore only verification of first hours): 9

Convective Clouds. Convective clouds 1

Convective Clouds. Convective clouds 1 Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at

More information

MOGREPS status and activities

MOGREPS status and activities MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents

More information

How do Scientists Forecast Thunderstorms?

How do Scientists Forecast Thunderstorms? How do Scientists Forecast Thunderstorms? Objective In the summer, over the Great Plains, weather predictions often call for afternoon thunderstorms. While most of us use weather forecasts to help pick

More information

2. The map below shows high-pressure and low-pressure weather systems in the United States.

2. The map below shows high-pressure and low-pressure weather systems in the United States. 1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is

More information

Verification working group

Verification working group Verification working group Sander Tijm Gwenaelle Hello With contributions from Mariska Derkova and Doinia Banciu Contents of talk Plans of cooperation between Hirlam and Aladin in physics Why verification

More information

WEATHER THEORY Temperature, Pressure And Moisture

WEATHER THEORY Temperature, Pressure And Moisture WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59

More information

Basics of weather interpretation

Basics of weather interpretation Basics of weather interpretation Safety at Sea Seminar, April 2 nd 2016 Dr. Gina Henderson Oceanography Dept., USNA ghenders@usna.edu Image source: http://earthobservatory.nasa.gov/naturalhazards/view.php?id=80399,

More information

Can latent heat release have a negative effect on polar low intensity?

Can latent heat release have a negative effect on polar low intensity? Can latent heat release have a negative effect on polar low intensity? Ivan Føre, Jon Egill Kristjansson, Erik W. Kolstad, Thomas J. Bracegirdle and Øyvind Sætra Polar lows: are intense mesoscale cyclones

More information

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -

More information

Estimation of satellite observations bias correction for limited area model

Estimation of satellite observations bias correction for limited area model Estimation of satellite observations bias correction for limited area model Roger Randriamampianina Hungarian Meteorological Service, Budapest, Hungary roger@met.hu Abstract Assimilation of satellite radiances

More information

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective

More information

Storms Short Study Guide

Storms Short Study Guide Name: Class: Date: Storms Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A(n) thunderstorm forms because of unequal heating

More information

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF 3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ

More information

Use of numerical weather forecast predictions in soil moisture modelling

Use of numerical weather forecast predictions in soil moisture modelling Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research ari.venalainen@fmi.fi OBJECTIVE The weather forecast models

More information

A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands Supplementary Material to A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands G. Lenderink and J. Attema Extreme precipitation during 26/27 th August

More information

Chapter 7 Stability and Cloud Development. Atmospheric Stability

Chapter 7 Stability and Cloud Development. Atmospheric Stability Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered

More information

8.5 Comparing Canadian Climates (Lab)

8.5 Comparing Canadian Climates (Lab) These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

More information

1D shallow convective case studies and comparisons with LES

1D shallow convective case studies and comparisons with LES 1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils

More information

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below. UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

More information

What Causes Climate? Use Target Reading Skills

What Causes Climate? Use Target Reading Skills Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

More information

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang

More information

Air Masses and Fronts

Air Masses and Fronts Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from

More information

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago? Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced

More information

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS

IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and

More information

1. a. Surface Forecast Charts (USA and Ontario and Quebec) http://www.rap.ucar.edu/weather/

1. a. Surface Forecast Charts (USA and Ontario and Quebec) http://www.rap.ucar.edu/weather/ COMPUTER ASSISTED METEOROLOGY Frank Pennauer This contribution gives the available computer data sources, how to access them and use this data for predicting Soaring weather conditions will be discussed

More information

REGIONAL CLIMATE AND DOWNSCALING

REGIONAL CLIMATE AND DOWNSCALING REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( horanyi.a@.a@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella

More information

Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models

Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models Peter N. Francis, James A. Hocking & Roger W. Saunders Met Office, Exeter, U.K. Abstract

More information

Weather Radar Basics

Weather Radar Basics Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW

More information

How do I measure the amount of water vapor in the air?

How do I measure the amount of water vapor in the air? How do I measure the amount of water vapor in the air? Materials 2 Centigrade Thermometers Gauze Fan Rubber Band Tape Overview Water vapor is a very important gas in the atmosphere and can influence many

More information

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere

More information

Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong

Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong

More information

If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC)

If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC) Cirrus (CI) Detached clouds in the form of delicate white filaments or white patches or narrow bands. These clouds have a fibrous or hair like appearance, or a silky sheen or both. with frontal lifting

More information

Overview of the IR channels and their applications

Overview of the IR channels and their applications Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation

More information

UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY

UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY The stability or instability of the atmosphere is a concern to firefighters. This unit discusses how changes in the atmosphere affect fire behavior, and

More information

Verification of cloud simulation in HARMONIE AROME

Verification of cloud simulation in HARMONIE AROME METCOOP MEMO No. 01, 2013 Verification of cloud simulation in HARMONIE AROME A closer look at cloud cover, cloud base and fog in AROME Karl-Ivar Ivarsson, Morten Køltzow, Solfrid Agersten Front: Low fog

More information

Outline of RGB Composite Imagery

Outline of RGB Composite Imagery Outline of RGB Composite Imagery Data Processing Division, Data Processing Department Meteorological Satellite Center (MSC) JMA Akihiro SHIMIZU 29 September, 2014 Updated 6 July, 2015 1 Contents What s

More information

Cloud Model Verification at the Air Force Weather Agency

Cloud Model Verification at the Air Force Weather Agency 2d Weather Group Cloud Model Verification at the Air Force Weather Agency Matthew Sittel UCAR Visiting Scientist Air Force Weather Agency Offutt AFB, NE Template: 28 Feb 06 Overview Cloud Models Ground

More information

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the

More information

Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux

Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And

More information

CGC1D1: Interactions in the Physical Environment Factors that Affect Climate

CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Name: Date: Day/Period: CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Chapter 12 in the Making Connections textbook deals with Climate Connections. Use pages 127-144 to fill

More information

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,

More information

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT

More information

WeatherBug Vocabulary Bingo

WeatherBug Vocabulary Bingo Type of Activity: Game: Interactive activity that is competitive, and allows students to learn at the same time. Activity Overview: WeatherBug Bingo is a fun and engaging game for you to play with students!

More information

Clouds for pilots. Ed Williams. http://williams.best.vwh.net/

Clouds for pilots. Ed Williams. http://williams.best.vwh.net/ Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics

More information

Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images

Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Ng Ka Ho, Hong Kong Observatory, Hong Kong Abstract Automated forecast of significant convection

More information

Investigations on COSMO 2.8Km precipitation forecast

Investigations on COSMO 2.8Km precipitation forecast Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites

More information

Southern AER Atmospheric Education Resource

Southern AER Atmospheric Education Resource Southern AER Atmospheric Education Resource Vol. 9 No. 5 Spring 2003 Editor: Lauren Bell In this issue: g Climate Creations exploring mother nature s remote control for weather and Climate. g Crazy Climate

More information

Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago

Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Mixing Heights & Smoke Dispersion Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Brief Introduction Fire Weather Program Manager Liaison between the NWS Chicago office and local

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies

Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies Atmospheric Environment 34 (2000) 507}516 Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies Robert Bornstein*, Qinglu Lin Department of Meteorology, San Jose State

More information

Nowcasting: analysis and up to 6 hours forecast

Nowcasting: analysis and up to 6 hours forecast Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space

More information

Texas Department of Public Safety Texas Division of Emergency Management. Texas State Operations Center

Texas Department of Public Safety Texas Division of Emergency Management. Texas State Operations Center Texas Department of Public Safety Texas Division of Emergency Management Texas State Operations Center Situation Awareness Brief Saturday, July 20 th 2013 As of 0900 CDT Tropical Weather Outlook For the

More information

Monsoon Variability and Extreme Weather Events

Monsoon Variability and Extreme Weather Events Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 rajeevan@imdpune.gov.in Outline of the presentation Monsoon rainfall Variability

More information

Various Implementations of a Statistical Cloud Scheme in COSMO model

Various Implementations of a Statistical Cloud Scheme in COSMO model 2 Working Group on Physical Aspects 61 Various Implementations of a Statistical Cloud Scheme in COSMO model Euripides Avgoustoglou Hellenic National Meteorological Service, El. Venizelou 14, Hellinikon,

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

Atmospheric kinetic energy spectra from high-resolution GEM models

Atmospheric kinetic energy spectra from high-resolution GEM models Atmospheric kinetic energy spectra from high-resolution GEM models Bertrand Denis NWP Section Canadian Meteorological Centre Environment Canada SRNWP 2009 Bad Orb, Germany Outline Introduction What we

More information

The impact of window size on AMV

The impact of window size on AMV The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target

More information

Indian Ocean and Monsoon

Indian Ocean and Monsoon Indo-French Workshop on Atmospheric Sciences 3-5 October 2013, New Delhi (Organised by MoES and CEFIPRA) Indian Ocean and Monsoon Satheesh C. Shenoi Indian National Center for Ocean Information Services

More information

Probabilistic forecasts of winter thunderstorms around Schiphol Airport using Model Output Statistics

Probabilistic forecasts of winter thunderstorms around Schiphol Airport using Model Output Statistics Technical report ; TR-300 Probabilistic forecasts of winter thunderstorms around Schiphol Airport using Model Output Statistics Aimée Slangen De Bilt, 2008 KNMI technical report = technisch rapport; TR-300

More information

ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation

ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY Theses of the PhD dissertation ANDRÁS TAMÁS SERES EÖTVÖS LORÁND UNIVERSITY FACULTY OF SCIENCE PhD

More information

Chapter 6 - Cloud Development and Forms. Interesting Cloud

Chapter 6 - Cloud Development and Forms. Interesting Cloud Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective

More information

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,

More information

Formation & Classification

Formation & Classification CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Sub-grid cloud parametrization issues in Met Office Unified Model

Sub-grid cloud parametrization issues in Met Office Unified Model Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova

ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova LOW-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St. Petersburg, Russia Keywords: equatorial continental climate, ITCZ, subequatorial continental (equatorial

More information

SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES

SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES I. THE SKEW-T, LOG-P DIAGRAM The primary source for information contained in this appendix was taken from the Air Weather Service Technical Report TR-79/006. 1

More information

How To Model The Weather

How To Model The Weather Convection Resolving Model (CRM) MOLOCH 1-Breve descrizione del CRM sviluppato all ISAC-CNR 2-Ipotesi alla base della parametrizzazione dei processi microfisici Objectives Develop a tool for very high

More information

Analyze Weather in Cold Regions and Mountainous Terrain

Analyze Weather in Cold Regions and Mountainous Terrain Analyze Weather in Cold Regions and Mountainous Terrain Terminal Learning Objective Action: Analyze weather of cold regions and mountainous terrain Condition: Given a training mission that involves a specified

More information

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10 In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding

More information

TOPIC: CLOUD CLASSIFICATION

TOPIC: CLOUD CLASSIFICATION INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank

More information

Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations

Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations Station: CAPE OTWAY LIGHTHOUSE Bureau of Meteorology station number: Bureau of Meteorology district name: West Coast State: VIC World Meteorological Organization number: Identification: YCTY Basic Climatological

More information

Proposals of Summer Placement Programme 2015

Proposals of Summer Placement Programme 2015 Proposals of Summer Placement Programme 2015 Division Project Title Job description Subject and year of study required A2 Impact of dual-polarization Doppler radar data on Mathematics or short-term related

More information

Atmospheric Stability & Cloud Development

Atmospheric Stability & Cloud Development Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable

More information

Winds. Winds on a weather map are represented by wind barbs; e.g., Notes:

Winds. Winds on a weather map are represented by wind barbs; e.g., Notes: Winds Winds on a weather map are represented by wind barbs; e.g., flag half flag pennant wind direction The wind is blowing from the side with the flags and pennants (think an arrow with feathers) Speeds

More information

Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

More information

Wintry weather: improved nowcasting through data fusion

Wintry weather: improved nowcasting through data fusion Wintry weather: improved nowcasting through data fusion Arnold Tafferner, Felix Keis DLR Institut für Physik der Atmosphäre (IPA) Wetter&Fliegen Final Colloquium, MAC MUC, 15 March 2012 1 Outline The problem

More information

Towards an NWP-testbed

Towards an NWP-testbed Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira

More information

How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

More information

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 1 National Center for Atmospheric Research, Boulder, Colorado.

More information

Tropical Cyclogenesis Monitoring at RSMC Tokyo Mikio, Ueno Forecaster, Tokyo Typhoon Center Japan Meteorological Agency (JMA)

Tropical Cyclogenesis Monitoring at RSMC Tokyo Mikio, Ueno Forecaster, Tokyo Typhoon Center Japan Meteorological Agency (JMA) JMA/WMO Workshop on Effective Tropical Cyclone Warning in Southeast Asia 11 14 March, 2014 Tropical Cyclogenesis Monitoring at RSMC Tokyo Mikio, Ueno Forecaster, Tokyo Typhoon Center Japan Meteorological

More information

Synoptic assessment of AMV errors

Synoptic assessment of AMV errors NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante

More information

Satellite Weather And Climate (SWAC) Satellite and cloud interpretation

Satellite Weather And Climate (SWAC) Satellite and cloud interpretation Satellite Weather And Climate (SWAC) Satellite and cloud interpretation Vermont State Climatologist s Office University of Vermont Dr. Lesley-Ann Dupigny-Giroux Vermont State Climatologist ldupigny@uvm.edu

More information

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low

More information

MIAMI-SOUTH FLORIDA National Weather Service Forecast Office http://www.weather.gov/miami

MIAMI-SOUTH FLORIDA National Weather Service Forecast Office http://www.weather.gov/miami MIAMI-SOUTH FLORIDA National Weather Service Forecast Office http://www.weather.gov/miami November 2014 Weather Summary Cooler and Drier than Normal December 1, 2014: Cooler than normal temperatures was

More information

List 10 different words to describe the weather in the box, below.

List 10 different words to describe the weather in the box, below. Weather and Climate Lesson 1 Web Quest: What is the Weather? List 10 different words to describe the weather in the box, below. How do we measure the weather? Use this web link to help you: http://www.bbc.co.uk/weather/weatherwise/activities/weatherstation/

More information

Next generation models at MeteoSwiss: communication challenges

Next generation models at MeteoSwiss: communication challenges Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Next generation models at MeteoSwiss: communication challenges Tanja Weusthoff, MeteoSwiss Material from

More information

Very High Resolution Arctic System Reanalysis for 2000-2011

Very High Resolution Arctic System Reanalysis for 2000-2011 Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University

More information

A SEVERE WEATHER CLIMATOLOGY FOR THE WILMINGTON, NC WFO COUNTY WARNING AREA

A SEVERE WEATHER CLIMATOLOGY FOR THE WILMINGTON, NC WFO COUNTY WARNING AREA A SEVERE WEATHER CLIMATOLOGY FOR THE WILMINGTON, NC WFO COUNTY WARNING AREA Carl R. Morgan National Weather Service Wilmington, NC 1. INTRODUCTION The National Weather Service (NWS) Warning Forecast Office

More information

WEATHER AND CLIMATE practice test

WEATHER AND CLIMATE practice test WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in

More information

Satellites, Weather and Climate Module 2b: Cloud identification & classification. SSEC MODIS Today

Satellites, Weather and Climate Module 2b: Cloud identification & classification. SSEC MODIS Today Satellites, Weather and Climate Module 2b: Cloud identification & classification SSEC MODIS Today Our Cloud Watching and Identification Goals describe cloud classification system used by meteorologists

More information

Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15

Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15 Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by

More information

Lab Activity on Global Wind Patterns

Lab Activity on Global Wind Patterns Lab Activity on Global Wind Patterns 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you should

More information

Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah.

Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah. Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah. Figure 6.1 Dew forms on clear nightswhen objects on the surface cool to a temperature below the dew point. If these beads of water

More information

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test. Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that

More information

Status of ALADIN-LAEF, Impact of Clustering on Initial Perturbations of ALADIN-LAEF

Status of ALADIN-LAEF, Impact of Clustering on Initial Perturbations of ALADIN-LAEF Status of ALADIN-LAEF, Impact of Clustering on Initial Perturbations of ALADIN-LAEF Florian Weidle, Martin Bellus, Alexander Kann, Martin Steinheimer, Christoph Wittmann, Yong Wang and others Outline The

More information