# Atmospheric Stability & Cloud Development

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable situations Neutral a small change initiates a bigger change, and hence a bigger still, and hence.. Stable Unstable 1

2 The Players Pressure - we've met before, as force per unit area. If a parcel of air has greater pressure inside it than its surroundings, it will expand Density determined by 1/Volume mass m volume v Density = mass volume m = v kg m Temperature measured by radiosonde Moisture content Re lative humidity 3 xs pressure Kelvin actual vapour pressure = 100% saturation vapour pressure 2

3 Floating in air There are two forces on an object in a fluid: weight ; up-thrust weight < up-thrust: object rises weight > up-thrust: object sinks up-thrust Less dense weight Rising parcel More dense weight density of object, ρ object up-thrust density of fluid, ρ fluid density object < density of fluid: object rises density object > density of fluid: object sinks Sinking parcel Equal density Static parcel 3

4 Rising & Falling The atmosphere is a fluid whose density and pressure generally decreases with height The fluid has irregularities in it An air parcel will rise if it is less dense than Air parcel its surroundings It then rises into less dense air, but the density inside the packet also falls If it stops rising, it is stable; if it keeps rising, it is unstable 4

5 Density Depends on Temperature Pressure P, volume V, and temperature T, of a parcel of gas are linked by a relationship for an ideal gas (the simplest model of a gas) PV = nrt R is 'the gas constant', per mole, and n the no. of moles If two parcels of gas are at the same pressure, then the warmer gas has the lesser density this follows because the gas law above can be written [p 212/220/194] P density T 5

6 Adiabatic Changes in a Parcel of Gas When a parcel of gas expands on rising, how much the volume changes depends on how the expansion takes place adiabatic:- no heat input or output: PV γ = constant P = P 0 e -h/h γ is about 1.4 for air This relationship, along with the gas law and the pressure variation with height determines how temperature changes with height (next slide) 6

7 Adiabatic Lapse Rates As a parcel of air expands without heat input from its surroundings, its pressure and temperature drop and its volume increases Meteorologists concentrate on the temperature drop the temperature drop with changing height is called the lapse rate for adiabatic change of dry air, the dry adiabatic lapse rate is 10 C per 1000 m [p. 160/167/140] the moist adiabatic lapse rate is less (~6 C per 1000 m) why? Adiabatic expansion 7

8 In summary 8

9 Atmospheric Temperature Profile The profile of temperature change with height in the atmosphere depends on the history of the air this profile can be measured by a balloon borne thermometer the result is called the environmental lapse rate lapse rate is measured in C per 1000 m Height m Environmental lapse rate e.g. 5 C per 1000 m in the diagram 0 10 C 20 9

10 Stable Air The stability of air is determined by comparing the environmental lapse rate to the dry and moist adiabatic lapse rates absolutely stable air has a lapse rate less than both moist and dry Height lapse rates [p 162/168/141] smaller lapse rate means a steeper line m 1000 temperature inversion means increasing temperature with height Lapse rates 0 10 C environmental moist dry 20 10

11 Stable Conditions Formed by cooling of lower air layers by radiation at night by air moving in over cold ground influx of cold air (cold advection) fanning: JSR 11

12 Conditional Instability Environmental lapse rate is between the dry and moist lapse rates [p. 165/171/145 + fig. 7.7/6.8] Here dry air is stable; saturated air is unstable average lapse rate in troposphere is 6.5 C per 1000 m normal state of the atmosphere is conditionally unstable Height m Lapse rates 0 10 C environmental moist 20 dry 12

13 Unstable Conditions Formed by warming of lower air layers by radiation during the day by air moving over warm ground by influx of warm air (warm advection) enhanced effect if moist air near ground and dry air aloft is lifted (convective instability) 13

14 Instability encouraged Lifting encourages instability See the lecture notes for the numbers behind this figure Diagram courtesy: Thomson Higher Education 14

15 Fumigation With warming near ground level, downward mixing takes place, confining the smoke emissions to a narrow layer [p 459/479/506] unstable near ground, stable higher up tall chimneys are best 15

16 Looping In unstable conditions, the plume rises and falls as light winds take it away. If this happens without too much dispersion of pollutants, the plume follows a looping path 16

17 Coning In neutral conditions, the environmental lapse rate equals the dry adiabatic lapse rate and the plume spreads up and down about equally without turbulence 17

18 Lofting Stable air near the ground and unstable air aloft gives no downward mixing and the best conditions for sending plumes upwards [fig. 17.3/ chpt. 18 fig. 4, p. 459/220/506] with a good exit velocity and high temperature of pollutants the plume will rise faster than shown 18

19 Lofting Lofting over an Australian mining town HASR 19

20 4 main processes leading to cloud formation [fig 7.13/6.15] convection cumulus topographic lifting mountain cloud convergence uplift along weather fronts We shall look only at cumulus cloud formation Cloud Development 20

21 Cumulus (Cu) Formation The cumulus cloud is part of a convective cell local heating induces instability in the air (fig. 7.14/6.16) the cloud base is at the height where air reaches its dew point Harbour entrance, Aberdeen JSR 21

22 Dew Point Revisited For every rise of 1000 m in height, pressure falls by 10% when water vapour pressure falls by 10%, the dew point falls by 2 C Hence for every 1000 m rise in height, dew point falls by 2 C [p. 172/177/153] 22

23 Cloud Base Height The lapse rate for 'dry' air is 10 C per 1000 m The dew point decreases at 2 C per 1000 m Hence the air temp and dew point approach each other at 8 C per 1000 m, or 1 C per 125 m Rule: T is ground level temp; T d ground level dew point; H metre height of cloud base, then H = 125( T T ) metre d e.g. T = 22 C ; T d = 16 C, then H metre = 125 x (22-16) = 750 m 23

24 Graphic summary of condensation 24

25 Cumulus Clouds Fig 7.16/6.18 [previous slide] is a graphic summary rising air in the cloud remains saturated the cloud height is controlled by a stable layer on top (which may be the tropopause) outside the cloud, air sinks, warms and creates a cloud-free space as a layer of air rises and stretches, its lapse rate tends to increase, making it more unstable and liable to rise further. See the earlier slide on this topic JSR 25

26 Alto- and Cirrocumulus Formation A uniform layer of cloud gets heated from below by the Earth and loses heat from the top to space (p176/182/156) This increases the lapse rate across the cloud and can make the air unstable Convection cells result convective instability further increases the vertical extent as lifting begins, since drier air at the top cools faster than moist air at the bottom JSR 26

### Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?

Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced

### This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air. 2. Processes that cause instability and cloud development

Stability & Cloud Development This chapter discusses: 1. Definitions and causes of stable and unstable atmospheric air 2. Processes that cause instability and cloud development Stability & Movement A rock,

### Figure 2.1: Warm air rising from SAPREF stacks, October 2002 Source: GroundWork

13 CHAPTER TWO SOME CONCEPTS IN CLIMATOLOGY 2.1 The Adiabatic Process An important principle to remember is that, in the troposphere, the first layer of the atmosphere, temperature decreases with altitude.

### Chapter 6 - Cloud Development and Forms. Interesting Cloud

Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective

### Chapter 7 Stability and Cloud Development. Atmospheric Stability

Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered

### Fog and Cloud Development. Bows and Flows of Angel Hair

Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei

### Weather Journals: a. copying forecast text b. figure captions. d. citing source material e. units

Weather Journals: a. copying forecast text b. figure captions c. linking figures with text d. citing source material e. units In the News: http://www.reuters.com In the News: warmer waters in the Pacific

### The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability

### How do Scientists Forecast Thunderstorms?

How do Scientists Forecast Thunderstorms? Objective In the summer, over the Great Plains, weather predictions often call for afternoon thunderstorms. While most of us use weather forecasts to help pick

### Convective Clouds. Convective clouds 1

Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at

### Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

### UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY

UNIT VII--ATMOSPHERIC STABILITY AND INSTABILITY The stability or instability of the atmosphere is a concern to firefighters. This unit discusses how changes in the atmosphere affect fire behavior, and

### Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog

GEO 101: PHYSICAL GEOGRAPHY Chapter 07: Water and Atmospheric Moisture Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog Water on Earth The origin of water A scientific

### Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

### Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud

Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development

### Quick Review: Rising Air and Clouds

Quick Review: Rising Air and Clouds Remember that clouds form when air rises. Specifically - As air rises, it expands and cools... - And as it cools, its RH increases... - And once its RH hits 100% (saturation),

### Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture

Earth Science Lecture Summary Notes Chapter 7 - Water and Atmospheric Moisture (based on Christopherson, Geosystems, 6th Ed., 2006) Prof. V.J. DiVenere - Dept. Earth & Environmental Science - LIU Post

### Formation & Classification

CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size

### Chapter 6. Atmospheric Moisture and Precipitation

Chapter 6 Atmospheric Moisture and Precipitation The Hydrosphere Hydrosphere water in the earth-atmosphere atmosphere system Oceans and Salt Lakes 97.6% Ice Caps and Glaciers 1.9% (Not available for humans)

### 39th International Physics Olympiad - Hanoi - Vietnam - 2008. Theoretical Problem No. 3

CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal

### Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

### The Importance of Understanding Clouds

NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution

### Air Masses and Fronts

Air Masses and Fronts Air Masses The weather of the United States east of the Rocky Mountains is dominated by large masses of air that travel south from the wide expanses of land in Canada, and north from

### 7613-1 - Page 1. Weather Unit Exam Pre-Test Questions

Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which

### Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson

Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page

### Recall that condensation occurs when water vapor changes to a

Section 18.2 18.2 Cloud Formation 1 FOCUS Section Objectives 18.6 Describe what happens to air when it is compressed or allowed to expand. 18.7 List four mechanisms that cause air to rise. 18.8 Compare

### WEATHER THEORY Temperature, Pressure And Moisture

WEATHER THEORY Temperature, Pressure And Moisture Air Masses And Fronts Weather Theory- Page 77 Every physical process of weather is a result of a heat exchange. The standard sea level temperature is 59

### Effects of moisture on static stability & convection

Effects of moisture on static stability & convection Dry vs. "moist" air parcel: Lifting of an air parcel leads to adiabatic cooling. If the temperature of the parcel falls below the critical temperature

### Analyze Weather in Cold Regions and Mountainous Terrain

Analyze Weather in Cold Regions and Mountainous Terrain Terminal Learning Objective Action: Analyze weather of cold regions and mountainous terrain Condition: Given a training mission that involves a specified

### Tephigrams: What you need to know

Tephigrams: What you need to know Contents An Introduction to Tephigrams...3 Can be as complicated as you like!...4 What pilots need to know...5 Some fundamentals...6 Air...6 Why does the air cool as it

### SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014

SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014 In this lesson we: Lesson Description Discuss the THREE high pressure cells that affect South Africa: Location, identification,

### Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah.

Cumulifor m clouds develop as air slowly rises over Lake Powell in Utah. Figure 6.1 Dew forms on clear nightswhen objects on the surface cool to a temperature below the dew point. If these beads of water

### Clouds, Fog, & Precipitation

firecatching.blogspot.com Kids.brittanica.com Clouds and fog are physically the same just location is different Fog is considered a stratus cloud at or near the surface What does one see when looking at

### UNIT IV--TEMPERATURE-MOISTURE RELATIONSHIP

UNIT IV--TEMPERATURE-MOISTURE RELATIONSHIP Weather is the most variable and often the most critical determinant of fire behavior. This is the first of several units that will deal with weather and its

### Weather: is the short term, day-to-day condition of the atmosphere

Weather Weather: is the short term, day-to-day condition of the atmosphere Meteorology the scientific study of the atmosphere They focus on physical characteristics and motion and how it relates to chemical,

### Temperature. PJ Brucat

PJ Brucat Temperature - the measure of average kinetic energy (KE) of a gas, liquid, or solid. KE is energy of motion. KE = ½ mv 2 where m=mass and v=velocity (speed) 1 All molecules have KE whether solid,

### ES 106 Laboratory # 6 MOISTURE IN THE ATMOSPHERE

ES 106 Laboratory # 6 MOISTURE IN THE ATMOSPHERE 6-1 Introduction By observing, recording, and analyzing weather conditions, meteorologists attempt to define the principles that control the complex interactions

### Natural Convection. Buoyancy force

Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

### A new positive cloud feedback?

A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly

### 12.307. 1 Convection in water (an almost-incompressible fluid)

12.307 Convection in water (an almost-incompressible fluid) John Marshall, Lodovica Illari and Alan Plumb March, 2004 1 Convection in water (an almost-incompressible fluid) 1.1 Buoyancy Objects that are

### The Sun and Water Cycle

reflect Have you ever jumped in a puddle or played in the rain? If so, you know you can get very wet. What you may not know is that a dinosaur could have walked through that same water millions of years

### 8.5 Comparing Canadian Climates (Lab)

These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

### Will an Ice Cube Melt Faster in Freshwater or Saltwater? Teacher Guide:

Will an Ice Cube Melt Faster in Freshwater or Saltwater? Learning Objectives Teacher Guide: Years ago I gave my students four solutions with varying amounts of salt dissolved in water and asked them to

### Education and Outreach Lesson Plan

Education and Outreach Lesson Plan Visit our online activities collection http://education.arm.gov/ Grade levels K 2 Common Covering Clouds Common Covering Clouds Approximate Time 1 1/2 hours, or two 45-minute

### How do I measure the amount of water vapor in the air?

How do I measure the amount of water vapor in the air? Materials 2 Centigrade Thermometers Gauze Fan Rubber Band Tape Overview Water vapor is a very important gas in the atmosphere and can influence many

### In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding

### Temperature affects water in the air.

KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How

### Reading Assignment: A&B: Ch. 5 (p. 123-134) CD: Tutorials 3 & 4 (Atm. Moisture; Adiab. Proc.) Interactive Ex.: Moisture LM: Lab# 7

G109: 7. Moisture 1 7. MOISTURE Reading Assignment: A&B: Ch. 5 (p. 123-134) CD: Tutorials 3 & 4 (Atm. Moisture; Adiab. Proc.) Interactive Ex.: Moisture LM: Lab# 7 1. Introduction Moisture in the atmosphere:

### Common Cloud Names, Shapes, and Altitudes:

Common Cloud Names, Shapes, and Altitudes: Low Clouds Middle Clouds High Clouds Genus Cumulus Cumulonimbus (extend through all 3 levels) Stratus Stratocumulus Altocumulus Altostratus Nimbostratus (extend

### 1. a. Surface Forecast Charts (USA and Ontario and Quebec) http://www.rap.ucar.edu/weather/

COMPUTER ASSISTED METEOROLOGY Frank Pennauer This contribution gives the available computer data sources, how to access them and use this data for predicting Soaring weather conditions will be discussed

Activity 4 Clouds Over Your Head Level 1 1 Objectives: Students will become familiar with the four main types of clouds: stratus, cirrus, cumulus, and cumulonimbus and their characteristics. Students will

### AVIATION WEATHER SYST 460/560. /tutorial/

AVIATION WEATHER SYST 460/560 http://virtualskies.arc.nasa.gov/weather /tutorial/ 1. Introduction 2. Atmosphere pressure temperature altimetry 3. Wind convection pressure gradient friction jet stream local

### Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

### 6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that

### Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Weather: 4.H.3 Weather and Classical Instruments Grade

### FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE!

FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! 1 NAME DATE GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water

### Satellites, Weather and Climate Module 2b: Cloud identification & classification. SSEC MODIS Today

Satellites, Weather and Climate Module 2b: Cloud identification & classification SSEC MODIS Today Our Cloud Watching and Identification Goals describe cloud classification system used by meteorologists

### Humidity the story for teachers

Humidity the story for teachers As we have learned earlier, water may exist as a gas (water vapour). Even in the driest desert there is some water vapour in the air. Water vapour is the most important

### HAY MOISTURE & WEATHER:

HAY MOISTURE & WEATHER: IMPLICATIONS FOR HAY HARVEST Paul Brown Extension Specialist, Biometeorlogy University of Arizona Harvest Losses vs. Moisture From Collins & Owens, 1995 Losses During Haymaking

### SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES

SKEW-T, LOG-P DIAGRAM ANALYSIS PROCEDURES I. THE SKEW-T, LOG-P DIAGRAM The primary source for information contained in this appendix was taken from the Air Weather Service Technical Report TR-79/006. 1

### Clouds for pilots. Ed Williams. http://williams.best.vwh.net/

Clouds for pilots Ed Williams http://williams.best.vwh.net/ Clouds are important to pilots! Many of our weather problems are associated with clouds: Fog Thunderstorms Cloud In flight icing Cloud physics

### Temperature and Humidity

Temperature and Humidity Overview Water vapor is a very important gas in the atmosphere and can influence many things like condensation and the formation of clouds and rain, as well as how hot or cold

### UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

### Water, Phase Changes, Clouds

TUESDAY: air & water & clouds Water, Phase Changes, Clouds How can freezing make something warmer? 'warm air can hold more water' why? How do clouds form? The (extraordinary) properties of Water Physical

### HUMIDITY AND PRECIPITATION

12 HUMIDITY AND PRECIPITATION In our previous lesson while discussing the composition of the atmosphere, we noted that water vapour, though a minor component, is a very important constituent of the atmosphere.

### Description of zero-buoyancy entraining plume model

Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more

### Name: OBJECTIVES Correctly define: WEATHER BASICS: STATION MODELS: MOISTURE: PRESSURE AND WIND: Weather

Name: OBJECTIVES Correctly define: air mass, air pressure, anemometer, barometer, cyclone, dew point, front, isobar, isotherm, meteorology, precipitation, psychrometer, relative humidity, saturated, transpiration

### [8] SA1.2 The student demonstrates an understanding of the processes of science by collaborating

Convection and Wind Levels Overview: During this project, students observe convection current by performing a lab experiment. As a result of this activity, students develop an understanding of the process

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

### Mixing Heights & Smoke Dispersion. Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago

Mixing Heights & Smoke Dispersion Casey Sullivan Meteorologist/Forecaster National Weather Service Chicago Brief Introduction Fire Weather Program Manager Liaison between the NWS Chicago office and local

### Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.

376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL

### Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

### Measure Humidity - Basics

Dalton s Law Air is a mixture of different gases. Under normal environmental conditions the gases have an ideal behaviour, i.e. each gas molecule can act independently from all others. Dalton s law is

### The impact of parametrized convection on cloud feedback.

The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),

### Study Guide: Water Cycle & Humidity

Earth Science Name Date Per. Study Guide: Water Cycle & Humidity 1. Explain the difference between Specific Humidity and Relative Humidity. Specific humidity refers to the actual amount of water vapor

Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature

### Atmospheric Humidity. Chapter 4

Atmospheric Humidity Chapter 4 Circulation of Water in the Atmosphere A general definition of humidity is the amount of water vapor in the air. Remember, humidity is not constant through time or space,

### Lift vs. Gravity Questions:

LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

### AS CHALLENGE PAPER 2014

AS CHALLENGE PAPER 2014 Name School Total Mark/50 Friday 14 th March Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Read and study the following information. After reading complete the review questions. Clouds

Name: Pd: Read and study the following information. After reading complete the review questions. Clouds What are clouds? A cloud is a large collection of very tiny droplets of water or ice crystals. The

### (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION

Convection (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION You know from common experience that when there's a difference in temperature between two places close to each other, the temperatures

### ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location

### Lecture 7a: Cloud Development and Forms

Lecture 7a: Cloud Development and Forms Why Clouds Form Cloud Types (from The Blue Planet ) Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling. Four Ways

### Chapter 9: Air Masses and Fronts. Air Masses. Source Regions. Air masses Contain uniform temperature and humidity characteristics.

Chapter 9: Air Masses and Fronts Air masses Contain uniform temperature and humidity characteristics. What Characterize Air Masses? What Define Fronts? Fronts Boundaries between unlike air masses. Air

### CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior

### Mesoscale Convective Systems. Supercell Thunderstorm

Chapter 18: Thunderstorm Ai Th d t Airmass Thunderstorm Mesoscale Convective Systems Frontal Squall Lines Frontal Squall Lines Supercell Thunderstorm Thunderstorm Thunderstorms, also called cumulonimbus

### If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC)

Cirrus (CI) Detached clouds in the form of delicate white filaments or white patches or narrow bands. These clouds have a fibrous or hair like appearance, or a silky sheen or both. with frontal lifting

### Chapter 6: Atmospheric Moisture

Chapter 6: Atmospheric Moisture I. The Impact of Atmospheric Moisture on the Landscape A. Atmospheric moisture influences landscape both in short term and long term. 1. Short term, with puddles, flooding,

### Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics

EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek Short Presentations Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics R. Miyazaki, Y. Dobashi, T. Nishita, The University of Tokyo

### Temperature Data. Daily Temperature. Daily Temperature Range? Daily Average Temperature? High 90 F Low 60 F. Difference between High & Low for Day

TEMPERATURE Temperature Data Daily Temperature High 90 F Low 60 F Daily Temperature Range? Difference between High & Low for Day Daily Average Temperature? Mid-point between High & Low for Day Temperature

### Energy savings in commercial refrigeration. Low pressure control

Energy savings in commercial refrigeration equipment : Low pressure control August 2011/White paper by Christophe Borlein AFF and l IIF-IIR member Make the most of your energy Summary Executive summary

### Geography affects climate.

KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you

### WEATHER AND CLIMATE practice test

WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in

### Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

### Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective

### Pressure Enthalpy Explained

Pressure Enthalpy Explained Within the new F Gas course the requirement for an understanding of Pressure Enthalpy (Ph) graphs is proving to be a large learning curve for those who have not come across

### Surface Energy Fluxes

Chapter 7 Surface Energy Fluxes CHAPTER 7 SURFACE ENERGY FLUXES... 1 7.1 INTRODUCTION...2 7.2 SURFACE ENERGY BUDGET... 2 7.3 LEAF TEMPERATURE AND FLUXES... 8 7.4 SURFACE TEMPERATURE AND FLUXES... 14 7.5

### Chapter 3.4: HVAC & Refrigeration System

Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration

### Elements of the Weather

Elements of the Weather The weather is made up of different elements, which are measured either by special instruments or are observed by a meteorologist. These measurements are then recorded and used