Convective Clouds. Convective clouds 1

Size: px
Start display at page:

Download "Convective Clouds. Convective clouds 1"

Transcription

1 Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at the bottom of an air layer; b. cooling at the top of an air layer; c. lifting or saturation of a potentially unstable layer; d. a combination of all the above. Over land the diurnal variation of convective clouds is often clearly visible. On clear mornings, when the sun is able to heat the earth s surface the conditions for Cumulus formation are favourable. If the instability and relative humidity is large enough Cumulus clouds begin to form early. There is no Cu-formation is the atmosphere is only slightly unstable or stable and the relative humidity is low. After reaching a maximum in the afternoon the Cu activity decreases and finally the clouds dissolve in the late afternoon or early evening. Over sea the diurnal variation of Cu-formation usually is very small. If there is any activity it is near the end of the night. The ascending motions of convection decrease or stop when these motions encounter stable layers, or especially inversions. The form into which Cu-clouds develop mainly depends on the vertical distance between the condensation level (the level where temperature equals the dew point) and the cloud base of the stable layer, from the stability and the thickness (vertical distance from top to bottom) of this layer: if it is very stable the cumulus tops may be forced to spread horizontally. If the layer is not very thick only some tops will spread horizontally and some will shoot through the layer and may continue to grow. Observations have shown that the initiation of convection and its weather is only seldom a local phenomenon. On satellite photos it is often apparent that convective conditions are occurring simultaneously over extensive areas and are a result of the vertical structure of an air mass and the characteristics of the actual dominant large-scale weather systems. The convection process In Figure 1 the environmental lapse rate (γ) in the early morning (at the time of the minimum temperature) is indicated by the thick in the θ s,p-diagram; the dew point curve is indicated by the thick dashed line. If an air parcel with temperature T and dew point T d was lifted from the surface, then on level A it could reach its lifting condensation level (LCL). On that level the temperature of the air parcel is lower than the temperature of the environment so that it will sink back and condensation will not occur. Absorption of radiation at the surface will increase the surface temperature (T 1, T 3 etc.) creating unstable conditions in the lowest layers of the atmosphere. Therefore air parcels will rise and subsequently cool dry adiabatically; as a result the environmental lapse rate near the surface will change (e.g. the curve at T 3 ). The LCL will increase but the temperature of the environment at this level will be higher than the temperature of the air parcel so that no clouds will form.

2 Convective clouds 2 Figure 1. Changes in the environmental lapse rate during the day. The dew point temperature will change only slightly: usually some water, e.g. dew on the soil or on vegetation will evaporate into the atmosphere and mix with the lowest air layers. It appears that as a rule the dew point will slightly increase except when the near-surface air is too dry. A good estimate of the surface dew point that will be reached can be made by drawing on the θ s,p-diagram the average maximum mixing ratio line (<χ> in Figure 1) of a layer with a thickness of 50 mb from the surface upwards using equal areas ; the intersection of the line with the surface pressure isobar will give the dew point. When T 3 is reached an air parcel with temperature T 3 and dew point T d3 will lift from the surface. However, before it reaches LCL3 the air parcel again has reached a temperature by cooling that is lower than the temperature of the environment, hence LCL3 will not be reached. Ongoing radiation will increase the temperature even further and T 4 will be reached. Air parcels that rise from the surface will reach level C where the line <χ> is intersected (LCL4); at that height condensation will occur and consecutive ascent will be along a saturated-adiabat. In the case of Figure 1 the environmental lapse rate above level C is located to the left of the saturated adiabat the situation is unstable (in this case is het conditionally unstable). Hence as soon as the temperature T 4 has been reached cumuliform clouds will appear. The value of the surface temperature where convective clouds start to develop is called the convection-temperature (T c ), level C is called the convective condensation level (CCL). In Figure 1 the dry adiabat through T c and the average maximum mixing ratio line <χ> intersect in the convective condensation level. As long as the atmosphere is colder than the rising air parcel, i.e. in Figure 1 as long as the saturated adiabat γ s is located to the right of the environmental lapse rate (γ) the parcel will continue to rise until the intersection of γ s with γ (level D). At this height the vertical motion will

3 Convective clouds 3 stop. The area between γ s and γ between levels C and D is a measure for the amount of energy (in J/kg) available for the parcel to rise (increase its potential energy). This area is called CAPE (Convective Available Potential Energy). The formation of convective clouds In the previous text the explanation of rising air parcels changed into an explanation of convective clouds. With the so-called parcel method the assumption was made that the processes within the parcel were adiabatic and that the atmosphere was not perturbed by the motion of the parcel If a whole layer is involved these assumptions may not be true: a. in measurements within Cu clouds the saturated adiabatic lapse (γ s ) rate is never observed; temperatures and amount of water are lower than expected from the parcel method; the lapse rate within the cloud is often larger than γ s, b. rising large air parcels create downdrafts in the surrounding air, c. evaporation takes place at cloud boundaries. Entrainment The effects mentioned under a are a result that the rising air also mixes with environmental air while also some air from the parcel is expelled. The characteristics of the air in the parcel will change continuously. This phenomenon is called "entrainment". The consequences of entrainment are: a. Sometimes the environmental lapse rate suggests strong formation of cumulus or even showers; in practice only small cumulus (Cu humilis) will form and no showers develop. b. The radiosonde data suggest the cloud tops to be at the intersection of γ and γ s (D in Figure 1); in reality cloud tops may be considerably lower. If the radiosonde data indicate cloud tops at a level higher than 500 mb, then almost always showers will form if the average relative humidity between the CCL and the 500 mb level is larger than 75%. If the average relative humidity is less than 30% then showers are very unlikely. These rules only cover a part of the possible cumulus clouds: it is very well possible to have showers with clouds not even reaching the 500 mb level. Nevertheless these rules illustrate the influence of entrainment. Compensating downdrafts A large amount of air that ascends rapidly creates in the immediate environment compensating downward motions. These downdrafts reduce the temperature difference between cloud and environment; hence they also decrease the amount of CAPE (Figure 2). AB is the environmental lapse rate, AC is the saturated-adiabat. On level P the temperature difference between cloud and environment is T C -T D. As a results of the downdraft air surrounding the cloud is brought from level P 1 to level P dry-adiabatically, reaching a temperature T E. From the figure it appears that T C -T E < T C -T D. Therefore the downdraft also lowers the cloud tops. Evaporation Especially at the top of the ascending cumulus clouds turbulent mixing with the environment will occur; there most evaporation will take place. The energy needed for evaporation is supplied by cooling of the cloud top. Suddenly the dissipating top may vanish completely. However, evaporating cumulus tops will moisten the dry layer making it easier for consecutive cloud tops to survive and grow. From observations it appears that shortly after the top of a cumulus congestus dissipates a shower may form. In this case cloud droplets of a critical size for active coalescence were first moved to the cloud top with the rest of the air. The evaporative cooling at the top either creates a

4 Convective clouds 4 downdraft or reduces the upward motions enabling these cloud droplets to descend into the cloud and start the coalescence and precipitation processes. Figure 2. The effect of downdraft around a rising cloud. Forecasting convective clouds Considering the diurnal behaviour of the formation of convective clouds a forecast made at e.g. 08 UTC for the afternoon of the same day must contain a statement of the chance of the formation of cumuliform clouds. Figure 1 serves as a starting point: a. determine the maximum mixing ratio <χ> averaged over the lowest 50 mb using the dew point curve of the radiosonde data of 00 UTC; the intersection of this line with the environmental lapse rate will give you the CCL; b. from the CCL follow the dry adiabat to the surface pressure isobar and read T C ; when this temperature is reached convective clouds will appear; c. decide if the air temperature will exceed T C ; and if so at what time this will happen. The diurnal temperature changes in the same air mass of previous days may be an important indication; d. if T C will be exceeded then the height of the cloud base must be determined. This should coincide with the CCL because that is where condensation will start; due to a required supersaturation the cloud base may be somewhat higher. Furthermore, during ascend some entrainment will occur decreasing the humidity of the air parcel and increasing the cloud base slightly above the CCL. The cloud base may also be higher than the CCL because air parcels may not lift directly once T C has been reached: a so-called superadiabatic lapse rate is the result. The air parcel sticks to the surface and only starts ascending when the wind disconnects it from the earth s surface. Therefore a wind speed of a few knots is necessary. If such an air parcel having T > T C leaves the surface, it will follow a different dry adiabat which intersects <χ> at a higher level than the CCL. On average the cloud base is approximately 25 mb higher than the CCL. An empirical formula for the height of the CCL (in m) is h CCL (m) = 125 (T - T d ) where T and T d are the temperature and dew point at the surface, respectively. e. Theoretically the cloud top is located in D (Figure 1). In practice, due to the effects mentioned before, the cloud top is at least 25 mb below level D. f. Forecasting the cloud cover (N) of the convective clouds is not easy. In practice the situation of the previous days, if similar, will give some guidance. An empirical rule, giving

5 Convective clouds 5 a rough indication is: N 4 UCCL = where U CCL is the relative humidity (in %) at the CCL. For forecasting precipitation from convective clouds it is important to realize that a cloud can only produce precipitation if the cloud layer is thick enough and/or the temperature in the upper part of the cloud is low enough. In the Netherlands cumulus clouds must have a considerable vertical extent and the 0 C-level must be exceeded in order to produce precipitation. If the cloud top exceeds the -7 C-level and the relative humidity between the CCL and the cloud top height is large enough, then surely showers are possible. The higher the cloud top and the larger the area of instability on the thermodynamic diagram the more intense the precipitation will be. An important aspect in considering the environmental lapse rate is the fact that there is less development of convective clouds in and area with anticyclonically curved isobars. Of course subsiding motions are important, especially when a subsidence inversion is present which may gradually sink and oppose the vertical development of cumuliform clouds. After reaching the maximum temperature convection will diminish gradually and will stop once a surface inversion develops. Remaining clouds will evaporate creating downdrafts because of evaporative cooling of the air. Cumulus clouds will dissolve and now Sc cumulogenitus may be observed. Cloud dissipation will occur more rapidly if the air is dry. Especially in the winter cumuliform clouds, originating over the North Sea, may remain present during the night. With strong NW-winds these clouds may penetrate a considerable distance inland before dissolving. Forecasting thunderstorms The most important conditions for the formation of thunderstorms are: - A large amount of CAPE that can be released by door convection. - Vertical windshear over the entire convective layer. The intensity of thunderstorms depends on the number of clouds where CAPE is released: many small clouds or a few large ones. Windshear has the following effects: - in the absence of shear, updrafts and downdrafts will coincide. Initially the cloud will grow and the updrafts become stronger; next precipitation will fall from the upper parts of the cloud. The precipitation will fall trough the region with updrafts, weakening the updrafts (evaporative cooling) and the cloud dissipates rapidly. - if the wind speed, but not the wind direction, varies with height, then updrafts are directed at an angle with the vertical and precipitation will fall next to the updraft region. Updrafts and downdrafts exist next to one another and the cloud will not dissipate as quickly as in the situation without windshear. Updrafts may be stopped by lateral spreading of cold air when the downdrafts reach the surface. - if there is shear both in wind direction and wind speed then complex mesoscale systems may develop. These may live for several hours, more or less independent of surface heating. Forecasting thunderstorms For the forecast of thunderstorms a number of rules and indices have been developed. A brief overview is presented here.

6 - Indication for thunderstorms from the cloud top height: - top below 4000 m: thunderstorms not likely - top between 4000 and 5000 m: thunderstorms is likely - top over 5000 m: thunderstorms very likely. Convective clouds 6 - Boyden Index The Boyden Index (I) can be calculated from the radiosonde data: I = (Z-200) - T Here Z is the thickness of the hpa layer (in dam!) and T is the temperature (in C) at 700 hpa. Thunderstorms are likely if I >= This index is only valid in or near Western Europe. - Total Totals Index This index is commonly used as a severe weather indicator and is defined by: TT = T T d,850-2 T 500 TT Index < 45 weak moderate > 55 strong - S Index This index is primarily used to indicate thunderstorm potential from April through September. It is defined by: S{TT} = TT - (T-T d ) K where TT is the Total Totals Index (see above) and K is defined as 0 when T T when T T 500 > 22 and < 25 6 when T T S{TT} < 40 none possible > 46 likely - KO index Defined by: KO = [(Θ e,500 + Θ e,700 )/2] - [(Θ e,850 + Θ e,1000 )/2] where Θ e,ppp is the potential equivalent temperature at level ppp hpa. NB Θ e,ppp can be found in the RAOB Data window as ept. This index was developed to estimate thunderstorm potential in Europe. It is more sensitive to moisture than other more traditional indices and is best used in cooler, moist climates. If the surface pressure is below 1000 hpa then Θ e, surface is used. KO Index > 6 weak 2-6 moderate < 2 strong

7 Convective clouds 7 - Lifted Index A stability index used to determine thunderstorm potential. The LI is calculated by lifting an air parcel adiabatically from a level 50 hpa above the surface to 500 hpa. The difference between the temperature of the air parcel and the environmental temperature at 500 hpa represents the LI. LI > -3 weak -3 to -5 moderate < -5 strong - K Index Defined by: KI = T T T d,850 - (T T d,700 ) KI < 20 none weak: isolated thunderstorms moderate: widely scattered thunderstorms moderate: scattered thunderstorms > 35 strong: numerous thunderstorms The above indices must always be used in conjunction with large-scale indicators of thunderstorms. Extra convective energy may depend on: - Position and movement of upper-air troughs or lows. Thunderstorms are usually found along or just in front of upper-air troughs or lows. - The existence and movement of low-level convergence lines, such as fronts. - Elevated areas may receive extra heating. Other useful synoptic tools are: - Analysis of the dew point and/or Θ w. Tongues with high dew points or Θ w may help to define areas with a high risk of thunderstorms; - Difference in Θ w on 500 and 850 hpa - Cyclonic curvature of surface isobars. Conditions favourable for heavy thunderstorms: Heavy showers are mesoscale systems that might develop into heavy thunderstorms. It is important to note that: - some of the heaviest and most extensive thunderstorm activity did not occur before hours after the temp showed a warm layer over a convective layer. Such a warm layer may prevent the release of convective energy, thereby building up the amount of energy which is subsequently released explosively. - In heavy thunderstorms the dew point is often higher than 13 C and may even reach 18 C. At 850 hpa analogous values for Θ w are found. Winds are from the SE to SSW with speeds between kts in a narrow tongue. - Advection of dry air at mid-atmospheric levels. With potential instability Θ w at 500 hpa may 2-5 C lower than at 850 hpa. Winds at 500 hpa must have veered degrees relative to the winds at 850 hpa, speeds kts. - Further veering above 500 hpa, with 300 hpa winds from SSW-W and speeds of kts are good conditions to have the downdrafts in a favourable position for generating heavy thunderstorms.

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development

This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,

More information

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago? Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced

More information

Chapter 6 - Cloud Development and Forms. Interesting Cloud

Chapter 6 - Cloud Development and Forms. Interesting Cloud Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective

More information

Chapter 7 Stability and Cloud Development. Atmospheric Stability

Chapter 7 Stability and Cloud Development. Atmospheric Stability Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered

More information

WEATHER THEORY Temperature, Pressure And Moisture

WEATHER THEORY Temperature, Pressure And Moisture WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59

More information

Operational Weather Analysis Chapter 11. Sounding Analysis

Operational Weather Analysis  Chapter 11. Sounding Analysis Introduction Chapter 11 Sounding Analysis The term sounding is used in meteorology to describe a vertical plot of temperature, dew point temperature, and wind above a specific location. It provides a picture

More information

Figure 2.1: Warm air rising from SAPREF stacks, October 2002 Source: GroundWork

Figure 2.1: Warm air rising from SAPREF stacks, October 2002 Source: GroundWork 13 CHAPTER TWO SOME CONCEPTS IN CLIMATOLOGY 2.1 The Adiabatic Process An important principle to remember is that, in the troposphere, the first layer of the atmosphere, temperature decreases with altitude.

More information

Atmospheric Stability & Cloud Development

Atmospheric Stability & Cloud Development Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable

More information

Weather Journals: a. copying forecast text b. figure captions. d. citing source material e. units

Weather Journals: a. copying forecast text b. figure captions. d. citing source material e. units Weather Journals: a. copying forecast text b. figure captions c. linking figures with text d. citing source material e. units In the News: http://www.reuters.com In the News: warmer waters in the Pacific

More information

How do Scientists Forecast Thunderstorms?

How do Scientists Forecast Thunderstorms? How do Scientists Forecast Thunderstorms? Objective In the summer, over the Great Plains, weather predictions often call for afternoon thunderstorms. While most of us use weather forecasts to help pick

More information

Introduction to Wildland Fire Management. REM 244: Introduction to Wildland Fire Management

Introduction to Wildland Fire Management. REM 244: Introduction to Wildland Fire Management Introduction to Wildland Fire Management Fireline Safety 101: Keep informed on fire weather conditions and forecasts REM 244: Introduction to Wildland Fire Management 3. Introduction to Fire Weather Surface

More information

Fog and Cloud Development. Bows and Flows of Angel Hair

Fog and Cloud Development. Bows and Flows of Angel Hair Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY

UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY The stability or instability of the atmosphere is a concern to firefighters. This unit discusses how changes in the atmosphere affect fire behavior, and

More information

Unit 2: Synoptic Scale (Regional) Weather & Climate

Unit 2: Synoptic Scale (Regional) Weather & Climate Unit 2: Synoptic Scale (Regional) Weather & Climate Synoptic scale: Length: ~1000km (~600miles) to ~6000km (~3500miles) ~Length of Alabama to the length of the U.S. Time: Hours to Days (up to 1 week) So

More information

SEVERE AND UNUSUAL WEATHER

SEVERE AND UNUSUAL WEATHER SEVERE AND UNUSUAL WEATHER Basic Meteorological Terminology Adiabatic - Referring to a process without the addition or removal of heat. A temperature change may come about as a result of a change in the

More information

Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

More information

Chapter 6. Atmospheric Moisture and Precipitation

Chapter 6. Atmospheric Moisture and Precipitation Chapter 6 Atmospheric Moisture and Precipitation The Hydrosphere Hydrosphere water in the earth-atmosphere atmosphere system Oceans and Salt Lakes 97.6% Ice Caps and Glaciers 1.9% (Not available for humans)

More information

1. a. Surface Forecast Charts (USA and Ontario and Quebec) http://www.rap.ucar.edu/weather/

1. a. Surface Forecast Charts (USA and Ontario and Quebec) http://www.rap.ucar.edu/weather/ COMPUTER ASSISTED METEOROLOGY Frank Pennauer This contribution gives the available computer data sources, how to access them and use this data for predicting Soaring weather conditions will be discussed

More information

Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture

Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture (based on Christopherson, Geosystems, 6th Ed., 2006) Prof. V.J. DiVenere - Dept. Earth & Environmental Science - LIU Post

More information

Tephigrams: What you need to know

Tephigrams: What you need to know Tephigrams: What you need to know Contents An Introduction to Tephigrams...3 Can be as complicated as you like!...4 What pilots need to know...5 Some fundamentals...6 Air...6 Why does the air cool as it

More information

SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014

SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014 SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014 In this lesson we: Lesson Description Discuss the THREE high pressure cells that affect South Africa: Location, identification,

More information

Formation & Classification

Formation & Classification CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size

More information

2. What continually moves air around in the atmosphere? 3. Which of the following weather systems is associated with clear, sunny skies?

2. What continually moves air around in the atmosphere? 3. Which of the following weather systems is associated with clear, sunny skies? DIRECTIONS Read the question and choose the best answer. Then circle the letter for the answer you have chosen. 1. Interactions between which set of systems affect weather and climate the most? A. Atmosphere,

More information

Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud

Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development

More information

CHAPTER 6: WEATHER FOR SOARING

CHAPTER 6: WEATHER FOR SOARING CHAPTER 6: WEATHER FOR SOARING Weather patterns on Earth are complicated and chaotic. Weather is a result of the atmosphere s constant attempt to reach equilibrium. This equilibrium is continually upset

More information

The Importance of Understanding Clouds

The Importance of Understanding Clouds NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution

More information

Introduction HIRLAM 7.2

Introduction HIRLAM 7.2 Introduction HIRLAM 7.2 Differences between the current operational HIRLAM version 7.0 and the next operational version 7.2 are described in this document. I will try to describe the effect of this change

More information

SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES

SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES I. THE SKEW-T, LOG-P DIAGRAM The primary source for information contained in this appendix was taken from the Air Weather Service Technical Report TR-79/006. 1

More information

Heavy Precipitation and Thunderstorms: an Example of a Successful Forecast for the South-East of France

Heavy Precipitation and Thunderstorms: an Example of a Successful Forecast for the South-East of France Page 18 Heavy Precipitation and Thunderstorms: an Example of a Successful Forecast for the South-East of France François Saïx, Bernard Roulet, Meteo France Abstract In spite of huge improvements in numerical

More information

Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.

Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. 376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL

More information

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective

More information

Effects of moisture on static stability & convection

Effects of moisture on static stability & convection Effects of moisture on static stability & convection Dry vs. "moist" air parcel: Lifting of an air parcel leads to adiabatic cooling. If the temperature of the parcel falls below the critical temperature

More information

Weather: is the short term, day-to-day condition of the atmosphere

Weather: is the short term, day-to-day condition of the atmosphere Weather Weather: is the short term, day-to-day condition of the atmosphere Meteorology the scientific study of the atmosphere They focus on physical characteristics and motion and how it relates to chemical,

More information

Cloud Notes for SIO 218

Cloud Notes for SIO 218 Cloud Notes for SIO 218 October 11 and 16, 2001 Satellite Observations Satellites observe cloudiness by measuring electromagnetic radiation at a variety of wavelengths (e.g., visible, infrared, microwave).

More information

V. Water Vapour in Air

V. Water Vapour in Air V. Water Vapour in Air V. Water Vapour in Air So far we have indicated the presence of water vapour in the air through the vapour pressure e that it exerts. V. Water Vapour in Air So far we have indicated

More information

Storms Short Study Guide

Storms Short Study Guide Name: Class: Date: Storms Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A(n) thunderstorm forms because of unequal heating

More information

Atmospheric Properties Short Study Guide

Atmospheric Properties Short Study Guide Name: Class: Date: Atmospheric Properties Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Earth s atmosphere contains more

More information

Elements of the Weather

Elements of the Weather Elements of the Weather The weather is made up of different elements, which are measured either by special instruments or are observed by a meteorologist. These measurements are then recorded and used

More information

Air Masses and Fronts

Air Masses and Fronts Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from

More information

8.5 Comparing Canadian Climates (Lab)

8.5 Comparing Canadian Climates (Lab) These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

More information

Geography Grade 10. Lesson 1. Global Pressure Systems

Geography Grade 10. Lesson 1. Global Pressure Systems Geography Grade 10 Lesson 1 A low pressure system over an area can cause rain and strong winds! The table below gives us some examples of low pressure systems over an area. Severe storms over South Coast

More information

Storm Type. Mteor 417 Iowa State University Week 8 Bill Gallus

Storm Type. Mteor 417 Iowa State University Week 8 Bill Gallus Storm Type Mteor 417 Iowa State University Week 8 Bill Gallus Three Major Types of Storms Single Cell Multicell Supercell Single Cell (Ordinary Cell) A) Forecasting Hints 1. Generally occur with instability

More information

Weather Basics. Temperature Pressure Wind Humidity. Climate vs. Weather. Atmosphere and Weather

Weather Basics. Temperature Pressure Wind Humidity. Climate vs. Weather. Atmosphere and Weather Climate vs. Weather Atmosphere and Weather Weather The physical condition of the atmosphere (moisture, temperature, pressure, wind) Climate Long term pattern of the weather in a particular area Weather

More information

Clouds for pilots. Ed Williams. http://williams.best.vwh.net/

Clouds for pilots. Ed Williams. http://williams.best.vwh.net/ Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics

More information

Convective Weather Maps

Convective Weather Maps Guide to using Convective Weather Maps Oscar van der Velde www.lightningwizard.com last modified: August 27th, 2007 Reproduction of this document or parts of it is allowed with permission. This document

More information

Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

More information

Weather and Climate Review

Weather and Climate Review Weather and Climate Review STUFF YOU NEED TO KNOW and to UNDERSTAND! 1) Because water has a higher specific heat than land, water will warm and cool more slowly than the land will. Because of this: a)

More information

WEATHER AND CLIMATE practice test

WEATHER AND CLIMATE practice test WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in

More information

Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson

Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page

More information

Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog

Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog GEO 101: PHYSICAL GEOGRAPHY Chapter 07: Water and Atmospheric Moisture Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog Water on Earth The origin of water A scientific

More information

QPort Marine Services

QPort Marine Services CHAPTER 4 Weather over the water Predicting changes and future developments to weather patterns over the ocean is an invaluable, albeit complex, science that is continually conducted in Australia by the

More information

The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability

More information

Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately

More information

Air Pressure and Winds-I. GEOL 1350: Introduction To Meteorology

Air Pressure and Winds-I. GEOL 1350: Introduction To Meteorology Air Pressure and Winds-I GEOL 1350: Introduction To Meteorology 1 2 Pressure gradient force is in balance with gravity Hydrostatic relations Means no vertical motion initially 3 How does atmospheric pressure

More information

Lornshill Academy. Geography Department. National Revision. Physical Environments Weather

Lornshill Academy. Geography Department. National Revision. Physical Environments Weather Lornshill Academy Geography Department National Revision Physical Environments Weather Weather Revision Sheets What you need to know: 1. Factors that affect the weather: a) latitude; b) altitude; c) distance

More information

Weather Systems, Hurricanes, Nili Harnik DEES, Lamont-Doherty Earth Observatory

Weather Systems, Hurricanes, Nili Harnik DEES, Lamont-Doherty Earth Observatory Weather Systems, Hurricanes, etc Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Coriolis Force Coriolis force The Coriolis Force On Earth Cloud types, as a function of height

More information

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3 CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal

More information

Analyze Weather in Cold Regions and Mountainous Terrain

Analyze Weather in Cold Regions and Mountainous Terrain Analyze Weather in Cold Regions and Mountainous Terrain Terminal Learning Objective Action: Analyze weather of cold regions and mountainous terrain Condition: Given a training mission that involves a specified

More information

Earth's Atmosphere. The atmosphere is a thin layer of air that protects the Earth s surface from extreme temperatures and harmful sun rays

Earth's Atmosphere. The atmosphere is a thin layer of air that protects the Earth s surface from extreme temperatures and harmful sun rays The Atmosphere Earth's Atmosphere The atmosphere is a thin layer of air that protects the Earth s surface from extreme temperatures and harmful sun rays Thin Gaseous envelope What is Weather? State of

More information

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below. UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

More information

Assessment Schedule 2014 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Assessment Schedule 2014 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) NCEA Level 3 Earth and Space Science (91414) 2014 page 1 of 7 Assessment Schedule 2014 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) Evidence Statement

More information

Benchmark Study Guide S6E4 Weather Review. Name Date

Benchmark Study Guide S6E4 Weather Review. Name Date Benchmark Study Guide S6E4 Weather Review Name Date S6E4 Students will understand how the distribution of land and oceans affects climate and weather. a. Demonstrate that land and water absorb and lose

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

Study Guide: Water Cycle & Humidity

Study Guide: Water Cycle & Humidity Earth Science Name Date Per. Study Guide: Water Cycle & Humidity 1. Explain the difference between Specific Humidity and Relative Humidity. Specific humidity refers to the actual amount of water vapor

More information

Quick Review: Rising Air and Clouds

Quick Review: Rising Air and Clouds Quick Review: Rising Air and Clouds Remember that clouds form when air rises. Specifically - As air rises, it expands and cools... - And as it cools, its RH increases... - And once its RH hits 100% (saturation),

More information

Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston

Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston Contributing Organizations Nowcasting and Forecasting Significant weather charts Created using a number of sources to anticipate when and

More information

ACTIVITY. Surface Air Pressure Patterns. Materials. Station Pressure Plotting and Analysis on Weather Maps. Introduction

ACTIVITY. Surface Air Pressure Patterns. Materials. Station Pressure Plotting and Analysis on Weather Maps. Introduction ACTIVITY Surface Air Pressure Patterns Materials Upon completing this activity, you should be able to: Draw lines of equal pressure (isobars) to show the pattern of surface air pressures on a weather map.

More information

ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova

ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Low-Latitude Climate Zones and Climate Types - E.I. Khlebnikova LOW-LATITUDE CLIMATE ZONES AND CLIMATE TYPES E.I. Khlebnikova Main Geophysical Observatory, St. Petersburg, Russia Keywords: equatorial continental climate, ITCZ, subequatorial continental (equatorial

More information

National Meteorological Library and Archive

National Meteorological Library and Archive National Meteorological Library and Archive Fact sheet No. 13 Upper air observations and the tephigram Introduction Knowledge of temperature, humidity and wind at levels well above the ground form an essential

More information

If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC)

If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC) Cirrus (CI) Detached clouds in the form of delicate white filaments or white patches or narrow bands. These clouds have a fibrous or hair like appearance, or a silky sheen or both. with frontal lifting

More information

Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15

Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15 Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by

More information

Chapter 8 Circulation of the Atmosphere

Chapter 8 Circulation of the Atmosphere Chapter 8 Circulation of the Atmosphere The Atmosphere Is Composed Mainly of Nitrogen, Oxygen, and Water Vapor What are some properties of the atmosphere? Solar Radiation - initial source of energy to

More information

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere LESSON 2: GLOBAL AIR CIRCULATION Key Concepts In this lesson we will focus on summarising what you need to know about: The mechanics present to create global wind and pressure belts as a response to the

More information

Paul Wolyn * NOAA/NWS Pueblo, Colorado

Paul Wolyn * NOAA/NWS Pueblo, Colorado 17.1 THE MARCH 2003 SNOWSTORM OVER SOUTHERN COLORADO Paul Wolyn * NOAA/NWS Pueblo, Colorado 1. INTRODUCTION From 16-19 March 2003 a heavy precipitation event struck most of eastern Colorado. In the southern

More information

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective

More information

Weather Theory. Objective. Outline. Schedule. Equipment. Content. 1. The atmosphere Composition Circulation

Weather Theory. Objective. Outline. Schedule. Equipment. Content. 1. The atmosphere Composition Circulation Weather Theory Objective To develop basic understanding of weather theory. Outline The atmosphere Pressure Wind and Currents Moisture and Temperature Clouds Fronts Weather hazards Schedule Discussion 2:00

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Characteristics and Position of Africa s Major Climate Regions

Characteristics and Position of Africa s Major Climate Regions LESSON 3: AFRICA S CLIMATE REGIONS Key Concepts You must know, or be able to do the following: Name, understand the characteristics and position of Africa s major climate regions Be able to link the African

More information

Section 3 What Is Climate?

Section 3 What Is Climate? Section 3 What Is Climate? Key Concept Earth s climate zones are caused by the distribution of heat around Earth s surface by wind and ocean currents. What You Will Learn Climate is the average weather

More information

Synoptic Meteorology II: Isentropic Analysis. 31 March 2 April 2015

Synoptic Meteorology II: Isentropic Analysis. 31 March 2 April 2015 Synoptic Meteorology II: Isentropic Analysis 31 March 2 April 2015 Readings: Chapter 3 of Midlatitude Synoptic Meteorology. Introduction Before we can appropriately introduce and describe the concept of

More information

Temperature affects water in the air.

Temperature affects water in the air. KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How

More information

2. The map below shows high-pressure and low-pressure weather systems in the United States.

2. The map below shows high-pressure and low-pressure weather systems in the United States. 1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is

More information

Ocean Circulation and Climate. The Thermohaline Circulation

Ocean Circulation and Climate. The Thermohaline Circulation Ocean Circulation and Climate In addition to the atmospheric circulation heat is also transported to the poles by the ocean circulation. The ocean circulation is therefore an important part of the climate

More information

HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES*

HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES* Weather and Climate (1982) 2: 23-29 23 HIGH RESOLUTION SATELLITE IMAGERY OF THE NEW ZEALAND AREA: A VIEW OF LEE WAVES* C. G. Revell New Zealand Meteorological Service, Wellington ABSTRACT Examples of cloud

More information

Classic Anvil Shaped Thunderstorm

Classic Anvil Shaped Thunderstorm Classic Anvil Shaped Thunderstorm Many of the illustrations and explanations in this power point came from http://www.srh.weather.gov/jetstream/index.htm Overshooting Top Indicates Strong Updrafts Life

More information

Unit 2: Weather. ways to keep track of common trends in weather patterns. some have scientific facts, while others are more about coincidence

Unit 2: Weather. ways to keep track of common trends in weather patterns. some have scientific facts, while others are more about coincidence Unit 2: Weather Weather Lore: ways to keep track of common trends in weather patterns some have scientific facts, while others are more about coincidence weather lore may vary from place to place as different

More information

3. Lines on a weather map that connect points of equal air pressure are A. isotherms B. isobars C. cold fronts D. warm fronts

3. Lines on a weather map that connect points of equal air pressure are A. isotherms B. isobars C. cold fronts D. warm fronts 1. The chart shows the relationship between altitude and air pressure. What is the approximate air pressure at an altitude of 22 kilometers? A. 40 millibars B. 120 millibars C. 200 millibars D. 400 millibars

More information

Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium

Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van

More information

Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis

Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical

More information

Mesoscale Convective Systems. Supercell Thunderstorm

Mesoscale Convective Systems. Supercell Thunderstorm Chapter 18: Thunderstorm Ai Th d t Airmass Thunderstorm Mesoscale Convective Systems Frontal Squall Lines Frontal Squall Lines Supercell Thunderstorm Thunderstorm Thunderstorms, also called cumulonimbus

More information

Meteorology Study Guide

Meteorology Study Guide Name: Class: Date: Meteorology Study Guide Modified True/False Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement

More information

J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK. Matthew Parker* North Carolina State University, Raleigh, North Carolina

J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK. Matthew Parker* North Carolina State University, Raleigh, North Carolina J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK Matthew Parker* North Carolina State University, Raleigh, North Carolina Jonathan Blaes NOAA/National Weather Service, Raleigh, North

More information

Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems

Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties

More information

Satellites, Weather and Climate Module 2b: Cloud identification & classification. SSEC MODIS Today

Satellites, Weather and Climate Module 2b: Cloud identification & classification. SSEC MODIS Today Satellites, Weather and Climate Module 2b: Cloud identification & classification SSEC MODIS Today Our Cloud Watching and Identification Goals describe cloud classification system used by meteorologists

More information

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10 In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding

More information

Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota

Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult

More information

Chapter 6: Atmospheric Moisture

Chapter 6: Atmospheric Moisture Chapter 6: Atmospheric Moisture I. The Impact of Atmospheric Moisture on the Landscape A. Atmospheric moisture influences landscape both in short term and long term. 1. Short term, with puddles, flooding,

More information

FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE!

FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! 1 NAME DATE GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water

More information

Rainfall And Relative Humidity Occurrence Patterns In Uyo Metropolis, Akwa Ibom State, South- South Nigeria.

Rainfall And Relative Humidity Occurrence Patterns In Uyo Metropolis, Akwa Ibom State, South- South Nigeria. IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 8 (August. 2013), V4 PP 27-31 Rainfall And Relative Humidity Occurrence Patterns In Uyo Metropolis, Akwa Ibom State,

More information