Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x


 Dwayne Fowler
 3 years ago
 Views:
Transcription
1 Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk was $3.29/gallon on January 1, 2010.) This is what is called an initial condition. So if we are trying to solve y 4y = 0 and we know that y = 3 if x = 0 then we can use the general solution y = Ae 4x together with the initial condition y(0) = 3 to find a single solution (i.e. we can find out what A is). y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x
2 More separation of variables: In general you might be trying to solve an equation that looks like dy dx = f(x)g(y). For example y = xy, where f(x) = x, and g(y) = y. So we get all the x s on one side and all the y s on the other side and integrate: 1 g(y) dy = f(x)dx. Of course this relies on our ability to do these integrals, and in our example we can and we have 1 y dy = xdx ln y = x2 2 + C y = /2+C ex2 = Ae x2 /2
3 Interpreting word problems: Examples of differential equations come from all over the place, from economics, biology, chemistry, business, etc. You must learn to interpret certain words in problems. Most commonly if you see the phrase A is proportional to B all that means is A = kb for some number k. Also, all differential equations will involve rates of change because that is exactly what the derivative is.
4 Investments The rate of growth of an investment is proportional to the amount in the investment at any time t. That is, da dt = ka. What is A? In this problem A represents the amount (in dollars say) of the investment and A = A(t) i.e. A is a function of time, A may increase or decrease with time (depending on the investment and in this case the rate of growth k.) What is the general solution? 1 A da = kdt ln A = kt + c A(t) = Ce kt.
5 Investments cont. We have A(t) = Ce kt represents the rate of growth of an investment. If we know that an initial investment of $1000 grew to in 10 years, what is the particular solution? Now we have to find both C and k, what do we know? Initially the investment was worth $1000 so A = 1000 at t = 0 or A(0) = This tells me C : A(0) = Ce k 0 = Ce 0 = C C = Now we know that at t = 10 we have A = , this will tell us what k is. Before we try to figure out what k is, can you tell me if k should be positive or negative?
6 Investments cont. We have A(t) = 1000e kt and we know A(10) = , we are expecting k > 0, so let s figure out what it is = 1000e k = e 10k ln = 10k k = ln = 0.12 So A(t) = 1000e 0.12t
7 Newton s Law of Cooling Newton s law of cooling states that the rate of change in the temperature T of an object is proportional to the difference between the temperature of the object (T ) and the surrounding temperature T 0. This can be expressed by the differential equation: dt dt = k(t T 0). Note that here T 0 is the ambient, or surrounding, temperature. k is the rate of cooling and t is time. Since the object is going from higher temperature to cooler temperature the rate of change will be negative, so k < 0.
8 Newton s Law of Cooling cont. A room is kept at a constant temperature of 68 F. A pie is taken out of a 350 oven and placed on the counter. If the pie has reduced in temperature to 150 in 45 minutes, when will the pie reach 80? First we must find the general solution: 1 (T T 0 ) dt = kdt. ln(t T 0 ) = kt + c T T 0 = e kt+c = Ae kt T (t) = T 0 + Ae kt
9 Newton s Law of Cooling cont. We have the general solution T (t) = T 0 + Ae kt We will measure time in hours, though we could use minutes if we wanted. The ambient temperature here is 68. We know T (0) = 350 and T (.75) = 150 this will help us find k : T (0) = 68 + Ae k 0 = 68 + A = 350 A = = 282. So now we have T (t) = e kt, and we know T (.75) = 150 so 150 = e.75k = e.75k ln =.75k k = ln = 1.65 or k = 1.65
10 Relation to slope and graphs: We can also solve a problem like this: 1 At each point (x, y) on the graph, the slope is 2x/y. 2 The graph passes through the point (1, 1). The equation to solve is dy dx = 2x/y, and the additional information we know is that y(1) = 1, in other words when x = 1, then y = 1.
11 Relation to slope and graphs cont.: dy dx = 2x/y, First separate variables, then integrate: ydy = 2xdx. y2 2 = x2 + C Writing it a little more simply we have y 2 2x 2 = C, note that we don t have to write 2C we can just use C again for a different constant. Now plug in the known values (x, y) = (1, 1) to find the exact value for C : 1 2 2(1) 2 = 1 = C y 2 2x = 0 is the curve we are trying to find.
dx x 2 1 x 3 x 1 dx x 2 Integration Review 12/12/13 Current Integration Strategies: NIKE  Just Do It! Recognize & Memorize! Manipulate 1) Strategy:
AP Calculus Mathematician: Integration Review 1/1/13 Current Integration Strategies: NIKE  Just Do It! Recognize & Memorize! Manipulate 1) Strategy: 3 x 1 ) Strategy: 1 x 3 x 1 x 3) Strategy: 3 x 4 4)
More informationMath 115 HW #8 Solutions
Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y
More informationDifferential Equations
40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal
More informationMath 20D Midterm Exam Practice Problems Solutions
Math 20D Midterm Exam Practice Problems Solutions 1. A tank contains G gallons of fresh water. A solution with a concentration of m lb of salt per gallon is pumped into the tank at a rate of r gallons
More information2.4 Applications (Exponential Growth/Decay)
26 CHAPTER 2. METHODS FOR SOLVING FIRST ORDER ODES 2.4 Applications (Exponential Growth/Decay) Many things grow (decay) as fast as exponential functions. In general, if a quantity grows or decays at a
More informationMath Lecture 4: Separable Equations and Applications
Math 2280  Lecture 4: Separable Equations and Applications Dylan Zwick Fall 2013 For the last two lectures we ve studied firstorder differential equations in standard form: y = f(x, y). We learned how
More information3.6. Derivatives. Exponential Growth and Decay. Exponential Growth and Decay. Exponential Growth and Decay. Exponential Growth and Decay
Derivatives 3 3.6 Exponential Growth and Decay Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. In many natural phenomena, quantities grow or decay at a
More informationMATH 215/255 Fall 2014 Assignment 2
MATH 215/255 Fall 214 Assignment 2 1.4, Exact equations ([Braun s Section 1.9]), 1.6 Solutions to selected exercises can be found in [Lebl], starting from page 33. 1.4.8: Solve 1 x 2 + 1 y + xy = 3 with
More informationExponential Growth and Decay
Exponential Growth and Decay Recall that if y = f(t), then f (t) = dy dt y with respect to t. is called the rate of change of Another very important measure of rate of change is the relative rate of change
More informationMath 308 Week 1 Solutions
Math 308 Week 1 Solutions Here are solutions to the evennumbered suggested problems. The answers to the oddnumbered problems are in the back of your textbook, and the solutions are in the Solution Manual,
More informationDifferential Equations
Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx
More informationWS 7.5: Partial Fractions & Logistic. Name Date Period
Name Date Period Worksheet 7.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice 1. The spread of a disease through a community can be modeled with the logistic
More information1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3.
22M:034 Engineer Math IV: Differential Equations Midterm Exam 1 October 2, 2013 Name Section number 1. [20 pts] Find an integrating factor and solve the equation 3 = e 2t. Then solve the initial value
More informationII. Sketch the given region R and then find the area. 2. R is the region bounded by the curves y = 0, y = x 2 and x = 3.
Math 34 April I. It is estimated that t days from now a farmer s crop will be increasing at the rate of.5t +.4t + bushels per day. By how much will the value of the crop increase during the next 5 days
More information3.2: Exponential Growth and Decay and 3.3: Separable Differential Equations
3.2: Exponential Growth and Decay and 3.3: Separable Differential Equations Mathematics 3 Lecture 17 Dartmouth College February 10, 2010 Exponential Growth & Decay Derivatives measure (instantaneous) rates
More informationf(x) = lim 2) = 2 2 = 0 (c) Provide a rough sketch of f(x). Be sure to include your scale, intercepts and label your axis.
Math 16  Final Exam Solutions  Fall 211  Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount
More information9.1 Observations about the exponential function. In a previous chapter we made an observation about a special property of the function.
Chapter 9 Exponential Growth and Decay: Differential Equations 9.1 Observations about the exponential function In a previous chapter we made an observation about a special property of the function namely,
More informationHomework #2 Solutions
MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution
More informationThe Derivative and the Tangent Line Problem. The Tangent Line Problem
The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity
More informationECG590I Asset Pricing. Lecture 2: Present Value 1
ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide
More informationC.4 Applications of Differential Equations
APPENDIX C Differential Equations A39 C.4 Applications of Differential Equations Use differential equations to model and solve reallife problems. EXAMPLE 1 Modeling Advertising Awareness The new cereal
More informationSolutions to Exercises on Newton s Law of Cooling S. F. Ellermeyer
Solutions to Exercises on Newton s Law of Cooling S F Ellermeyer A thermometer is taken from a room that is 0 C to the outdoors where the temperature is C After one minute, the thermometer reads C Use
More informationNonhomogeneous Linear Equations
Nonhomogeneous Linear Equations In this section we learn how to solve secondorder nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where
More informationTechniques of Differentiation Selected Problems. Matthew Staley
Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4
More information1. (from Stewart, page 586) Solve the initial value problem.
. (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationMath 220 October 11 I. Exponential growth and decay A. The halflife of fakeium20 is 40 years. Suppose we have a 100mg sample.
Math 220 October 11 I. Exponential growth and decay A. The halflife of fakeium20 is 40 years. Suppose we have a 100mg sample. 1. Find the mass that remains after t years. 2. How much of the sample remains
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationMath 113 HW #7 Solutions
Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e
More informationSection 1. Movement. So if we have a function x = f(t) that represents distance as a function of time, then dx is
Worksheet 4.4 Applications of Integration Section 1 Movement Recall that the derivative of a function tells us about its slope. What does the slope represent? It is the change in one variable with respect
More informationMath 267  Practice exam 2  solutions
C Roettger, Fall 13 Math 267  Practice exam 2  solutions Problem 1 A solution of 10% perchlorate in water flows at a rate of 8 L/min into a tank holding 200L pure water. The solution is kept well stirred
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions
Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
More informationBlock 7: Applications of Differentiation Contents
Block 7: Applications of Differentiation Contents 7.1 Optimisation... 2 7.2 Velocity and Acceleration... 4 7.3 Differential Equations... 6 7.4 First Order Differential Equations... 7 7.5 Second Order Differential
More informationStudent Number: SOLUTION Page 1 of 14
Student Number: SOLUTION Page 1 of 14 QUEEN S UNIVERSITY FACULTY OF ARTS AND SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH126 December Examination December 14th, 2009 Instructors: P. Li (A), A.
More information1. AREA BETWEEN the CURVES
1 The area between two curves The Volume of the Solid of revolution (by slicing) 1. AREA BETWEEN the CURVES da = {( outer function ) ( inner )} dx function b b A = da = [y 1 (x) y (x)]dx a a d d A = da
More informationSolutions to Study Guide for Test 3. Part 1 No Study Guide, No Calculator
Solutions to Study Guide for Test 3 Part 1 No Study Guide, No Calculator 1. State the definition of the derivative of a function. Solution: The derivative of a function f with respect to x is the function
More informationSolutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
More informationMath 432 HW 2.5 Solutions
Math 432 HW 2.5 Solutions Assigned: 110, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/
More informationDifferential Equations
Differential Equations 1. Mr. Moneybags decides to open a bank account with an opening deposit of $1000. Suppose that the account earns a nominal annual interest rate of 6%, compounded annually. 1) Assuming
More informationCalculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
More informationThis makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5
1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,
More informationRAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
More informationSolutions to Homework 5
Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular
More informationMATHEMATICS Extended Part Module 1 (Calculus and Statistics) (Sample Paper)
HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION MATHEMATICS Extended Part Module 1 (Calculus and Statistics) (Sample Paper) Time allowed: hours 30 minutes
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More information7. Continuously Varying Interest Rates
7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be
More informationDon't Forget the Differential Equations: Finishing 2005 BC4
connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationMidterm I Review:
Midterm I Review: 1.1 .1 Monday, October 17, 016 1 1.11. Functions Definition 1.0.1. Functions A function is like a machine. There is an input (x) and an output (f(x)), where the output is designated
More informationName Calculus AP Chapter 7 Outline M. C.
Name Calculus AP Chapter 7 Outline M. C. A. AREA UNDER A CURVE: a. If y = f (x) is continuous and nonnegative on [a, b], then the area under the curve of f from a to b is: A = f (x) dx b. If y = f (x)
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More informationFeed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately?
Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Abstract: The purpose of this project is to apply Newton s Law of Cooling to study the rate
More informationArea Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by
MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More information1 Introduction to Differential Equations
1 Introduction to Differential Equations A differential equation is an equation that involves the derivative of some unknown function. For example, consider the equation f (x) = 4x 3. (1) This equation
More informationHomework #1 Solutions
MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From
More informationx + 5 x 2 + x 2 dx Answer: ln x ln x 1 + c
. Evaluate the given integral (a) 3xe x2 dx 3 2 e x2 + c (b) 3 x ln xdx 2x 3/2 ln x 4 3 x3/2 + c (c) x + 5 x 2 + x 2 dx ln x + 2 + 2 ln x + c (d) x sin (πx) dx x π cos (πx) + sin (πx) + c π2 (e) 3x ( +
More information1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
More informationMath 2280  Assignment 6
Math 2280  Assignment 6 Dylan Zwick Spring 2014 Section 3.81, 3, 5, 8, 13 Section 4.11, 2, 13, 15, 22 Section 4.21, 10, 19, 28 1 Section 3.8  Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
More information14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationMathematics (Project Maths Phase 3)
2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300
More informationPASS MOCK EXAM FOR PRACTICE ONLY
PASS MOCK EXAM FOR PRACTICE ONLY Course: MATH 4 ABCDEF Facilitator: Stephen Kimbell December 6 th 25  (3:6:) and (8:2:) in ME 338 (Mackenzie Building 3 rd floor 3 rd block) It is most beneficial to
More informationDefinition: Let S be a solid with crosssectional area A(x) perpendicular to the xaxis at each point x [a, b]. The volume of S is V = A(x)dx.
Section 7.: Volume Let S be a solid and suppose that the area of the crosssection of S in the plane P x perpendicular to the xaxis passing through x is A(x) for a x b. Consider slicing the solid into
More informationSection 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.
Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More informationReview for Exam 2 (The following problems are all from old exams)
Review for Exam 2 (The following problems are all from old exams). Write down, but do not evaluate, an integral which represents the volume when y = e x, x, is rotated about the y axis. Soln: Divide the
More informationChapter 4 Expected Values
Chapter 4 Expected Values 4. The Expected Value of a Random Variables Definition. Let X be a random variable having a pdf f(x). Also, suppose the the following conditions are satisfied: x f(x) converges
More informationGRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry  yaxis,
More informationAP Calculus AB 2012 Scoring Guidelines
AP Calculus AB Scoring Guidelines The College Board The College Board is a missiondriven notforprofit organization that connects students to college success and opportunity. Founded in 9, the College
More informationFirst Order NonLinear Equations
First Order NonLinear Equations We will briefly consider nonlinear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve
More informationThe composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.
30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).
More informationContents. 1 FirstOrder Dierential Equations. 1.1 Introduction and Terminology
Dierential Equations (part 1) : FirstOrder Dierential Equations (by Evan Dummit, 2016, v. 2.10) Contents 1 FirstOrder Dierential Equations 1 1.1 Introduction and Terminology........................................
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions
Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More informationNumerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
More informationProblem Set 3 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationLesson 13. Solving Definite Integrals
Lesson Solving Definite Integrals How to find antiderivatives We have three methods:. Basic formulas. Algebraic simplification. Substitution Basic Formulas If f(x) is then an antiderivative is x n k cos(kx)
More informationClass Notes, Math 110 Winter 2008, Sec 2 / Whitehead 1/18 Sections
20080225 Class Notes, Math 110 Winter 2008, Sec 2 / Whitehead 1/18 Review of Simple Interest You borrow $100 at an annual interest rate of 5%. How much would you owe at the end of 1 year Symbol/equation
More informationAverage rate of change of y = f(x) with respect to x as x changes from a to a + h:
L151 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
More informationThe graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0
. Compute the area between the curves x y 4y and x y y. Let f(y) y 4y y(y 4). f(y) when y or y 4. Let g(y) y y y( y). g(y) when y or y. x 3 y? The graphs of f and g intersect at (, ) and one other point.
More information1. Firstorder Ordinary Differential Equations
Advanced Engineering Mathematics 1. Firstorder ODEs 1 1. Firstorder Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
More informationPROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS
PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,
More informationCatholic Schools Trial Examination 2004 Mathematics
0 Catholic Trial HSC Examination Mathematics Page Catholic Schools Trial Examination 0 Mathematics a If x 5 = 5000, find x correct to significant figures. b Express 0. + 0.. in the form b a, where a and
More informationMark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
More informationvector calculus 2 Learning outcomes
29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions
More informationWork. Example. If a block is pushed by a constant force of 200 lb. Through a distance of 20 ft., then the total work done is 4000 ftlbs. 20 ft.
Work Definition. If a constant force F is exerted on an object, and as a result the object moves a distance d in the direction of the force, then the work done is Fd. Example. If a block is pushed by a
More informationMultivariable Calculus Practice Midterm 2 Solutions Prof. Fedorchuk
Multivariable Calculus Practice Midterm Solutions Prof. Fedorchuk. ( points) Let f(x, y, z) xz + e y x. a. (4 pts) Compute the gradient f. b. ( pts) Find the directional derivative D,, f(,, ). c. ( pts)
More information7.5 Exponential Growth and Decay
7.5 Exponential Growth and Decay Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.5 Exponential Growth and Decay Fall 2010 1 / 11 Outline 1 The general model 2 Examples 3 Doublingtime and halflife
More informationChapter (AB/BC, noncalculator) (a) Write an equation of the line tangent to the graph of f at x 2.
Chapter 1. (AB/BC, noncalculator) Let f( x) x 3 4. (a) Write an equation of the line tangent to the graph of f at x. (b) Find the values of x for which the graph of f has a horizontal tangent. (c) Find
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationMATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1
MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on
More informationReview Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
More informationHSC Mathematics  Extension 1. Workshop E4
HSC Mathematics  Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong
More informationAP Calculus AB 2009 Scoring Guidelines
AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded in 19,
More informationAP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION
AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION You should understand the definition of reaction rate, as well as how rates might be measured in a laboratory setting. You should know the difference
More informationMath 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)
Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course
More information