Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x

Size: px
Start display at page:

Download "Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x"

Transcription

1 Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk was $3.29/gallon on January 1, 2010.) This is what is called an initial condition. So if we are trying to solve y 4y = 0 and we know that y = 3 if x = 0 then we can use the general solution y = Ae 4x together with the initial condition y(0) = 3 to find a single solution (i.e. we can find out what A is). y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x

2 More separation of variables: In general you might be trying to solve an equation that looks like dy dx = f(x)g(y). For example y = xy, where f(x) = x, and g(y) = y. So we get all the x s on one side and all the y s on the other side and integrate: 1 g(y) dy = f(x)dx. Of course this relies on our ability to do these integrals, and in our example we can and we have 1 y dy = xdx ln y = x2 2 + C y = /2+C ex2 = Ae x2 /2

3 Interpreting word problems: Examples of differential equations come from all over the place, from economics, biology, chemistry, business, etc. You must learn to interpret certain words in problems. Most commonly if you see the phrase A is proportional to B all that means is A = kb for some number k. Also, all differential equations will involve rates of change because that is exactly what the derivative is.

4 Investments The rate of growth of an investment is proportional to the amount in the investment at any time t. That is, da dt = ka. What is A? In this problem A represents the amount (in dollars say) of the investment and A = A(t) i.e. A is a function of time, A may increase or decrease with time (depending on the investment and in this case the rate of growth k.) What is the general solution? 1 A da = kdt ln A = kt + c A(t) = Ce kt.

5 Investments cont. We have A(t) = Ce kt represents the rate of growth of an investment. If we know that an initial investment of $1000 grew to in 10 years, what is the particular solution? Now we have to find both C and k, what do we know? Initially the investment was worth $1000 so A = 1000 at t = 0 or A(0) = This tells me C : A(0) = Ce k 0 = Ce 0 = C C = Now we know that at t = 10 we have A = , this will tell us what k is. Before we try to figure out what k is, can you tell me if k should be positive or negative?

6 Investments cont. We have A(t) = 1000e kt and we know A(10) = , we are expecting k > 0, so let s figure out what it is = 1000e k = e 10k ln = 10k k = ln = 0.12 So A(t) = 1000e 0.12t

7 Newton s Law of Cooling Newton s law of cooling states that the rate of change in the temperature T of an object is proportional to the difference between the temperature of the object (T ) and the surrounding temperature T 0. This can be expressed by the differential equation: dt dt = k(t T 0). Note that here T 0 is the ambient, or surrounding, temperature. k is the rate of cooling and t is time. Since the object is going from higher temperature to cooler temperature the rate of change will be negative, so k < 0.

8 Newton s Law of Cooling cont. A room is kept at a constant temperature of 68 F. A pie is taken out of a 350 oven and placed on the counter. If the pie has reduced in temperature to 150 in 45 minutes, when will the pie reach 80? First we must find the general solution: 1 (T T 0 ) dt = kdt. ln(t T 0 ) = kt + c T T 0 = e kt+c = Ae kt T (t) = T 0 + Ae kt

9 Newton s Law of Cooling cont. We have the general solution T (t) = T 0 + Ae kt We will measure time in hours, though we could use minutes if we wanted. The ambient temperature here is 68. We know T (0) = 350 and T (.75) = 150 this will help us find k : T (0) = 68 + Ae k 0 = 68 + A = 350 A = = 282. So now we have T (t) = e kt, and we know T (.75) = 150 so 150 = e.75k = e.75k ln =.75k k = ln = 1.65 or k = 1.65

10 Relation to slope and graphs: We can also solve a problem like this: 1 At each point (x, y) on the graph, the slope is 2x/y. 2 The graph passes through the point (1, 1). The equation to solve is dy dx = 2x/y, and the additional information we know is that y(1) = 1, in other words when x = 1, then y = 1.

11 Relation to slope and graphs cont.: dy dx = 2x/y, First separate variables, then integrate: ydy = 2xdx. y2 2 = x2 + C Writing it a little more simply we have y 2 2x 2 = C, note that we don t have to write 2C we can just use C again for a different constant. Now plug in the known values (x, y) = (1, 1) to find the exact value for C : 1 2 2(1) 2 = 1 = C y 2 2x = 0 is the curve we are trying to find.

dx x 2 1 x 3 x 1 dx x 2 Integration Review 12/12/13 Current Integration Strategies: NIKE - Just Do It! Recognize & Memorize! Manipulate 1) Strategy:

dx x 2 1 x 3 x 1 dx x 2 Integration Review 12/12/13 Current Integration Strategies: NIKE - Just Do It! Recognize & Memorize! Manipulate 1) Strategy: AP Calculus Mathematician: Integration Review 1/1/13 Current Integration Strategies: NIKE - Just Do It! Recognize & Memorize! Manipulate 1) Strategy: 3 x 1 ) Strategy: 1 x 3 x 1 x 3) Strategy: 3 x 4 4)

More information

Math 115 HW #8 Solutions

Math 115 HW #8 Solutions Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y

More information

Differential Equations

Differential Equations 40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal

More information

Math 20D Midterm Exam Practice Problems Solutions

Math 20D Midterm Exam Practice Problems Solutions Math 20D Midterm Exam Practice Problems Solutions 1. A tank contains G gallons of fresh water. A solution with a concentration of m lb of salt per gallon is pumped into the tank at a rate of r gallons

More information

2.4 Applications (Exponential Growth/Decay)

2.4 Applications (Exponential Growth/Decay) 26 CHAPTER 2. METHODS FOR SOLVING FIRST ORDER ODES 2.4 Applications (Exponential Growth/Decay) Many things grow (decay) as fast as exponential functions. In general, if a quantity grows or decays at a

More information

Math Lecture 4: Separable Equations and Applications

Math Lecture 4: Separable Equations and Applications Math 2280 - Lecture 4: Separable Equations and Applications Dylan Zwick Fall 2013 For the last two lectures we ve studied first-order differential equations in standard form: y = f(x, y). We learned how

More information

3.6. Derivatives. Exponential Growth and Decay. Exponential Growth and Decay. Exponential Growth and Decay. Exponential Growth and Decay

3.6. Derivatives. Exponential Growth and Decay. Exponential Growth and Decay. Exponential Growth and Decay. Exponential Growth and Decay Derivatives 3 3.6 Exponential Growth and Decay Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. In many natural phenomena, quantities grow or decay at a

More information

MATH 215/255 Fall 2014 Assignment 2

MATH 215/255 Fall 2014 Assignment 2 MATH 215/255 Fall 214 Assignment 2 1.4, Exact equations ([Braun s Section 1.9]), 1.6 Solutions to selected exercises can be found in [Lebl], starting from page 33. 1.4.8: Solve 1 x 2 + 1 y + xy = 3 with

More information

Exponential Growth and Decay

Exponential Growth and Decay Exponential Growth and Decay Recall that if y = f(t), then f (t) = dy dt y with respect to t. is called the rate of change of Another very important measure of rate of change is the relative rate of change

More information

Math 308 Week 1 Solutions

Math 308 Week 1 Solutions Math 308 Week 1 Solutions Here are solutions to the even-numbered suggested problems. The answers to the oddnumbered problems are in the back of your textbook, and the solutions are in the Solution Manual,

More information

Differential Equations

Differential Equations Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx

More information

WS 7.5: Partial Fractions & Logistic. Name Date Period

WS 7.5: Partial Fractions & Logistic. Name Date Period Name Date Period Worksheet 7.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice 1. The spread of a disease through a community can be modeled with the logistic

More information

1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3.

1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3. 22M:034 Engineer Math IV: Differential Equations Midterm Exam 1 October 2, 2013 Name Section number 1. [20 pts] Find an integrating factor and solve the equation 3 = e 2t. Then solve the initial value

More information

II. Sketch the given region R and then find the area. 2. R is the region bounded by the curves y = 0, y = x 2 and x = 3.

II. Sketch the given region R and then find the area. 2. R is the region bounded by the curves y = 0, y = x 2 and x = 3. Math 34 April I. It is estimated that t days from now a farmer s crop will be increasing at the rate of.5t +.4t + bushels per day. By how much will the value of the crop increase during the next 5 days

More information

3.2: Exponential Growth and Decay and 3.3: Separable Differential Equations

3.2: Exponential Growth and Decay and 3.3: Separable Differential Equations 3.2: Exponential Growth and Decay and 3.3: Separable Differential Equations Mathematics 3 Lecture 17 Dartmouth College February 10, 2010 Exponential Growth & Decay Derivatives measure (instantaneous) rates

More information

f(x) = lim 2) = 2 2 = 0 (c) Provide a rough sketch of f(x). Be sure to include your scale, intercepts and label your axis.

f(x) = lim 2) = 2 2 = 0 (c) Provide a rough sketch of f(x). Be sure to include your scale, intercepts and label your axis. Math 16 - Final Exam Solutions - Fall 211 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

9.1 Observations about the exponential function. In a previous chapter we made an observation about a special property of the function.

9.1 Observations about the exponential function. In a previous chapter we made an observation about a special property of the function. Chapter 9 Exponential Growth and Decay: Differential Equations 9.1 Observations about the exponential function In a previous chapter we made an observation about a special property of the function namely,

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

The Derivative and the Tangent Line Problem. The Tangent Line Problem

The Derivative and the Tangent Line Problem. The Tangent Line Problem The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

C.4 Applications of Differential Equations

C.4 Applications of Differential Equations APPENDIX C Differential Equations A39 C.4 Applications of Differential Equations Use differential equations to model and solve real-life problems. EXAMPLE 1 Modeling Advertising Awareness The new cereal

More information

Solutions to Exercises on Newton s Law of Cooling S. F. Ellermeyer

Solutions to Exercises on Newton s Law of Cooling S. F. Ellermeyer Solutions to Exercises on Newton s Law of Cooling S F Ellermeyer A thermometer is taken from a room that is 0 C to the outdoors where the temperature is C After one minute, the thermometer reads C Use

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems. Matthew Staley Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

More information

1. (from Stewart, page 586) Solve the initial value problem.

1. (from Stewart, page 586) Solve the initial value problem. . (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Math 220 October 11 I. Exponential growth and decay A. The half-life of fakeium-20 is 40 years. Suppose we have a 100-mg sample.

Math 220 October 11 I. Exponential growth and decay A. The half-life of fakeium-20 is 40 years. Suppose we have a 100-mg sample. Math 220 October 11 I. Exponential growth and decay A. The half-life of fakeium-20 is 40 years. Suppose we have a 100-mg sample. 1. Find the mass that remains after t years. 2. How much of the sample remains

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

Section 1. Movement. So if we have a function x = f(t) that represents distance as a function of time, then dx is

Section 1. Movement. So if we have a function x = f(t) that represents distance as a function of time, then dx is Worksheet 4.4 Applications of Integration Section 1 Movement Recall that the derivative of a function tells us about its slope. What does the slope represent? It is the change in one variable with respect

More information

Math 267 - Practice exam 2 - solutions

Math 267 - Practice exam 2 - solutions C Roettger, Fall 13 Math 267 - Practice exam 2 - solutions Problem 1 A solution of 10% perchlorate in water flows at a rate of 8 L/min into a tank holding 200L pure water. The solution is kept well stirred

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

Block 7: Applications of Differentiation Contents

Block 7: Applications of Differentiation Contents Block 7: Applications of Differentiation Contents 7.1 Optimisation... 2 7.2 Velocity and Acceleration... 4 7.3 Differential Equations... 6 7.4 First Order Differential Equations... 7 7.5 Second Order Differential

More information

Student Number: SOLUTION Page 1 of 14

Student Number: SOLUTION Page 1 of 14 Student Number: SOLUTION Page 1 of 14 QUEEN S UNIVERSITY FACULTY OF ARTS AND SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH126 December Examination December 14th, 2009 Instructors: P. Li (A), A.

More information

1. AREA BETWEEN the CURVES

1. AREA BETWEEN the CURVES 1 The area between two curves The Volume of the Solid of revolution (by slicing) 1. AREA BETWEEN the CURVES da = {( outer function ) ( inner )} dx function b b A = da = [y 1 (x) y (x)]dx a a d d A = da

More information

Solutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator

Solutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator Solutions to Study Guide for Test 3 Part 1 No Study Guide, No Calculator 1. State the definition of the derivative of a function. Solution: The derivative of a function f with respect to x is the function

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Math 432 HW 2.5 Solutions

Math 432 HW 2.5 Solutions Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/

More information

Differential Equations

Differential Equations Differential Equations 1. Mr. Moneybags decides to open a bank account with an opening deposit of $1000. Suppose that the account earns a nominal annual interest rate of 6%, compounded annually. 1) Assuming

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

MATHEMATICS Extended Part Module 1 (Calculus and Statistics) (Sample Paper)

MATHEMATICS Extended Part Module 1 (Calculus and Statistics) (Sample Paper) HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION MATHEMATICS Extended Part Module 1 (Calculus and Statistics) (Sample Paper) Time allowed: hours 30 minutes

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

7. Continuously Varying Interest Rates

7. Continuously Varying Interest Rates 7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be

More information

Don't Forget the Differential Equations: Finishing 2005 BC4

Don't Forget the Differential Equations: Finishing 2005 BC4 connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

More information

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

Midterm I Review:

Midterm I Review: Midterm I Review: 1.1 -.1 Monday, October 17, 016 1 1.1-1. Functions Definition 1.0.1. Functions A function is like a machine. There is an input (x) and an output (f(x)), where the output is designated

More information

Name Calculus AP Chapter 7 Outline M. C.

Name Calculus AP Chapter 7 Outline M. C. Name Calculus AP Chapter 7 Outline M. C. A. AREA UNDER A CURVE: a. If y = f (x) is continuous and non-negative on [a, b], then the area under the curve of f from a to b is: A = f (x) dx b. If y = f (x)

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately?

Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Abstract: The purpose of this project is to apply Newton s Law of Cooling to study the rate

More information

Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by

Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

1 Introduction to Differential Equations

1 Introduction to Differential Equations 1 Introduction to Differential Equations A differential equation is an equation that involves the derivative of some unknown function. For example, consider the equation f (x) = 4x 3. (1) This equation

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

x + 5 x 2 + x 2 dx Answer: ln x ln x 1 + c

x + 5 x 2 + x 2 dx Answer: ln x ln x 1 + c . Evaluate the given integral (a) 3xe x2 dx 3 2 e x2 + c (b) 3 x ln xdx 2x 3/2 ln x 4 3 x3/2 + c (c) x + 5 x 2 + x 2 dx ln x + 2 + 2 ln x + c (d) x sin (πx) dx x π cos (πx) + sin (πx) + c π2 (e) 3x ( +

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) = Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

More information

Mathematics (Project Maths Phase 3)

Mathematics (Project Maths Phase 3) 2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300

More information

PASS MOCK EXAM FOR PRACTICE ONLY

PASS MOCK EXAM FOR PRACTICE ONLY PASS MOCK EXAM FOR PRACTICE ONLY Course: MATH 4 ABCDEF Facilitator: Stephen Kimbell December 6 th 25 - (3:-6:) and (8:-2:) in ME 338 (Mackenzie Building 3 rd floor 3 rd block) It is most beneficial to

More information

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx.

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx. Section 7.: Volume Let S be a solid and suppose that the area of the cross-section of S in the plane P x perpendicular to the x-axis passing through x is A(x) for a x b. Consider slicing the solid into

More information

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a. Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

More information

MATH 2300 review problems for Exam 3 ANSWERS

MATH 2300 review problems for Exam 3 ANSWERS MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

More information

Review for Exam 2 (The following problems are all from old exams)

Review for Exam 2 (The following problems are all from old exams) Review for Exam 2 (The following problems are all from old exams). Write down, but do not evaluate, an integral which represents the volume when y = e x, x, is rotated about the y axis. Soln: Divide the

More information

Chapter 4 Expected Values

Chapter 4 Expected Values Chapter 4 Expected Values 4. The Expected Value of a Random Variables Definition. Let X be a random variable having a pdf f(x). Also, suppose the the following conditions are satisfied: x f(x) converges

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

AP Calculus AB 2012 Scoring Guidelines

AP Calculus AB 2012 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 9, the College

More information

First Order Non-Linear Equations

First Order Non-Linear Equations First Order Non-Linear Equations We will briefly consider non-linear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve

More information

The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.

The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, do the function f to x, then do g to the result. 30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).

More information

Contents. 1 First-Order Dierential Equations. 1.1 Introduction and Terminology

Contents. 1 First-Order Dierential Equations. 1.1 Introduction and Terminology Dierential Equations (part 1) : First-Order Dierential Equations (by Evan Dummit, 2016, v. 2.10) Contents 1 First-Order Dierential Equations 1 1.1 Introduction and Terminology........................................

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

1 Lecture 19: Implicit differentiation

1 Lecture 19: Implicit differentiation Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y

More information

Lesson 13. Solving Definite Integrals

Lesson 13. Solving Definite Integrals Lesson Solving Definite Integrals How to find antiderivatives We have three methods:. Basic formulas. Algebraic simplification. Substitution Basic Formulas If f(x) is then an antiderivative is x n k cos(kx)

More information

Class Notes, Math 110 Winter 2008, Sec 2 / Whitehead 1/18 Sections

Class Notes, Math 110 Winter 2008, Sec 2 / Whitehead 1/18 Sections 20080225 Class Notes, Math 110 Winter 2008, Sec 2 / Whitehead 1/18 Review of Simple Interest You borrow $100 at an annual interest rate of 5%. How much would you owe at the end of 1 year Symbol/equation

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

The graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0

The graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0 . Compute the area between the curves x y 4y and x y y. Let f(y) y 4y y(y 4). f(y) when y or y 4. Let g(y) y y y( y). g(y) when y or y. x 3 y? The graphs of f and g intersect at (, ) and one other point.

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

More information

Catholic Schools Trial Examination 2004 Mathematics

Catholic Schools Trial Examination 2004 Mathematics 0 Catholic Trial HSC Examination Mathematics Page Catholic Schools Trial Examination 0 Mathematics a If x 5 = 5000, find x correct to significant figures. b Express 0. + 0.. in the form b a, where a and

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

vector calculus 2 Learning outcomes

vector calculus 2 Learning outcomes 29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

More information

Work. Example. If a block is pushed by a constant force of 200 lb. Through a distance of 20 ft., then the total work done is 4000 ft-lbs. 20 ft.

Work. Example. If a block is pushed by a constant force of 200 lb. Through a distance of 20 ft., then the total work done is 4000 ft-lbs. 20 ft. Work Definition. If a constant force F is exerted on an object, and as a result the object moves a distance d in the direction of the force, then the work done is Fd. Example. If a block is pushed by a

More information

Multivariable Calculus Practice Midterm 2 Solutions Prof. Fedorchuk

Multivariable Calculus Practice Midterm 2 Solutions Prof. Fedorchuk Multivariable Calculus Practice Midterm Solutions Prof. Fedorchuk. ( points) Let f(x, y, z) xz + e y x. a. (4 pts) Compute the gradient f. b. ( pts) Find the directional derivative D,, f(,, ). c. ( pts)

More information

7.5 Exponential Growth and Decay

7.5 Exponential Growth and Decay 7.5 Exponential Growth and Decay Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.5 Exponential Growth and Decay Fall 2010 1 / 11 Outline 1 The general model 2 Examples 3 Doubling-time and half-life

More information

Chapter (AB/BC, non-calculator) (a) Write an equation of the line tangent to the graph of f at x 2.

Chapter (AB/BC, non-calculator) (a) Write an equation of the line tangent to the graph of f at x 2. Chapter 1. (AB/BC, non-calculator) Let f( x) x 3 4. (a) Write an equation of the line tangent to the graph of f at x. (b) Find the values of x for which the graph of f has a horizontal tangent. (c) Find

More information

Multiplicity. Chapter 6

Multiplicity. Chapter 6 Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

More information

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1 MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1. Workshop E4 HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

AP Calculus AB 2009 Scoring Guidelines

AP Calculus AB 2009 Scoring Guidelines AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 19,

More information

AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION

AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION You should understand the definition of reaction rate, as well as how rates might be measured in a laboratory setting. You should know the difference

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information