Assignment 2. Solutions. Compiler Design I (Kompilatorteknik I) 2011

Size: px
Start display at page:

Download "Assignment 2. Solutions. Compiler Design I (Kompilatorteknik I) 2011"

Transcription

1 Assignment 2 olutions Compiler Design I Kompiltorteknik I) Context-free grmmrs Give the definition of context free grmmr over the lphbet Σ = {, b} tht describes ll strings tht hve different number of s nd b s U V U T U T T V T bv T bt T T bt bt T ϵ The intuition is tht the string will hve either more s non-terminl U) or more b s non-terminl V ) Non-terminl T produces string with blnced s nd b s 2 Prsing nd semntic ctions The following context-free grmmr cn prse ll the lowercse romn numerls from 1-99 The terminl symbols re { c, l, x, v, i } nd the initil symbol is If you re unfmilir with romn numerls, plese hve look t 1 Drw prse tree for 42: xlii xtu lx X T c l X xx U U iy vi I Y x v I ii ϵ x T l U i I i I I ϵ 1

2 2 Is this grmmr mbiguous? No 3 Write semntic ctions for ech of the 14 rules in the grmmr remember X A B is short for X A nd X B) to clculte the deciml vlue of the input string You cn ssocite synthesized ttribute vl to ech of the non-terminls to store their vlue The finl vlue should be returned in vl Given cvl = 100, lvl = 50, xvl = 10, vvl = 5, ivl = 1 nd ϵvl = 0: 3 LL1) Prsers xt U {vl = Tvl xvl + Uvl} lx {vl = lvl + Xvl} X {vl = Xvl} T c {Tvl = cvl} T l {Tvl = lvl} X 1 xx 2 {X 1 vl = xvl + X 2 vl} X U {Xvl = Uvl} U iy {Uvl = Yvl ivl} U vi {Uvl = vvl + Ivl} U I {Uvl = Ivl} Y x {Yvl = xvl} Y v {Yvl = vvl} I 1 ii 2 {I 1 vl = ivl + I 2 vl} I ϵ {Ivl = ϵvl} In the following context-free grmmr, the symbols 0, 1, 2 nd 3 re terminls nd is the initil symbol A 3 A A 1 Explin briefly why this grmmr is not LL1) This grmmr cnnot be prsed by recursive descent prser This cn be shown by the following two exmples: If the prser hs to expnd n non-terminl nd the next token is 1, it is not possible to choose between the 2 productions from tht strt with 1 with just this informtion However LL1) lnguges llow for just one look-hed symbol If the prser were to mke use of the A A production, for some look-hed symbol, then in the new stte it would still hve to expnd the new A with the sme look-hed, leding to n infinite loop 2 Convert this grmmr to n equivlent tht is LL1) Fctorize the productions nd eliminte immedite left recursion from the A productions: A 3 A A A A ϵ 2

3 Inline singulr A production rule to uncover nother possible fctoriztion: A 3 A A ϵ Fctorize the production nd inline the new singulr it in s production: A 3 A A ϵ 3 For the grmmr of the previous subtsk, construct the complete LL1) prsing tble First) = {0, 1} Follow) = {0, 1, 2, 3, $} First ) = {0, 1, 2, 3} Follow ) = {0, 1, 2, 3, $} FirstA ) = {0, 1, ϵ} FollowA ) = {3} $ 0 1 A 3 A A 3 A A A A A A ϵ 4 how ll the steps required to prse the input string: tck Input Action $ $ 1 1 $ $ terminl $ $ 1 1 $ $ terminl $ $ 0 0 $ $ terminl $ $ $ $ terminl 3 $ $ $ $ terminl 3 $ $ terminl $ $ A 3 A 3 $ $ A A A 3 $ $ 0 0 A 3 $ $ terminl A 3 $ $ A A A 3 $ $ 1 1 A 3 $ $ terminl A 3 $ $ 0 0 A 3 $ $ terminl A 3 $ 3 3 $ A 3 A 3 A 3 $ 3 3 $ A ϵ 3 A 3 $ 3 3 $ terminl A 3 $ 3 $ A ϵ 3 $ 3 $ terminl $ $ ACCEPT 3

4 4 LR1) Prsers In the following context-free grmmr, the symbols,, ) nd, re terminls nd is the initil symbol 1) L ) 2) 3) L L, 4) L Becuse, is symbol of the lnguge we re going to use s seprtor between the core of the LR1) items nd the lookhed symbols Lookheds with the sme core cn be seprted s usul with / 1 Clculte the closure of the LR1) item [ L ) $ ] [ L ) $ ] [ L L, )/, ] [ L )/, ] [ L ) )/, ] [ )/, ] 2 Construct the full LR1) DFA, showing ll items in ech stte New unique initil production: 0) E [ L ) $ ] [ E $ ] [ L L, )/, ] strt 0 [ L ) $ ] 3 [ L )/, ] 5 [ L )/, ] [ $ ] [ L ) )/, ] [ )/, ] 1 [ E $ ] 2 [ $ ] 7 [ L ) $ ] [ L L, )/, ] ) 8 [ L ) $ ], L 11 6 [ )/, ] [ L L, )/, ] [ L ) )/, ] [ )/, ] 12 [ L L, )/, ], 4 [ L ) )/, ] [ L L, )/, ] [ L )/, ] [ L ) )/, ] [ )/, ] L 9 [ L ) )/, ] [ L L, )/, ] ) 10 [ L ) )/, ] 4

5 3 Construct the LR1) prsing tble using the DFA For the reduce ctions, plese use the provided enumertion of the productions in the grmmr tte ), $ L 0 s3 s2 1 1 ACCEPT 2 r2 3 s4 s s4 s r4 r4 6 r2 r2 7 s8 s11 8 r1 9 s10 s11 10 r1 r1 11 s4 s r3 r3 4 how ll the steps required to prse the input string:, ),, ) tck ymbols Input Action 0, ),, )$ shift 0,3, ),, )$ shift 0,3,4, ),, )$ shift 0,3,4,6, ),, )$ reduce 0,3,4,5, ),, )$ reduce 0,3,4,9 L, ),, )$ shift 0,3,4,9,11 L, ),, )$ shift 0,3,4,9,11,6 L, ),, )$ reduce 0,3,4,9,11,12 L, ),, )$ reduce 0,3,4,9 L ),, )$ shift 0,3,4,9,10 L ),, )$ reduce 0,3,5,, )$ reduce 0,3,7 L,, )$ shift 0,3,7,11 L,, )$ shift 0,3,7,11,6 L,, )$ reduce 0,3,7,11,12 L,, )$ reduce 0,3,7 L, )$ shift 0,3,7,11 L, )$ shift 0,3,7,11,6 L, )$ reduce 0,3,7,11,12 L, )$ reduce 0,3,7 L )$ shift 0,3,7,8 L ) $ reduce 0,1 $ ACCEPT! 5

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Java CUP. Java CUP Specifications. User Code Additions You may define Java code to be included within the generated parser:

Java CUP. Java CUP Specifications. User Code Additions You may define Java code to be included within the generated parser: Jv CUP Jv CUP is prser-genertion tool, similr to Ycc. CUP uilds Jv prser for LALR(1) grmmrs from production rules nd ssocited Jv code frgments. When prticulr production is recognized, its ssocited code

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Solutions for Selected Exercises from Introduction to Compiler Design

Solutions for Selected Exercises from Introduction to Compiler Design Solutions for Selected Exercises from Introduction to Compiler Design Torben Æ. Mogensen Lst updte: My 30, 2011 1 Introduction This document provides solutions for selected exercises from Introduction

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

A Visual and Interactive Input abb Automata. Theory Course with JFLAP 4.0

A Visual and Interactive Input abb Automata. Theory Course with JFLAP 4.0 Strt Puse Step Noninverted Tree A Visul nd Interctive Input Automt String ccepted! 5 nodes generted. Theory Course with JFLAP 4.0 q0 even 's, even 's q2 even 's, odd 's q1 odd 's, even 's q3 odd 's, odd

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Concept Formation Using Graph Grammars

Concept Formation Using Graph Grammars Concept Formtion Using Grph Grmmrs Istvn Jonyer, Lwrence B. Holder nd Dine J. Cook Deprtment of Computer Science nd Engineering University of Texs t Arlington Box 19015 (416 Ytes St.), Arlington, TX 76019-0015

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Unambiguous Recognizable Two-dimensional Languages

Unambiguous Recognizable Two-dimensional Languages Unmbiguous Recognizble Two-dimensionl Lnguges Mrcell Anselmo, Dor Gimmrresi, Mri Mdoni, Antonio Restivo (Univ. of Slerno, Univ. Rom Tor Vergt, Univ. of Ctni, Univ. of Plermo) W2DL, My 26 REC fmily I REC

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00 COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

flex Regular Expressions and Lexical Scanning Regular Expressions and flex Examples on Alphabet A = {a,b} (Standard) Regular Expressions on Alphabet A

flex Regular Expressions and Lexical Scanning Regular Expressions and flex Examples on Alphabet A = {a,b} (Standard) Regular Expressions on Alphabet A flex Regulr Expressions nd Lexicl Scnning Using flex to Build Scnner flex genertes lexicl scnners: progrms tht discover tokens. Tokens re the smllest meningful units of progrm (or other string). flex is

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Solution to Problem Set 1

Solution to Problem Set 1 CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Quick Reference Guide: One-time Account Update

Quick Reference Guide: One-time Account Update Quick Reference Guide: One-time Account Updte How to complete The Quick Reference Guide shows wht existing SingPss users need to do when logging in to the enhnced SingPss service for the first time. 1)

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata N Lecture Notes on Regulr Lnguges nd Finite Automt for Prt IA of the Computer Science Tripos Mrcelo Fiore Cmbridge University Computer Lbortory First Edition 1998. Revised 1999, 2000, 2001, 2002, 2003,

More information

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam 1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211 - Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply? Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

More information

One Minute To Learn Programming: Finite Automata

One Minute To Learn Programming: Finite Automata Gret Theoreticl Ides In Computer Science Steven Rudich CS 15-251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge

More information

Protocol Analysis. 17-654/17-764 Analysis of Software Artifacts Kevin Bierhoff

Protocol Analysis. 17-654/17-764 Analysis of Software Artifacts Kevin Bierhoff Protocol Anlysis 17-654/17-764 Anlysis of Softwre Artifcts Kevin Bierhoff Tke-Awys Protocols define temporl ordering of events Cn often be cptured with stte mchines Protocol nlysis needs to py ttention

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

LECTURE #05. Learning Objectives. How does atomic packing factor change with different atom types? How do you calculate the density of a material?

LECTURE #05. Learning Objectives. How does atomic packing factor change with different atom types? How do you calculate the density of a material? LECTURE #05 Chpter : Pcking Densities nd Coordintion Lerning Objectives es How does tomic pcking fctor chnge with different tom types? How do you clculte the density of mteril? 2 Relevnt Reding for this

More information

I calculate the unemployment rate as (In Labor Force Employed)/In Labor Force

I calculate the unemployment rate as (In Labor Force Employed)/In Labor Force Introduction to the Prctice of Sttistics Fifth Edition Moore, McCbe Section 4.5 Homework Answers to 98, 99, 100,102, 103,105, 107, 109,110, 111, 112, 113 Working. In the lnguge of government sttistics,

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

How To Network A Smll Business

How To Network A Smll Business Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Virtual Machine. Part II: Program Control. Building a Modern Computer From First Principles. www.nand2tetris.org

Virtual Machine. Part II: Program Control. Building a Modern Computer From First Principles. www.nand2tetris.org Virtul Mchine Prt II: Progrm Control Building Modern Computer From First Principles www.nnd2tetris.org Elements of Computing Systems, Nisn & Schocken, MIT Press, www.nnd2tetris.org, Chpter 8: Virtul Mchine,

More information

FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES

FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES Introduction This compendium contins exercises out regulr lnguges for the course Forml Lnguges, Automt nd Theory of Computtion

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

Decision Rule Extraction from Trained Neural Networks Using Rough Sets

Decision Rule Extraction from Trained Neural Networks Using Rough Sets Decision Rule Extrction from Trined Neurl Networks Using Rough Sets Alin Lzr nd Ishwr K. Sethi Vision nd Neurl Networks Lbortory Deprtment of Computer Science Wyne Stte University Detroit, MI 48 ABSTRACT

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

UNLOCKING TECHNOLOGY IVECO

UNLOCKING TECHNOLOGY IVECO UNLOCKING TECHNOLOGY IVECO IVECO - CONTENTS PPLICTIONS PGE DS136 IVECO 3 DS177 IVECO CN 3 DIGNOSTIC SOCKETS LOCTIONS IVECO 4 GENERL OPERTION 5 6 TIPS & HINTS 15 2 Version: 2.3 July 2011 Copyright 2009

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

What is the phase sequence of a balanced three-phase circuit for which V an = 160 30 V and V cn = 160 90 V? Find V bn.

What is the phase sequence of a balanced three-phase circuit for which V an = 160 30 V and V cn = 160 90 V? Find V bn. Chter 1, Prblem 1. f b 400 in blnced Y-cnnected three-hse genertr, find the hse vltges, ssuming the hse sequence is: () bc (b) cb Chter 1, Slutin 1. () f b 400, then 400 n bn cn - 0 1-0 1-150 1-70 (b)

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

5 a LAN 6 a gateway 7 a modem

5 a LAN 6 a gateway 7 a modem STARTER With the help of this digrm, try to descrie the function of these components of typicl network system: 1 file server 2 ridge 3 router 4 ckone 5 LAN 6 gtewy 7 modem Another Novell LAN Router Internet

More information

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University SYSTEM FAULT AND Hrry G. Kwtny Deprtment of Mechnicl Engineering & Mechnics Drexel University OUTLINE SYSTEM RBD Definition RBDs nd Fult Trees System Structure Structure Functions Pths nd Cutsets Reliility

More information

How To Set Up A Network For Your Business

How To Set Up A Network For Your Business Why Network is n Essentil Productivity Tool for Any Smll Business TechAdvisory.org SME Reports sponsored by Effective technology is essentil for smll businesses looking to increse their productivity. Computer

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Advanced Baseline and Release Management. Ed Taekema

Advanced Baseline and Release Management. Ed Taekema Advnced Bseline nd Relese Mngement Ed Tekem Introduction to Bselines Telelogic Synergy uses bselines to perform number of criticl configurtion mngement tsks. They record the stte of the evolving softwre

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow. Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm

Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm Bibhudendr chry, Girij Snkr Rth, Srt Kumr Ptr, nd Sroj Kumr Pnigrhy Novel Methods of Generting Self-Invertible Mtrix for Hill Cipher lgorithm Bibhudendr chry Deprtment of Electronics & Communiction Engineering

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

More information

trademark and symbol guidelines FOR CORPORATE STATIONARY APPLICATIONS reviewed 01.02.2007

trademark and symbol guidelines FOR CORPORATE STATIONARY APPLICATIONS reviewed 01.02.2007 trdemrk nd symbol guidelines trdemrk guidelines The trdemrk Cn be plced in either of the two usul configurtions but horizontl usge is preferble. Wherever possible the trdemrk should be plced on blck bckground.

More information

Welch Allyn CardioPerfect Workstation Installation Guide

Welch Allyn CardioPerfect Workstation Installation Guide Welch Allyn CrdioPerfect Worksttion Instlltion Guide INSTALLING CARDIOPERFECT WORKSTATION SOFTWARE & ACCESSORIES ON A SINGLE PC For softwre version 1.6.5 or lter For network instlltion, plese refer to

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

SE3BB4: Software Design III Concurrent System Design. Sample Solutions to Assignment 1

SE3BB4: Software Design III Concurrent System Design. Sample Solutions to Assignment 1 SE3BB4: Softwre Design III Conurrent System Design Winter 2011 Smple Solutions to Assignment 1 Eh question is worth 10pts. Totl of this ssignment is 70pts. Eh ssignment is worth 9%. If you think your solution

More information

Test Management using Telelogic DOORS. Francisco López Telelogic DOORS Specialist

Test Management using Telelogic DOORS. Francisco López Telelogic DOORS Specialist Test Mngement using Telelogic DOORS Frncisco López Telelogic DOORS Specilist Introduction Telelogic solution for Requirements Mngement DOORS Requirements mngement nd trcebility pltform for complex systems

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

Unit 29: Inference for Two-Way Tables

Unit 29: Inference for Two-Way Tables Unit 29: Inference for Two-Wy Tbles Prerequisites Unit 13, Two-Wy Tbles is prerequisite for this unit. In ddition, students need some bckground in significnce tests, which ws introduced in Unit 25. Additionl

More information

c. Values in statements are broken down by fiscal years; many projects are

c. Values in statements are broken down by fiscal years; many projects are Lecture 18: Finncil Mngement (Continued)/Csh Flow CEE 498 Construction Project Mngement L Schedules A. Schedule.of Contrcts Completed See Attchment # 1 ll. 1. Revenues Erned 2. Cost of Revenues 3. Gross

More information

Quick Reference Guide: Reset Password

Quick Reference Guide: Reset Password Quick Reference Guide: Reset Pssword How to reset pssword This Quick Reference Guide shows you how to reset your pssword if you hve forgotten it. There re three wys to reset your SingPss pssword: 1) Online

More information

Lesson 4.1 Triangle Sum Conjecture

Lesson 4.1 Triangle Sum Conjecture Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

More information

GENERAL APPLICATION FOR FARM CLASSIFICATION

GENERAL APPLICATION FOR FARM CLASSIFICATION SCHEDULE 1 (section 1) Plese return to: DEADLINE: Plese return this form to your locl BC Assessment office y Octoer 31. Assessment Roll Numer(s) GENERAL APPLICATION FOR FARM CLASSIFICATION Section 23 (1)

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

AntiSpyware Enterprise Module 8.5

AntiSpyware Enterprise Module 8.5 AntiSpywre Enterprise Module 8.5 Product Guide Aout the AntiSpywre Enterprise Module The McAfee AntiSpywre Enterprise Module 8.5 is n dd-on to the VirusScn Enterprise 8.5i product tht extends its ility

More information

FIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table

FIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table FIRST and FOLLOW sets a necessary preliminary to constructing the LL(1) parsing table Remember: A predictive parser can only be built for an LL(1) grammar. A grammar is not LL(1) if it is: 1. Left recursive,

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Understanding Basic Analog Ideal Op Amps

Understanding Basic Analog Ideal Op Amps Appliction Report SLAA068A - April 2000 Understnding Bsic Anlog Idel Op Amps Ron Mncini Mixed Signl Products ABSTRACT This ppliction report develops the equtions for the idel opertionl mplifier (op mp).

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report DlNBVRGH + + THE CITY OF EDINBURGH COUNCIL Sickness Absence Monitoring Report Executive of the Council 8fh My 4 I.I...3 Purpose of report This report quntifies the mount of working time lost s result of

More information

Lec 2: Gates and Logic

Lec 2: Gates and Logic Lec 2: Gtes nd Logic Kvit Bl CS 34, Fll 28 Computer Science Cornell University Announcements Clss newsgroup creted Posted on we-pge Use it for prtner finding First ssignment is to find prtners Due this

More information