Next generation models at MeteoSwiss: communication challenges
|
|
|
- Sharlene Wade
- 10 years ago
- Views:
Transcription
1 Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Next generation models at MeteoSwiss: communication challenges Tanja Weusthoff, MeteoSwiss Material from André Walser and Marco Arpagaus
2 Outline New model systems at MeteoSwiss: Project COSMO- NExT New possibilities: How should we use the Ensemble COSMO-E? Communication challenges: How to bring probabilities to the customer? 2
3 NWP at MeteoSwiss: Status Quo ECMWF IFS-HRES (global) 16 km, 137 levels ECMWF IFS-HRES COSMO-7 COSMO-7 (regional) 6.6 km, 60 levels +72h, 3x per day COSMO-2 COSMO-2 (local) 2.2 km, 60 levels +33h, 8x per day on-demand mode +6h, hourly Ensembles: ECMWF IFS-ENS (global) COSMO-LEPS (regional) 3
4 New model systems at MeteoSwiss: Project COSMO-NExT Lateral boundary conditions: IFS-HRES 10km 4x per day Lateral boundary conditions: IFS-ENS 20km 2x per day ensemble data assimilation: LETKF COSMO-1: O(24 hour) forecasts, 8x per day 1.1km grid size (convection permitting) COSMO-E: 5 day forecasts, 2x per day 2.2km grid size (convection permitting) O(21) ensemble members 4
5 KENDA: km-scale ensemble data assimilation Replace current COSMO nudging assimilation system with a new, state-of-the-art Ensemble Kalman Filter (LETKF: Local Ensemble Transform Kalman Filter) Better analysis through Background Analysis Observations optimal combination of model and observations based on error statistics; flow-dependent background error statistics based on ensemble; much more flexibility in using new observations! 5
6 COSMO-1: Keywords Deterministic forecasts with convection-permitting resolution (1.1 km mesh-size) Targeted for the very short-range (+24h) Rapid update cycle with new forecast every 3 hours On demand mode for key clients ICs from LETKF, LBCs from IFS-HRES COSMO-1 has the best representation of the complex Alpine topography physical processes of extreme weather events 6
7 COSMO-E: Keywords Ensemble forecasts with convection-permitting resolution (2.2 km mesh-size) and 21 members Runs twice a day up to +120h for Alpine area Perturbations: initial conditions (ICs): from KENDA (currently IFS-ENS and re-cycled soil) lateral boundary conditions (LBCs): IFS-ENS model errors: Stochastic Perturbation of Physical Tendencies (SPPT) Provides probabilistic forecast as well as best estimate and forecast uncertainty 7
8 Verification Summary surface Winter 2014/2015; COSMO-E vs. COSMO-LEPS; Total scores all lead times Parameter RPS(S) Outliers Spread/ Error Resolution Thrs1 Resolution Thrs2 Surf. Pres. na na na na na T 2m / x Td 2m / x dd 10m na na na na na ff 10m CLCT na na na na na Prec 12h Prec 1h Gusts 8
9 Precipitation 1 h Sum Thresholds 0.1,0.5,1.,2.,5.,10 9
10 How should we use COSMO-E? Best practice (1) use full probabilistic output in a probabilistic approach use of COSMO-E in deterministic forecasting mean (strong smoothing effect for high-impact weather) median representative member of most probable cluster in case of large spread of ensemble and additionally provide uncertainty! consider post-processing techniques to account for not (yet) sampled model errors 10
11 How should we use COSMO-E? Best practice (2) use of COSMO-E for warnings use full probabilistic output and do not ignore low probability events ( early indications will be in the tail ) References: [1] [2] [3] 11
12 Example products: median + spread 12
13 Example products: quantiles 13
14 Example products: stamp map 14
15 Example products: Meteogram 15
16 Summary: Potential for new products COSMO-E probabilistic products at convection-permitting resolution especially suited for rare / extreme events warnings forecast always accompanied with an error bar COSMO-1 best possible deterministic forecast with high update frequency; benefit over COSMO-E especially for process and regions, where horizontal resolution is most important KENDA best state of the atmosphere, with an estimation of the uncertainty 16
17 Communication challenges: «How to bring probabilities to customer?» many existing customers will get COSMO-E products instead of deterministic COSMO-7 / COSMO-2, i.e. added value But: probably not all of these customers can / want to handle uncertainties Speak to customers to decide whether and how uncertainties are useful what is the added value uncertainty may be an improvement for customer applications choose appropriate deterministic product if necessary (median or ctrl) 17
18 Communication challenges: «How to bring probabilities to customer?» Use of COSMO-E (all members): potentially lots of data availability of all members offers flexibility, but requires processing on customer side processing on our side (probabilities, quantiles, ) reduces data amount Challenges concerning field customers data amount deterministic forecast (constistent; ctrl, median or others?) Challenges for «individual point» customers add quantiles or probabilities to current forecast 18
19 Discussion from your experience, how should we proceed Give as much probability information as possible to the customer, no matter if they want it? If deterministic forecast required, which is the best choice: median (which verifies best) or control (which is an actual forecast and not an artificial product)? 19
MOGREPS status and activities
MOGREPS status and activities by Warren Tennant with contributions from Rob Neal, Sarah Beare, Neill Bowler & Richard Swinbank Crown copyright Met Office 32 nd EWGLAM and 17 th SRNWP meetings 1 Contents
"Attività di modellistica numerica previsionale meteorologica al Servizio IdroMeteoClima di ARPA Emilia-Romagna"
"Attività di modellistica numerica previsionale meteorologica al Servizio IdroMeteoClima di ARPA Emilia-Romagna" Author: Tiziana Paccagnella Organization: ARPA SIMC 1 ARPA-SIMC Modelling Group Head of
Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia
Application of Numerical Weather Prediction Models for Drought Monitoring Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia Contents 1. Introduction 2. Numerical Weather Prediction Models -
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada
NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts
The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation
Energies 2015, 8, 9594-9619; doi:10.3390/en8099594 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term
Probabilistic forecast information optimised to end-users applications: three diverse examples
Probabilistic forecast information optimised to end-users applications: three diverse examples ECMWF User Seminar 2015 Vanessa Stauch, Renate Hagedorn, Isabel Alberts, Reik Schaab Our group Land Transport
Investigations on COSMO 2.8Km precipitation forecast
Investigations on COSMO 2.8Km precipitation forecast Federico Grazzini, ARPA-SIMC Emilia-Romagna Coordinator of physical aspects group of COSMO Outline Brief description of the COSMO-HR operational suites
REGIONAL CLIMATE AND DOWNSCALING
REGIONAL CLIMATE AND DOWNSCALING Regional Climate Modelling at the Hungarian Meteorological Service ANDRÁS HORÁNYI (horanyi( [email protected]@met.hu) Special thanks: : Gabriella Csima,, Péter Szabó, Gabriella
Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS
Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS ECAC Zurich, Setpember 15 2020 Ch. Häberli Deputy Head Climate Division/Head Meteorological Data Coordination
Hybrid-DA in NWP. Experience at the Met Office and elsewhere. GODAE OceanView DA Task Team. Andrew Lorenc, Met Office, Exeter.
Hybrid-DA in NWP Experience at the Met Office and elsewhere GODAE OceanView DA Task Team Andrew Lorenc, Met Office, Exeter. 21 May 2015 Crown copyright Met Office Recent History of DA for NWP 4DVar was
Nowcasting: analysis and up to 6 hours forecast
Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space
An Integrated Ensemble/Variational Hybrid Data Assimilation System
An Integrated Ensemble/Variational Hybrid Data Assimilation System DAOS Working Group Meeting September 2012 Tom Auligné, National Center for Atmospheric Research Acknowledgements: Contributors: Luke Peffers
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
Advances in data assimilation techniques
Advances in data assimilation techniques and their relevance to satellite data assimilation ECMWF Seminar on Use of Satellite Observations in NWP Andrew Lorenc,, 8-12 September 2014. Crown copyright Met
THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER
THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER FISCAL YEARS 2012 2016 INTRODUCTION Over the next ten years, the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration
Testing and Evaluation of GSI-Hybrid Data Assimilation and Its Applications for HWRF at the Developmental Testbed Center
214 Tropical Cyclone Research Forum (TCRF)/68th IHC, March 3-6, 214, College Park, MD Testing and Evaluation of GSI-Hybrid Data Assimilation and Its Applications for HWRF at the Developmental Testbed Center
Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF
3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ
The Wind Integration National Dataset (WIND) toolkit
The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department
Atmospheric kinetic energy spectra from high-resolution GEM models
Atmospheric kinetic energy spectra from high-resolution GEM models Bertrand Denis NWP Section Canadian Meteorological Centre Environment Canada SRNWP 2009 Bad Orb, Germany Outline Introduction What we
Virtual Met Mast verification report:
Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...
Partnership to Improve Solar Power Forecasting
Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office
Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations
Fourth Symposium on Policy and Socio-Economic Research 4.1 Design and Deployment of Specialized Visualizations for Weather-Sensitive Electric Distribution Operations Lloyd A. Treinish IBM, Yorktown Heights,
Status of ALADIN-LAEF, Impact of Clustering on Initial Perturbations of ALADIN-LAEF
Status of ALADIN-LAEF, Impact of Clustering on Initial Perturbations of ALADIN-LAEF Florian Weidle, Martin Bellus, Alexander Kann, Martin Steinheimer, Christoph Wittmann, Yong Wang and others Outline The
Comparing TIGGE multi-model forecasts with. reforecast-calibrated ECMWF ensemble forecasts
Comparing TIGGE multi-model forecasts with reforecast-calibrated ECMWF ensemble forecasts Renate Hagedorn 1, Roberto Buizza 1, Thomas M. Hamill 2, Martin Leutbecher 1 and T.N. Palmer 1 1 European Centre
IBM Big Green Innovations Environmental R&D and Services
IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project
Climate as a service
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Climate as a service, Christof Appenzeller Mischa Croci-Maspoli, Paul Della-Marta, Andreas Fischer, Felix
DESWAT project (Destructive Water Abatement and Control of Water Disasters)
A new national hydrological forecast and warning system is now in advanced implementation phase, within the Romanian Waters National Administration, in the framework of DESWAT project. The main objectives
Coupling micro-scale CFD simulations to meso-scale models
Coupling micro-scale CFD simulations to meso-scale models IB Fischer CFD+engineering GmbH Fabien Farella Michael Ehlen Achim Fischer Vortex Factoria de Càlculs SL Gil Lizcano Outline Introduction O.F.Wind
Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS
Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
Hybrid Data Assimilation in the GSI
Hybrid Data Assimilation in the GSI Rahul Mahajan NOAA / NWS / NCEP / EMC IMSG GSI Hybrid DA Team: Daryl Kleist (UMD), Jeff Whitaker (NOAA/ESRL), John Derber (EMC), Dave Parrish (EMC), Xuguang Wang (OU)
Towards an NWP-testbed
Towards an NWP-testbed Ewan O Connor and Robin Hogan University of Reading, UK Overview Cloud schemes in NWP models are basically the same as in climate models, but easier to evaluate using ARM because:
Fire Weather Index: from high resolution climatology to Climate Change impact study
Fire Weather Index: from high resolution climatology to Climate Change impact study International Conference on current knowledge of Climate Change Impacts on Agriculture and Forestry in Europe COST-WMO
Data Management in support of Climate Services @ MeteoSwiss
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Data Management in support of Climate Services @ MeteoSwiss Estelle Grueter, Heike Kunz (MeteoSwiss)
8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009
8B.6 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009 Jason M. Davis*, Andrew R. Dean 2, and Jared L. Guyer 2 Valparaiso University, Valparaiso, IN 2 NOAA/NWS Storm Prediction Center, Norman, OK.
How To Use The Csi Ebpp Calculator
CSI EPBB Design Factor Calculator User Guide 1. Guide Overview This User Guide is intended to provide background on the California Solar Initiative (CSI) Expected Performance Based Buydown (EPBB) Design
Baudouin Raoult, Iryna Rozum, Dick Dee
ECMWF contribution to the EU funded CHARME Project: A Significant Event Viewer tool Matthew Manoussakis Baudouin Raoult, Iryna Rozum, Dick Dee 5th Workshop on the use of GIS/OGC standards in meteorology
COSMO Data Assimilation. Applications for Romanian Territory
1 Working Group on Data Assimilation 19 COSMO Data Assimilation. Applications for Romanian Territory Amalia IRIZA 1,2, Rodica Claudia DUMITRACHE 1, Cosmin Dănuţ BARBU 1, Aurelia Lupaşcu 1, Bogdan Alexandru
Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images
Nowcasting of significant convection by application of cloud tracking algorithm to satellite and radar images Ng Ka Ho, Hong Kong Observatory, Hong Kong Abstract Automated forecast of significant convection
An exploratory study of the possibilities of analog postprocessing
Intern rapport ; IR 2009-02 An exploratory study of the possibilities of analog postprocessing Dirk Wolters De Bilt, 2009 KNMI internal report = intern rapport; IR 2009-02 De Bilt, 2009 PO Box 201 3730
Theory of moist convection in statistical equilibrium
Theory of moist convection in statistical equilibrium By analogy with Maxwell-Boltzmann statistics Bob Plant Department of Meteorology, University of Reading, UK With thanks to: George Craig, Brenda Cohen,
Lesson 4 Measures of Central Tendency
Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central
Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France
Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,
4.3. David E. Rudack*, Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA 1.
43 RESULTS OF SENSITIVITY TESTING OF MOS WIND SPEED AND DIRECTION GUIDANCE USING VARIOUS SAMPLE SIZES FROM THE GLOBAL ENSEMBLE FORECAST SYSTEM (GEFS) RE- FORECASTS David E Rudack*, Meteorological Development
EFAS European Flood Awareness System
EFAS European Flood Awareness System http://www.efas.eu/ EFAS Partner Network The first operational hydrological network in Europe Cristina Alionte Eklund Coordinator EFAS Dissemination Center History
High-resolution Regional Reanalyses for Europe and Germany
High-resolution Regional Reanalyses for Europe and Germany Christian Ohlwein 1,2, Jan Keller 1,4, Petra Friederichs 2, Andreas Hense 2, Susanne Crewell 3, Sabrina Bentzien 1,2, Christoph Bollmeyer 1,2,
BSRN Station Sonnblick
Spawning the Atmosphere Measurements, 22-23 Jan 2014, Bern BSRN Station Sonnblick Baseline surface radiation network station Sonnblick Marc Olefs, Wolfgang Schöner ZAMG Central Institute for Meteorology
ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY. Theses of the PhD dissertation
ANALYSIS OF THUNDERSTORM CLIMATOLOGY AND CONVECTIVE SYSTEMS, PERIODS WITH LARGE PRECIPITATION IN HUNGARY Theses of the PhD dissertation ANDRÁS TAMÁS SERES EÖTVÖS LORÁND UNIVERSITY FACULTY OF SCIENCE PhD
Performance Analysis of a Numerical Weather Prediction Application in Microsoft Azure
Performance Analysis of a Numerical Weather Prediction Application in Microsoft Azure Emmanuell D Carreño, Eduardo Roloff, Jimmy V. Sanchez, and Philippe O. A. Navaux WSPPD 2015 - XIII Workshop de Processamento
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility for any
Virtual Met Mast Version 1 Methodology and Verification January 2010 The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility
Big Data Assimilation Revolutionizing Weather Prediction
February 23, 2015, ISDA2015, Kobe Big Data Assimilation Revolutionizing Weather Prediction M. Kunii, J. Ruiz, G.-Y. Lien, K. Kondo, S. Otsuka, Y. Maejima, and Takemasa Miyoshi* RIKEN Advanced Institute
Analysis of Climatic and Environmental Changes Using CLEARS Web-GIS Information-Computational System: Siberia Case Study
Analysis of Climatic and Environmental Changes Using CLEARS Web-GIS Information-Computational System: Siberia Case Study A G Titov 1,2, E P Gordov 1,2, I G Okladnikov 1,2, T M Shulgina 1 1 Institute of
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments
5132 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 A Hybrid ETKF 3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments XUGUANG WANG Cooperative Institute for Research
CCAM GUI INSTRUCTION MANUAL FOR TAPM USERS (v1004t) Marcus Thatcher CSIRO Marine and Atmospheric Research
CCAM GUI INSTRUCTION MANUAL FOR TAPM USERS (v1004t) Marcus Thatcher CSIRO Marine and Atmospheric Research Enquiries should be addressed to: Dr Marcus Thatcher CSIRO Marine and Atmospheric Research 107
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
ROAD WEATHER AND WINTER MAINTENANCE
Road Traffic Technology ROAD WEATHER AND WINTER MAINTENANCE METIS SSWM WMi ROAD WEATHER STATIONS ADVANCED ROAD WEATHER INFORMATION SYSTEM MAINTENANCE DECISION SUPPORT SYSTEM WINTER MAINTENANCE PERFORMANCE
Distributed Computing. Mark Govett Global Systems Division
Distributed Computing Mark Govett Global Systems Division Modeling Activities Prediction & Research Weather forecasts, climate prediction, earth system science Observing Systems Denial experiments Observing
Cloud Model Verification at the Air Force Weather Agency
2d Weather Group Cloud Model Verification at the Air Force Weather Agency Matthew Sittel UCAR Visiting Scientist Air Force Weather Agency Offutt AFB, NE Template: 28 Feb 06 Overview Cloud Models Ground
Solarstromprognosen für Übertragungsnetzbetreiber
Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview
Web applications update
Web applications update Current status, recent developments and future plans Cihan Sahin On behalf of Web development team [email protected] ECMWF June 7, 2016 Web applications ECMWF has a suite of
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
National Dam Safety Program Technical Seminar #22. When is Flood Inundation Mapping Not Applicable for Forecasting
National Dam Safety Program Technical Seminar #22 Thursday February 19 th 2015 Emmittsburg, MD When is Flood Inundation Mapping Not Applicable for Forecasting Victor Hom Hydrologic Services Division National
AZ EGER-PATAK HIDROLÓGIAI VIZSGÁLATA, A FELSZÍNI VÍZKÉSZLETEK VÁRHATÓ VÁLTOZÁSÁBÓL ADÓDÓ MÓDOSULÁSOK AZ ÉGHAJLATVÁLTOZÁS HATÁSÁRA
AZ EGER-PATAK HIDROLÓGIAI VIZSGÁLATA, A FELSZÍNI VÍZKÉSZLETEK VÁRHATÓ VÁLTOZÁSÁBÓL ADÓDÓ MÓDOSULÁSOK AZ ÉGHAJLATVÁLTOZÁS HATÁSÁRA GÁBOR KEVE 1, GÉZA HAJNAL 2, KATALIN BENE 3, PÉTER TORMA 4 EXTRAPOLATING
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
A Description of the 2nd Generation NOAA Global Ensemble Reforecast Data Set
A Description of the 2nd Generation NOAA Global Ensemble Reforecast Data Set Table of contents: produced by the NOAA Earth System Research Lab, Physical Sciences Division Boulder, Colorado USA under a
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.
A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín
FLOODALERT: A SIMPLIFIED RADAR-BASED EWS FOR URBAN FLOOD WARNING
11 th International Conference on Hydroinformatics HIC 2014, New York City, USA FLOODALERT: A SIMPLIFIED RADAR-BASED EWS FOR URBAN FLOOD WARNING XAVIER LLORT (1), RAFAEL SÁNCHEZ-DIEZMA (1), ÁLVARO RODRÍGUEZ
Armenian State Hydrometeorological and Monitoring Service
Armenian State Hydrometeorological and Monitoring Service Offenbach 1 Armenia: IN BRIEF Armenia is located in Southern Caucasus region, bordering with Iran, Azerbaijan, Georgia and Turkey. The total territory
David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA Silver Spring, Maryland
9.9 TRANSLATING ADVANCES IN NUMERICAL WEATHER PREDICTION INTO OFFICIAL NWS FORECASTS David P. Ruth* Meteorological Development Laboratory Office of Science and Technology National Weather Service, NOAA
Guidelines on Quality Control Procedures for Data from Automatic Weather Stations
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS EXPERT TEAM ON REQUIREMENTS FOR DATA FROM AUTOMATIC WEATHER STATIONS Third Session
WxFUSION. A. Tafferner. Folie 1. iport Meeting 13.10.2010 @ DLR OP
WxFUSION A. Tafferner iport Meeting 13.10.2010 @ DLR OP Folie 1 Upper Danube Catchment MUC DLR Andechs Munich Vienna Folie 2 Local and propagating thunderstorms in the Upper Danube Catchment B. Barternschlager,
A verification score for high resolution NWP: Idealized and preoperational tests
Technical Report No. 69, December 2012 A verification score for high resolution NWP: Idealized and preoperational tests Bent H. Sass and Xiaohua Yang HIRLAM - B Programme, c/o J. Onvlee, KNMI, P.O. Box
Forecasting of Solar Radiation
Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University, Institute of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group 26111 Oldenburg,
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
