Solutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator
|
|
|
- Agnes Parsons
- 9 years ago
- Views:
Transcription
1 Solutions to Study Guide for Test 3 Part 1 No Study Guide, No Calculator 1. State the definition of the derivative of a function. Solution: The derivative of a function f with respect to x is the function f f (x) = lim h 0 f(x + h) f(x). h The domain of f is the set of all x where the limit exists. 2. State the definition of a critical point. bf Solution: A critical point (or number) of a function f is any number x in the domain of f such that f (x) = 0 or f (x) does not exist. 3. State the definition of an inflection point. bf Solution: A point on the graph of a continuous function f where the tangent line exists and where the concavity changes is called an inflection point. 4. State the definition of an anti-derivative of a function on an interval I. bf Solution: A function F is an antiderivative of f on an interval I if F (x) = f(x) for all x in I. 5. State the fundamental limit that defines the number e. bf Solution: The number e is defined to be the number that satisfies e h 1 lim h 0 h = Find the derivatives of the following functions. (a) f(x) = e x. bf Solution: f (x) = e x. 1
2 (b) f(x) = ln(x) for x > 0. f (x) = 1 x (c) f(x) = ln( x) for x < 0. bf Solution: By the chain rule, if y = ln( x) = ln(u) and u = x, then dy/du = 1/u and du/dx = 1. Thus the derivative is 1/( x) ( 1) = 1 x. So f (x) = 1 x. (d) g(x) = x 2 e x. bf Solution: By the product rule with u = x 2 and v = e x so u = 2x and v = e x, we have g (x) = u v + uv = 2xe x + x 2 e x = (2x + x 2 )e x. (e) g(x) = e ex2 +3x. bf Solution: Write y = e u u = e v v = x 2 + 3x dy du = eu du Dv = ev dv = 2x + 3. dx Putting this together by the chain rule, we have dy dx = dy du dv du dv dx = e u e v (2x + 3) = e ev e x2 +3x (2x + 3) = e ex2 +3xe x2 +3x (2x + 3). (f) h(t) = ln(t 3 + e t ). bf Solution: By the chain rule: Let y = h(t) = ln(u) and u = t 3 + e t, so that dy/du = 1/u and du/dt = 3t 2 + e t. By the chain 2
3 rule, we then have dy dt = dy du dudt = 1 u (3t2 + e t ) = 1 t 3 + e t (3t2 + e t ) = 3t2 + e t t 3 + e t. 7. Find f (3) if f(x) = ( x 2 + 8) 4 (e x + 1) 4. bf Solution: This is a product and chain rule. u = ( x 2 + 8) 4 and v = (e x + 1) 4, so that u = 4( x 2 + 8) 3 ( 2x) and v = 4(e x + 1) 3 e x. The result is then f (x) = u v + uv = 4( x 2 + 8) 3 ( 2x)(e x + 1) 4 + 4( x 2 + 8) 4 (e x + 1) 3 e x For f (3) = 4( 9 + 8) 3 ( 6)(e 3 + 1) 4 + 4( 9 + 8) 4 (e 3 + 1) 3 e 3 = 24(e 3 + 1) 4 + 4(e 3 + 1) 3 e Find the indefinite integrals 1 (a) x dx. bf Solution: = ln x + C. (b) 4x 3 + 6e 3x dx. bf Solution: The integral is x 4 + 2e 3x + C. (c) e 2 dt. bf Solution: The indefinite integral is = e 2 x + C. (d) 5 xdx. bf Solution: 10/3 x 3/2 + C. 9. Find all functions satisfying (a) f (x) = 8x 1/3. bf Solution: The integral is f(x) = 6x 4 3 3
4 10. Which one of the following is ln(x)dx? (a) x ln(x) + C (b) x ln(x) x + C (c) e ln(x) (d) None of the above bf Solution: The solution is (b). This can be found by taking the derivatives of each of the responses. Part II Calculator and Study Sheet Allowed 11. True or false (a) ln(a b) = ln(a) ln(b). bf Solution: This is false. The correct rule is that ln(a b) = ln(x) + ln(b). (b) The derivative of ln( x) is 1 for x < 0. x bf Solution: False, The derivative of ln( x) is f(x)=1/x. (c) If a is a critical point of the function f(x), then the graph of y = f(x) has either a local maximum or a local minimum at x = a. bf Solution: False, it is possible that a critical point could be an inflection point. 12. Suppose we have the functions f(x) and g(x), both of which are differentiable. Suppose further that we have the following chart: x f(x) g(x) f (x) g (x)
5 (a) If h(x) = e f(x), find h (6). bf Solution: This is a chain rule with y = e u and u = f(x). By the chain rule, we have Substituting t = 6, we have f (x) = e u + f (x) = e f(x) + f (x). f (6) = e f(6) f (6) = e 3 1 = e 3. (b) If h(x) = ln(g(x)), find h (3). bf Solution: Again as a chain rule with y = h(x) = ln(u) and u = g(x), we have h (x) = 1 g(x) g (x). This says that h (3) = 5/ Draw the graph of a function f(x) that has the following characteristics: (a) f(1) = 2, f(3) = 0 (b) f(x) has a horizontal asymptote at y = 1. (c) f (x) > 0 on the interval (3, ]. (d) f (x) > 0 on the interval [0, 3) (e) f (x) < 0 on the interval[, 0]. Solution:
6 14. An apple orchard has an average yield of 36 bushels of apples/tree if tree density is 22 trees/acre. For each unit increase in tree density, the yield decreases by 2 bushels/tree. How many trees should be planted in order to maximize yield? Solution: Let x denote the unit density of trees. We note that since for every tree above 22/acre, the yield/tree is 2 less, so that the yield per tree, y t (x) = 36 2(x 22) (where y t is the per tree yield. To find the total yield, we multiply the yield per tree by the number of tees. Consequently the function for the yield of the orchard (per acre) is given by y(x) = x(36 2(x 22)) = 2x x. We now find the critical points, which are where y (x) = 0 or it does not exist. In this case, we have y (x) = 4x + 80 and the only critical point is x = 20. Now, there are two possible interpretations of the problem for end points. If you assume that the tree density can be less than 22, so that if there are only 10 trees, then the production per tree is 60 bushels per tree, we have that 0 x 40 (at which point there are no apples produced by any tree. In this case, to maximize the answer, we find y(0) = 0, y(20) = 800, and y(40) = 0. Clearly the greatest of these is 800, so we should plant 20 trees per acre. The second interpretation would require that 22 x 40 which interprets the statement about density to have a minimum of 22 trees per acre. In this case, no critical point is within the closed interval [22, 40], so we can just evaluate the yield at the endpoints.. Checking y(22) = 792 bushels per tree and we should plant 22 trees. 15. Graph the function Solution: f(x) = x 3 7x 2 + 7x + 15 = (x 5)(x 3)(x + 1). 6
7 If you invest $15,000 at 5% interest per year (compounded monthly), how many months will it take for you to have $20,000 in the account. Solution: This is like the problem we did in class. If the original principle is $15000, then the principle after t months is: P (t) = 15000( )t, and in particular we want the value of t in months for which we first cross the $20,000 threshold, so we want to solve or = 15000( )t 4/3 = ( )t Taking the log of both sides, we have But using the log rules we have Solving for t we obtain ln(4/3) = ln(( )t ) ln(4/3) = t ln(( )) t = ln(4/3) ln( ) =
8 Since the interest is paid at the end of the month, we have to wait 70 months. 8
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Lecture 3: Derivatives and extremes of functions
Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
x), etc. In general, we have
BASIC CALCULUS REFRESHER. Introduction. Ismor Fischer, Ph.D. Dept. of Statistics UW-Madison This is a very condensed and simplified version of basic calculus, which is a prerequisite for many courses in
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
Don't Forget the Differential Equations: Finishing 2005 BC4
connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College
CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some
Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number
Chapter 11. Techniques of Integration
Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition
a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.
MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during
x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y
MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
6 Further differentiation and integration techniques
56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7
AP Calculus AB 2003 Scoring Guidelines Form B
AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the
f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1
Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
ECG590I Asset Pricing. Lecture 2: Present Value 1
ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide
Week 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
INTEGRATING FACTOR METHOD
Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 [email protected]
Homework #2 Solutions
MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution
Techniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions
Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010
MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and
Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x
Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk
f(x) = g(x), if x A h(x), if x B.
1. Piecewise Functions By Bryan Carrillo, University of California, Riverside We can create more complicated functions by considering Piece-wise functions. Definition: Piecewise-function. A piecewise-function
Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Integral Calculus - Exercises
Integral Calculus - Eercises 6. Antidifferentiation. The Indefinite Integral In problems through 7, find the indicated integral.. Solution. = = + C = + C.. e Solution. e =. ( 5 +) Solution. ( 5 +) = e
Solving DEs by Separation of Variables.
Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).
Math 115 HW #8 Solutions
Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
Inverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that
5 Double Integrals over Rectangular Regions
Chapter 7 Section 5 Doule Integrals over Rectangular Regions 569 5 Doule Integrals over Rectangular Regions In Prolems 5 through 53, use the method of Lagrange multipliers to find the indicated maximum
Practice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
Consumer Theory. The consumer s problem
Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).
Lecture Notes on Elasticity of Substitution
Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before
AP Calculus AB 2003 Scoring Guidelines
AP Calculus AB Scoring Guidelines The materials included in these files are intended for use y AP teachers for course and exam preparation; permission for any other use must e sought from the Advanced
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
Math 432 HW 2.5 Solutions
Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
6.4 Logarithmic Equations and Inequalities
6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
AP Calculus AB 2010 Free-Response Questions
AP Calculus AB 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
DERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
AP Calculus BC 2013 Free-Response Questions
AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in
Techniques of Integration
8 Techniques of Integration Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5
1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,
Calculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise
AP Calculus AB 2006 Scoring Guidelines
AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
AP Calculus AB 2013 Free-Response Questions
AP Calculus AB 2013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded
Introduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
1 Calculus of Several Variables
1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
To give it a definition, an implicit function of x and y is simply any relationship that takes the form:
2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to
Calculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
MULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
AP Calculus AB 2009 Free-Response Questions
AP Calculus AB 2009 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
Integrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
Chapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
Second-Order Linear Differential Equations
Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
About the Gamma Function
About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is
Section 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
Algebra I Notes Relations and Functions Unit 03a
OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Also, compositions of an exponential function with another function are also referred to as exponential. An example would be f(x) = 4 + 100 3-2x.
Exponential Functions Exponential functions are perhaps the most important class of functions in mathematics. We use this type of function to calculate interest on investments, growth and decline rates
