Plane transformations and isometries

Size: px
Start display at page:

Download "Plane transformations and isometries"

Transcription

1 Plane transformations and isometries We have observed that Euclid developed the notion of congruence in the plane by moving one figure on top of the other so that corresponding parts coincided. This notion is made precise in the context of certain types of functions from the plane to itself. A transformation is a one-to-one correspondence f:p P of the plane P (if A,B P, then A B f (A ) f (B); to every A P we can find an A P so that A = f (A ) ). A transformation is linear if it takes collinear points to collinear points. Linear transformations are an important element of linear algebra. We often use coordinates for points in the plane: to represent a linear transformation, we write f (x, y) = ( x, y ) and find that a formula for f must have the form x = ax +by +u y = cx +dy +v for certain real numbers a, b, c, d, u, v. Theorem A linear transformation must take noncollinear points to noncollinear points. // Corollary The inverse of a linear transformation is a linear transformation. //

2 Corollary The composition (or product) of any two linear transformations is a linear transformation. // Corollary The identity map e( A ) = A is a linear transformation. // A plane transformation f:p P that preserves distances (if A,B P and A = f (A ), B = f (B), then AB = A B ) is called an isometry or rigid motion of the plane. Lemma An isometry preserves collinearity (hence is a linear transformation) as well as betweenness and angle measure. // Suppose l is a line in the plane; a transformation s l :P P with the property that if A = s l ( A), then the segment A A has l as perpendicular bisector, we say that s l is a reflection in the line l. A similar definition describes a reflection in a point P: such a transformation s P has the property that if A = s P ( A), then the segment A A has P as midpoint. Theorem [ABCD Property] Reflections, whether across a line or through a point, preserve Angle measure, Betweenness, Collinearity, and Distances. That is, reflections are isometries.

3 If the path from vertex A to vertex B to vertex C in ΔABC is said to have a positive orientation if proceeds counterclockwise around interior points of the triangle and a negative orientation if proceeds clockwise around the interior. We say that f is a direct transformation if it preserves the orientation of triangles, and is an opposite transformation is it reverses the orientation of triangles. Theorem A reflection, whether across a line or through a point, is an opposite transformation. // Theorem The product of an even number of opposite transformations is direct, and the product of an even number of opposite transformations is opposite. Further, the product of any number of direct transformations is direct. // Theorem The product of two line reflections s l and s m, where l m, is an isometry that sends any line n into a parallel line. Such a transformation is called a translation. // Corollary Suppose the translation f carries A to A and B to B. Then B B is congruent to and either collinear with or parallel to A A. Thus, f is completely determined by one point and its image (and we will denote it t A A ). //

4 Theorem The product of two line reflections s l and s m, where l meets m at a point C, is an isometry that fixes the point C and sends any circle centered at C to itself. Such a transformation is called a rotation and C is its center. // Corollary Suppose the rotation f carries A to A and B to B. Then BC B AC A (whose measure θ is the angle of the rotation f). That is, f is completely determined by its center and angle (so we will denote it r C,θ ). // A glide reflection is the product t A A s l of a reflection across a line l with a translation in a direction parallel to l ( A s A r l ). For instance, a glide reflection carries one footstep of a walking person into the next footstep (see Figure 5.25, p. 363). It is easy to see that glide reflections are opposite transformations. Theorem If an isometry has no fixed points, then it is a translation, if direct, or a glide reflection, if opposite. // Theorem If an isometry has exactly one fixed point, then it is a rotation. //

5 Theorem If an isometry has two fixed points P and Q, then it fixes the entire line P s Q r. If these are the only fixed points, then it is a reflection across this line. // Theorem If an isometry fixes three noncollinear points, then it fixes every point, that is, it is the identity map. // Corollary If two isometries, f and g, both map ΔABC to Δ A B C, then f = g. // Theorem Given any two congruent triangles ΔABC and ΔPQR, then there is a unique isometry that carries the first triangle onto the second. // Theorem Every plane isometry is the product of no more than three line reflections. //

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

Triangle Congruence and Similarity A Common-Core-Compatible Approach

Triangle Congruence and Similarity A Common-Core-Compatible Approach Triangle Congruence and Similarity A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry program in grades 8 to 10: geometric

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

More information

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE? MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

Solutions to Practice Problems

Solutions to Practice Problems Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

More information

Chapter 6 Notes: Circles

Chapter 6 Notes: Circles Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

More information

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

More information

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true) Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

More information

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle. Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles... Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information

61. Pascal s Hexagon Theorem.

61. Pascal s Hexagon Theorem. . Pascal s Hexagon Theorem. Prove that the three points of intersection of the opposite sides of a hexagon inscribed in a conic section lie on a straight line. Hexagon has opposite sides,;, and,. Pascal

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

Lesson 18: Looking More Carefully at Parallel Lines

Lesson 18: Looking More Carefully at Parallel Lines Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

GEOMETRY COMMON CORE STANDARDS

GEOMETRY COMMON CORE STANDARDS 1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

More information

Three Lemmas in Geometry

Three Lemmas in Geometry Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology yufei.zhao@gmail.com 1 iameter of incircle T Lemma 1. Let the incircle of triangle

More information

Set 4: Special Congruent Triangles Instruction

Set 4: Special Congruent Triangles Instruction Instruction Goal: To provide opportunities for students to develop concepts and skills related to proving right, isosceles, and equilateral triangles congruent using real-world problems Common Core Standards

More information

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

1 Solution of Homework

1 Solution of Homework Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

15. Appendix 1: List of Definitions

15. Appendix 1: List of Definitions page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY. Constructions OBJECTIVE #: G.CO.12 GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

More information

Circle Name: Radius: Diameter: Chord: Secant:

Circle Name: Radius: Diameter: Chord: Secant: 12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

More information

Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

More information

3.1 Triangles, Congruence Relations, SAS Hypothesis

3.1 Triangles, Congruence Relations, SAS Hypothesis Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

More information

12. Parallels. Then there exists a line through P parallel to l.

12. Parallels. Then there exists a line through P parallel to l. 12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

More information

Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS

Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS 1 Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS This lecture, just as the previous one, deals with a classification of objects, the original interest in which was perhaps

More information

Terminology: When one line intersects each of two given lines, we call that line a transversal.

Terminology: When one line intersects each of two given lines, we call that line a transversal. Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.

More information

Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

More information

1 Symmetries of regular polyhedra

1 Symmetries of regular polyhedra 1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

More information

North Carolina Math 2

North Carolina Math 2 Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

More information

Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold

Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold Chapter 18 Symmetry Symmetry is of interest in many areas, for example, art, design in general, and even the study of molecules. This chapter begins with a look at two types of symmetry of two-dimensional

More information

Incenter Circumcenter

Incenter Circumcenter TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

More information

Geometry. Higher Mathematics Courses 69. Geometry

Geometry. Higher Mathematics Courses 69. Geometry The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

More information

Lesson 5-3: Concurrent Lines, Medians and Altitudes

Lesson 5-3: Concurrent Lines, Medians and Altitudes Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special

More information

Most popular response to

Most popular response to Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

More information

Mathematics Geometry Unit 1 (SAMPLE)

Mathematics Geometry Unit 1 (SAMPLE) Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

More information

Comprehensive Benchmark Assessment Series

Comprehensive Benchmark Assessment Series Test ID #1910631 Comprehensive Benchmark Assessment Series Instructions: It is time to begin. The scores of this test will help teachers plan lessons. Carefully, read each item in the test booklet. Select

More information

[G.CO.2, G.CO.4, G.CO.5]

[G.CO.2, G.CO.4, G.CO.5] Name: Date: Geometric Transformations Multiple Choice Test Bank 1. A triangle has vertices at A (1, 3), B (4, 2), and C (3, 8). Which transformation would produce an image with vertices A (3, 1), B (2,

More information

Cabri Geometry Application User Guide

Cabri Geometry Application User Guide Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

More information

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

SIMSON S THEOREM MARY RIEGEL

SIMSON S THEOREM MARY RIEGEL SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given

More information

Transformations: Rotations

Transformations: Rotations Math Objectives Students will identify a rotation as an isometry, also called a congruence transformation. Students will identify which properties (side length, angle measure, perimeter, area, and orientation)

More information

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily. Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

CHAPTER 3 WHICH ISOMETRIES DO IT?

CHAPTER 3 WHICH ISOMETRIES DO IT? 2006 George Baloglou first draft: fall 1998 CHAPTER 3 WHICH ISOMETRIES DO IT? 3.0 Congruent sets 3.0.1 Congruence. We call two sets congruent to each other if and only if there exists an isometry that

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures 37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

More information

1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes 1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

More information

/27 Intro to Geometry Review

/27 Intro to Geometry Review /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

More information

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image. Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

More information

What's the Spin? - Discover Properties of Geometric Rotations

What's the Spin? - Discover Properties of Geometric Rotations What's the Spin? - Discover Properties of Geometric Rotations Geometry Major Topics: Rotations and their relation to reflections NCTM Principles and Standards: Content Standards Geometry Apply transformations

More information

Analytical Geometry (4)

Analytical Geometry (4) Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE

UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE NINA LEUNG Abstract. This paper discusses 2-dimensional locally Euclidean geometries and how these geometries can describe musical chords. Contents

More information

Session 5 Dissections and Proof

Session 5 Dissections and Proof Key Terms for This Session Session 5 Dissections and Proof Previously Introduced midline parallelogram quadrilateral rectangle side-angle-side (SAS) congruence square trapezoid vertex New in This Session

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

12. Finite figures. Example: Let F be the line segment determined by two points P and Q.

12. Finite figures. Example: Let F be the line segment determined by two points P and Q. 12. Finite figures We now look at examples of symmetry sets for some finite figures, F, in the plane. By finite we mean any figure that can be contained in some circle of finite radius. Since the symmetry

More information

ORIENTATIONS. Contents

ORIENTATIONS. Contents ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which

More information

alternate interior angles

alternate interior angles alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

More information

Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1) Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

More information

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles

More information

Analysis of Stresses and Strains

Analysis of Stresses and Strains Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

More information

Geometry Review Flash Cards

Geometry Review Flash Cards point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on

More information

Geometry Unit 1 Geometric Transformations Lesson Plan (10 days)

Geometry Unit 1 Geometric Transformations Lesson Plan (10 days) Geometry Unit 1 Geometric Transformations Lesson Plan (10 days) Stage 1 Desired Results Learning Goal: Students will be able to draw, describe, specify the sequence, develop definitions, and predict the

More information