Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x


 Dwayne Fowler
 1 years ago
 Views:
Transcription
1 Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk was $3.29/gallon on January 1, 2010.) This is what is called an initial condition. So if we are trying to solve y 4y = 0 and we know that y = 3 if x = 0 then we can use the general solution y = Ae 4x together with the initial condition y(0) = 3 to find a single solution (i.e. we can find out what A is). y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x
2 More separation of variables: In general you might be trying to solve an equation that looks like dy dx = f(x)g(y). For example y = xy, where f(x) = x, and g(y) = y. So we get all the x s on one side and all the y s on the other side and integrate: 1 g(y) dy = f(x)dx. Of course this relies on our ability to do these integrals, and in our example we can and we have 1 y dy = xdx ln y = x2 2 + C y = /2+C ex2 = Ae x2 /2
3 Interpreting word problems: Examples of differential equations come from all over the place, from economics, biology, chemistry, business, etc. You must learn to interpret certain words in problems. Most commonly if you see the phrase A is proportional to B all that means is A = kb for some number k. Also, all differential equations will involve rates of change because that is exactly what the derivative is.
4 Investments The rate of growth of an investment is proportional to the amount in the investment at any time t. That is, da dt = ka. What is A? In this problem A represents the amount (in dollars say) of the investment and A = A(t) i.e. A is a function of time, A may increase or decrease with time (depending on the investment and in this case the rate of growth k.) What is the general solution? 1 A da = kdt ln A = kt + c A(t) = Ce kt.
5 Investments cont. We have A(t) = Ce kt represents the rate of growth of an investment. If we know that an initial investment of $1000 grew to in 10 years, what is the particular solution? Now we have to find both C and k, what do we know? Initially the investment was worth $1000 so A = 1000 at t = 0 or A(0) = This tells me C : A(0) = Ce k 0 = Ce 0 = C C = Now we know that at t = 10 we have A = , this will tell us what k is. Before we try to figure out what k is, can you tell me if k should be positive or negative?
6 Investments cont. We have A(t) = 1000e kt and we know A(10) = , we are expecting k > 0, so let s figure out what it is = 1000e k = e 10k ln = 10k k = ln = 0.12 So A(t) = 1000e 0.12t
7 Newton s Law of Cooling Newton s law of cooling states that the rate of change in the temperature T of an object is proportional to the difference between the temperature of the object (T ) and the surrounding temperature T 0. This can be expressed by the differential equation: dt dt = k(t T 0). Note that here T 0 is the ambient, or surrounding, temperature. k is the rate of cooling and t is time. Since the object is going from higher temperature to cooler temperature the rate of change will be negative, so k < 0.
8 Newton s Law of Cooling cont. A room is kept at a constant temperature of 68 F. A pie is taken out of a 350 oven and placed on the counter. If the pie has reduced in temperature to 150 in 45 minutes, when will the pie reach 80? First we must find the general solution: 1 (T T 0 ) dt = kdt. ln(t T 0 ) = kt + c T T 0 = e kt+c = Ae kt T (t) = T 0 + Ae kt
9 Newton s Law of Cooling cont. We have the general solution T (t) = T 0 + Ae kt We will measure time in hours, though we could use minutes if we wanted. The ambient temperature here is 68. We know T (0) = 350 and T (.75) = 150 this will help us find k : T (0) = 68 + Ae k 0 = 68 + A = 350 A = = 282. So now we have T (t) = e kt, and we know T (.75) = 150 so 150 = e.75k = e.75k ln =.75k k = ln = 1.65 or k = 1.65
10 Relation to slope and graphs: We can also solve a problem like this: 1 At each point (x, y) on the graph, the slope is 2x/y. 2 The graph passes through the point (1, 1). The equation to solve is dy dx = 2x/y, and the additional information we know is that y(1) = 1, in other words when x = 1, then y = 1.
11 Relation to slope and graphs cont.: dy dx = 2x/y, First separate variables, then integrate: ydy = 2xdx. y2 2 = x2 + C Writing it a little more simply we have y 2 2x 2 = C, note that we don t have to write 2C we can just use C again for a different constant. Now plug in the known values (x, y) = (1, 1) to find the exact value for C : 1 2 2(1) 2 = 1 = C y 2 2x = 0 is the curve we are trying to find.
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationBackground Information on Exponentials and Logarithms
Background Information on Eponentials and Logarithms Since the treatment of the decay of radioactive nuclei is inetricably linked to the mathematics of eponentials and logarithms, it is important that
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationECG590I Asset Pricing. Lecture 2: Present Value 1
ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More information4.1 Modelling with Differential Equations
Chapter 4 Differential Equations The rate equations with which we began our study of calculus are called differential equations when we identify the rates of change that appear within them as derivatives
More informationExample 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph
The Effect of Taxes on Equilibrium Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph Solution to part a: Set the
More information( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More information+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More information3. Which of the following couldn t be the solution of a differential equation? (a) z(t) = 6
MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y = 3y (b) 2x 2 y + y 2 = 6 (c) tx dx dt = 2 (d) d2 y + 4 dy dx 2 dx + 7y
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationExcel s Business Tools: WhatIf Analysis
Excel s Business Tools: Introduction is an important aspect of planning and managing any business. Understanding the implications of changes in the factors that influence your business is crucial when
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationAn Innocent Investigation
An Innocent Investigation D. Joyce, Clark University January 2006 The beginning. Have you ever wondered why every number is either even or odd? I don t mean to ask if you ever wondered whether every number
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationMonth Rabbits # Pairs
1. Fibonacci s Rabbit Problem. Fibonacci rabbits come in pairs. Once a pair is two months old, it bears another pair and from then on bears one pair every month. Starting with a newborn pair at the beginning
More informationWISE Sampling Distribution of the Mean Tutorial
Name Date Class WISE Sampling Distribution of the Mean Tutorial Exercise 1: How accurate is a sample mean? Overview A friend of yours developed a scale to measure Life Satisfaction. For the population
More informationSOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationHow to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationPennies and Blood. Mike Bomar
Pennies and Blood Mike Bomar In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics.
More informationIntroduction (I) Present Value Concepts. Introduction (II) Introduction (III)
Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal
More informationSecondOrder Linear Differential Equations
SecondOrder Linear Differential Equations A secondorder linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationQuantitative Displays for Combining TimeSeries and ParttoWhole Relationships
Quantitative Displays for Combining TimeSeries and ParttoWhole Relationships Stephen Few, Perceptual Edge Visual Business Intelligence Newsletter January, February, and March 211 Graphical displays
More informationProblem of the Month: Digging Dinosaurs
: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of
More information5.7 Maximum and Minimum Values
5.7 Maximum and Minimum Values Objectives Icandefinecriticalpoints. I know the di erence between local and absolute minimums/maximums. I can find local maximum(s), minimum(s), and saddle points for a given
More information