Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x

Size: px
Start display at page:

Download "Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x"

Transcription

1 Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk was $3.29/gallon on January 1, 2010.) This is what is called an initial condition. So if we are trying to solve y 4y = 0 and we know that y = 3 if x = 0 then we can use the general solution y = Ae 4x together with the initial condition y(0) = 3 to find a single solution (i.e. we can find out what A is). y = Ae 4x and y = 3 at x = 0 3 = Ae = A y = 3e 4x

2 More separation of variables: In general you might be trying to solve an equation that looks like dy dx = f(x)g(y). For example y = xy, where f(x) = x, and g(y) = y. So we get all the x s on one side and all the y s on the other side and integrate: 1 g(y) dy = f(x)dx. Of course this relies on our ability to do these integrals, and in our example we can and we have 1 y dy = xdx ln y = x2 2 + C y = /2+C ex2 = Ae x2 /2

3 Interpreting word problems: Examples of differential equations come from all over the place, from economics, biology, chemistry, business, etc. You must learn to interpret certain words in problems. Most commonly if you see the phrase A is proportional to B all that means is A = kb for some number k. Also, all differential equations will involve rates of change because that is exactly what the derivative is.

4 Investments The rate of growth of an investment is proportional to the amount in the investment at any time t. That is, da dt = ka. What is A? In this problem A represents the amount (in dollars say) of the investment and A = A(t) i.e. A is a function of time, A may increase or decrease with time (depending on the investment and in this case the rate of growth k.) What is the general solution? 1 A da = kdt ln A = kt + c A(t) = Ce kt.

5 Investments cont. We have A(t) = Ce kt represents the rate of growth of an investment. If we know that an initial investment of $1000 grew to in 10 years, what is the particular solution? Now we have to find both C and k, what do we know? Initially the investment was worth $1000 so A = 1000 at t = 0 or A(0) = This tells me C : A(0) = Ce k 0 = Ce 0 = C C = Now we know that at t = 10 we have A = , this will tell us what k is. Before we try to figure out what k is, can you tell me if k should be positive or negative?

6 Investments cont. We have A(t) = 1000e kt and we know A(10) = , we are expecting k > 0, so let s figure out what it is = 1000e k = e 10k ln = 10k k = ln = 0.12 So A(t) = 1000e 0.12t

7 Newton s Law of Cooling Newton s law of cooling states that the rate of change in the temperature T of an object is proportional to the difference between the temperature of the object (T ) and the surrounding temperature T 0. This can be expressed by the differential equation: dt dt = k(t T 0). Note that here T 0 is the ambient, or surrounding, temperature. k is the rate of cooling and t is time. Since the object is going from higher temperature to cooler temperature the rate of change will be negative, so k < 0.

8 Newton s Law of Cooling cont. A room is kept at a constant temperature of 68 F. A pie is taken out of a 350 oven and placed on the counter. If the pie has reduced in temperature to 150 in 45 minutes, when will the pie reach 80? First we must find the general solution: 1 (T T 0 ) dt = kdt. ln(t T 0 ) = kt + c T T 0 = e kt+c = Ae kt T (t) = T 0 + Ae kt

9 Newton s Law of Cooling cont. We have the general solution T (t) = T 0 + Ae kt We will measure time in hours, though we could use minutes if we wanted. The ambient temperature here is 68. We know T (0) = 350 and T (.75) = 150 this will help us find k : T (0) = 68 + Ae k 0 = 68 + A = 350 A = = 282. So now we have T (t) = e kt, and we know T (.75) = 150 so 150 = e.75k = e.75k ln =.75k k = ln = 1.65 or k = 1.65

10 Relation to slope and graphs: We can also solve a problem like this: 1 At each point (x, y) on the graph, the slope is 2x/y. 2 The graph passes through the point (1, 1). The equation to solve is dy dx = 2x/y, and the additional information we know is that y(1) = 1, in other words when x = 1, then y = 1.

11 Relation to slope and graphs cont.: dy dx = 2x/y, First separate variables, then integrate: ydy = 2xdx. y2 2 = x2 + C Writing it a little more simply we have y 2 2x 2 = C, note that we don t have to write 2C we can just use C again for a different constant. Now plug in the known values (x, y) = (1, 1) to find the exact value for C : 1 2 2(1) 2 = 1 = C y 2 2x = 0 is the curve we are trying to find.

Math 115 HW #8 Solutions

Math 115 HW #8 Solutions Math 115 HW #8 Solutions 1 The function with the given graph is a solution of one of the following differential equations Decide which is the correct equation and justify your answer a) y = 1 + xy b) y

More information

Differential Equations

Differential Equations 40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal

More information

1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3.

1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3. 22M:034 Engineer Math IV: Differential Equations Midterm Exam 1 October 2, 2013 Name Section number 1. [20 pts] Find an integrating factor and solve the equation 3 = e 2t. Then solve the initial value

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

C.4 Applications of Differential Equations

C.4 Applications of Differential Equations APPENDIX C Differential Equations A39 C.4 Applications of Differential Equations Use differential equations to model and solve real-life problems. EXAMPLE 1 Modeling Advertising Awareness The new cereal

More information

1. (from Stewart, page 586) Solve the initial value problem.

1. (from Stewart, page 586) Solve the initial value problem. . (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 3 Solutions Math 37/48, Spring 28 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 3 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Math 267 - Practice exam 2 - solutions

Math 267 - Practice exam 2 - solutions C Roettger, Fall 13 Math 267 - Practice exam 2 - solutions Problem 1 A solution of 10% perchlorate in water flows at a rate of 8 L/min into a tank holding 200L pure water. The solution is kept well stirred

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Math 432 HW 2.5 Solutions

Math 432 HW 2.5 Solutions Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

More information

Don't Forget the Differential Equations: Finishing 2005 BC4

Don't Forget the Differential Equations: Finishing 2005 BC4 connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately?

Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Abstract: The purpose of this project is to apply Newton s Law of Cooling to study the rate

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) = Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

More information

Mathematics (Project Maths Phase 3)

Mathematics (Project Maths Phase 3) 2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300

More information

AP Calculus AB 2012 Scoring Guidelines

AP Calculus AB 2012 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 9, the College

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

First Order Non-Linear Equations

First Order Non-Linear Equations First Order Non-Linear Equations We will briefly consider non-linear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

vector calculus 2 Learning outcomes

vector calculus 2 Learning outcomes 29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

More information

Work. Example. If a block is pushed by a constant force of 200 lb. Through a distance of 20 ft., then the total work done is 4000 ft-lbs. 20 ft.

Work. Example. If a block is pushed by a constant force of 200 lb. Through a distance of 20 ft., then the total work done is 4000 ft-lbs. 20 ft. Work Definition. If a constant force F is exerted on an object, and as a result the object moves a distance d in the direction of the force, then the work done is Fd. Example. If a block is pushed by a

More information

AP Calculus AB 2009 Scoring Guidelines

AP Calculus AB 2009 Scoring Guidelines AP Calculus AB 9 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 19,

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1 MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

More information

Multiplicity. Chapter 6

Multiplicity. Chapter 6 Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

More information

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1. Workshop E4 HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

AP CALCULUS AB 2009 SCORING GUIDELINES

AP CALCULUS AB 2009 SCORING GUIDELINES AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in

More information

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2 DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

More information

AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION

AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION You should understand the definition of reaction rate, as well as how rates might be measured in a laboratory setting. You should know the difference

More information

Solving DEs by Separation of Variables.

Solving DEs by Separation of Variables. Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).

More information

AP Calculus BC 2012 Free-Response Questions

AP Calculus BC 2012 Free-Response Questions AP Calculus BC 0 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing.

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing. The Calculus BC Exam AP Calculus BC Exam SECTION I: Multiple-Choice Questions At a Glance Total Time 1 hour, 45 minutes Number of Questions 45 Percent of Total Grade 50% Writing Instrument Pencil required

More information

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 1 Solutions Math 70, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

More information

Homework #7 Solutions

Homework #7 Solutions Homework #7 Solutions Problems Bolded problems are worth 2 points. Section 3.4: 2, 6, 14, 16, 24, 36, 38, 42 Chapter 3 Review (pp. 159 162): 24, 34, 36, 54, 66 Etra Problem 3.4.2. If f () = 2 ( 3 + 5),

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

AP Calculus BC 2012 Scoring Guidelines

AP Calculus BC 2012 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 9, the College

More information

Heat equation examples

Heat equation examples Heat equation examples The Heat equation is discussed in depth in http://tutorial.math.lamar.edu/classes/de/intropde.aspx, starting on page 6. You may recall Newton s Law of Cooling from Calculus. Just

More information

AP CALCULUS AB 2009 SCORING GUIDELINES

AP CALCULUS AB 2009 SCORING GUIDELINES AP CALCULUS AB 2009 SCORING GUIDELINES Question 3 Mighty Cable Company manufactures cable that sells for $120 per meter. For a cable of fixed length, the cost of producing a portion of the cable varies

More information

Notes on Diffy Qs. Differential Equations for Engineers

Notes on Diffy Qs. Differential Equations for Engineers Notes on Diffy Qs Differential Equations for Engineers by Jiří Lebl October, 4 Typeset in L A TEX. Copyright c 8 4 Jiří Lebl This work is licensed under the Creative Commons Attribution-Noncommercial-Share

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z). Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

SECOND ORDER (inhomogeneous)

SECOND ORDER (inhomogeneous) Differential Equations SECOND ORDER (inhomogeneous) Graham S McDonald A Tutorial Module for learning to solve 2nd order (inhomogeneous) differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

Cooling and Euler's Method

Cooling and Euler's Method Lesson 2: Cooling and Euler's Method 2.1 Applied Problem. Heat transfer in a mass is very important for a number of objects such as cooling of electronic parts or the fabrication of large beams. Although

More information

Student name: Earlham College. Fall 2011 December 15, 2011

Student name: Earlham College. Fall 2011 December 15, 2011 Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

Lab 17: Consumer and Producer Surplus

Lab 17: Consumer and Producer Surplus Lab 17: Consumer and Producer Surplus Who benefits from rent controls? Who loses with price controls? How do taxes and subsidies affect the economy? Some of these questions can be analyzed using the concepts

More information

AP Calculus AB. Practice Exam. Advanced Placement Program

AP Calculus AB. Practice Exam. Advanced Placement Program Advanced Placement Program AP Calculus AB Practice Exam The questions contained in this AP Calculus AB Practice Exam are written to the content specifications of AP Exams for this subject. Taking this

More information

Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.

Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson. Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

Visualizing Differential Equations Slope Fields. by Lin McMullin

Visualizing Differential Equations Slope Fields. by Lin McMullin Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should

More information

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3

cos Newington College HSC Mathematics Ext 1 Trial Examination 2011 QUESTION ONE (12 Marks) (b) Find the exact value of if. 2 . 3 1 QUESTION ONE (12 Marks) Marks (a) Find tan x e 1 2 cos dx x (b) Find the exact value of if. 2 (c) Solve 5 3 2x 1. 3 (d) If are the roots of the equation 2 find the value of. (e) Use the substitution

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Pre-Session Review. Part 2: Mathematics of Finance

Pre-Session Review. Part 2: Mathematics of Finance Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions

More information

Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere

Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x

More information

MAT 274 HW 2 Solutions c Bin Cheng. Due 11:59pm, W 9/07, 2011. 80 Points

MAT 274 HW 2 Solutions c Bin Cheng. Due 11:59pm, W 9/07, 2011. 80 Points MAT 274 HW 2 Solutions Due 11:59pm, W 9/07, 2011. 80 oints 1. (30 ) The last two problems of Webwork Set 03 Modeling. Show all the steps and, also, indicate the equilibrium solutions for each problem.

More information

AP Calculus AB 2005 Scoring Guidelines Form B

AP Calculus AB 2005 Scoring Guidelines Form B AP Calculus AB 5 coring Guidelines Form B The College Board: Connecting tudents to College uccess The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

More information

Experimental Uncertainty and Probability

Experimental Uncertainty and Probability 02/04/07 PHY310: Statistical Data Analysis 1 PHY310: Lecture 03 Experimental Uncertainty and Probability Road Map The meaning of experimental uncertainty The fundamental concepts of probability 02/04/07

More information

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by

More information

HW 3 Due Sep 12, Wed

HW 3 Due Sep 12, Wed HW 3 Due Sep, Wed 1. Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of 1 g/l. To prepare for the next experiment,

More information

Advanced Placement Calculus with the TI-89

Advanced Placement Calculus with the TI-89 Advanced Placement Calculus with the TI-89 Ray Barton Olympus High School Salt Lake City, UT John Diehl Hinsdale Central High School Hinsdale, IL Important notice regarding book materials Texas Instruments

More information

5 Double Integrals over Rectangular Regions

5 Double Integrals over Rectangular Regions Chapter 7 Section 5 Doule Integrals over Rectangular Regions 569 5 Doule Integrals over Rectangular Regions In Prolems 5 through 53, use the method of Lagrange multipliers to find the indicated maximum

More information

In this section, we will consider techniques for solving problems of this type.

In this section, we will consider techniques for solving problems of this type. Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

More information

AP Calculus AB 2011 Scoring Guidelines

AP Calculus AB 2011 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,

More information

COURSE 1 REVISED SAMPLE EXAM

COURSE 1 REVISED SAMPLE EXAM COURSE REVISED SAMPLE EXAM A table of values for the normal distribution will be provided with the Course Exam. Revised August 999 Problem # A marketing survey indicates that 60% of the population owns

More information

2.2 Derivative as a Function

2.2 Derivative as a Function 2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

More information

Consumer Theory. The consumer s problem

Consumer Theory. The consumer s problem Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).

More information