ECG590I Asset Pricing. Lecture 2: Present Value 1


 Maurice Sutton
 1 years ago
 Views:
Transcription
1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide between paying 1$ now or 1$ one year from now, then you would rather pay one year from now. This section is about computing the value today of something in the future.
2 ECG59I Asset Pricing. Lecture 2: Present Value Definition Present value: the value today of an amount to be paid at a specific date in the future. 2.2 Simple case One payment of face amount (principal) X, one period in the future. First, suppose you had V now and could save it at interest rate R. In one period, you would have X = V (1 + R). Rearrange terms to get V = X 1+R. V is the present value of X. Two periods in the future: X = V (1 + R 1 )(1 + R 2 ) = V 2 (1 + R i ) i=1
3 ECG59I Asset Pricing. Lecture 2: Present Value 3 from which we get: V = X [ 2 1 (1 + R i )] = X i=1 [ 2 ] (1 + R i ) 1 i=1 Many periods: V = X [ I ] (1 + R i ) 1 i=1 Special case when R 1 = R 2 = = R I = R: V = X (1 + R) I
4 ECG59I Asset Pricing. Lecture 2: Present Value More complicated cases interim payments V = C + C R 1 + C 2 (1 + R 1 )(1 + R 2 ) + = C I + (1 + R 1 )(1 + R 2 ) (1 + R I ) X + (1 + R 1 )(1 + R 2 ) (1 + R I ) [ ] I i I (1 + R j ) 1 + X (1 + R j ) 1 C i i= j= i= provided that we define R.
5 ECG59I Asset Pricing. Lecture 2: Present Value Continuous time Compounding: 1 + R (1 + R)(1 + R) = (1 + R )2 1 + R (1 + R n )n lim n (1 + R n )n e R (1 + R) t [(1 + R n )n ] t = (1 + R n )nt lim n (1 + R n )nt = e Rt Present value of X to be paid at time T : V = Xe RT Continuoustime vs. discretetime interest rates: Once per annum: 1 + R = e R n times per annum: (1 + R n )n = e R
6 ECG59I Asset Pricing. Lecture 2: Present Value 6 Evaluating a continuous, constant, cash flow, R constant: V = = X = X = X Xe Rt dt e Rt dt [ 1 ] T R e Rt [ 1 R e RT + 1 ] R = X R (1 e RT ) Note that V X R as T : perpetuity.
7 ECG59I Asset Pricing. Lecture 2: Present Value 7 Timevarying X: V = X t e Rt dt. Can t say more until the function X t is specified. For example, if X t = Ae Bt, then V = = = T o Ae Bt e Rt dt Ae (R B)t dt A R B (1 e (R B)T ) A if R > B R B if R B
8 ECG59I Asset Pricing. Lecture 2: Present Value 8 Timevarying R, constant X: V = (explanations follows). General case: V = (explanation follows). Xe R t R sds dt X t e R t R sds dt
9 ECG59I Asset Pricing. Lecture 2: Present Value Deriving (and understanding) continuous discounting Integrating factor We know how to compute derivatives. For example, d exp(x 7 ) dx = 7x 6 exp(x 7 ) We then know that, up to an integrating constant, 7x 6 exp(x 7 )dx = exp(x 7 ) The integral exp(x 7 )dx might be hard to compute, but it would be much easier if we could somehow multiply exp(x 7 ) by 7x 6. In this example, 7x 6 is the integrating factor. More on this in a few slides.
10 ECG59I Asset Pricing. Lecture 2: Present Value Continuous discounting Earnings on an initial stock of wealth dv t dt = RV t i.e., continuous compounding at rate R. To help you see this: R = dv t/dt V t V t+ǫ V t V t
11 ECG59I Asset Pricing. Lecture 2: Present Value 11 What is V at time T? To find out we solve the differential equation: dv t dt RV t =. The integrating factor is e Rt (how do we know that that s the integrating factor? We just know, or we wait a few more slides): dv t dt e Rt V t Re Rt = d dt (V te Rt ) =. So we get = [ ] d dt (V te Rt ) dt V T = [V t e Rt ] T = V T e RT V = V e RT
12 ECG59I Asset Pricing. Lecture 2: Present Value 12 Now suppose there also is a timevarying income or dv t dt = RV t + X t dv t dt RV t = X t which is just a forced (or nonhomogeneous) linear ODE with the same integrating factor: dv t dt e Rt V t Re Rt d dt = X t e Rt ( Vt e Rt) = X t e Rt.
13 ECG59I Asset Pricing. Lecture 2: Present Value 13 So that we have [ d dt V T e RT V = ( Vt e Rt)] dt = V T = V e RT + e RT X t e Rt dt X t e Rt dt X t e Rt dt.
14 ECG59I Asset Pricing. Lecture 2: Present Value 14 Note that if V =, we have V T = e RT = X t e Rt dt X t e R(t T) dt which is the future (time T) value of the cash flow X t. Equivalently, V T e RT = is the present value of the cash flow X t. X t e Rt dt
15 ECG59I Asset Pricing. Lecture 2: Present Value 15 Finally, suppose R is time varying: dv t dt = R tv t + X t dv t dt R tv t = X t. The integrating factor is e R t R sds so that we can write or dv R t t dt e Rsds V t R t e R t Rsds = X t e R t R sds d dt (V t e R ) t R sds = X t e R t Rsds.
16 ECG59I Asset Pricing. Lecture 2: Present Value 16 So that [ d dt (V t e R t R sds) ] dt = [V t e R ] t T R sds = V T e R T R sds V = X t e R t R sds dt X t e R t R sds dt X t e R t R sds dt. The RHS is the present value of {X t } when R varies over time.
17 ECG59I Asset Pricing. Lecture 2: Present Value Ordinary Differential Equation (ODE) and finding the integrating factor How do we know what the integrating factor is? Once you re familiar with the topic, you tend to just know what it is. But it does not mean that there are no formal ways to find it. The remaining slides give a general solution for the integrating factor for a specific class of ODE. Don t get lost in the details. This course is not about solving ODEs
18 ECG59I Asset Pricing. Lecture 2: Present Value 18 Consider a firstorder firstdegree ODE, which has the form which can be written as dy dx = F(x, y) M(x, y)dx + N(x, y)dy = dy dx = M(x, y) N(x, y) If this equation has a unique solution, it can be written as U(x, y) = c. This is a general solution (allow implicit functions). If we take the differential on both sides du = U U dx + x y dy =
19 ECG59I Asset Pricing. Lecture 2: Present Value 19 Which implies dy dx = U/ x U/ y So that U/ x U/ y = M N Or U/ x M = U/ y N Denote these ratios by µ, U x = µm and U y = µn
20 ECG59I Asset Pricing. Lecture 2: Present Value 2 Next, substitute back into the equation for du: U/ x M du = µmdx + µndy = µ (Mdx + Ndy) = U/ y Mdx + N Ndy = du = U U dx + x y dy = Conclusion 1: multiplying the differential equation M(x, y)dx + N(x, y)dy = by µ give us an exact differential equation. We call µ an integrating factor.
21 ECG59I Asset Pricing. Lecture 2: Present Value 21 Before being able to say what µ is, we need an additional result: If the differential equation M dx + N dy = is exact, then by definition, there is a function U(x, y) such that But we also have that Mdx + Ndy = du du = U U dx + x y dy Therefore, U/ x = M and U/ y = N.
22 ECG59I Asset Pricing. Lecture 2: Present Value 22 For a sufficiently smooth function U, M y = 2 U y x = 2 U x y = N x Thus, M/ y = N/ x if the differential equation is exact.
23 ECG59I Asset Pricing. Lecture 2: Present Value 23 We are ready to find µ, i.e. the integrating factor If the differential equation becomes exact after being multiplied by µ, i.e. µmdx + µndy, then we have (µm) y = (µn) x Next, suppose that µ is a function of x only (with a symmetric result if it is a function of y alone). In this case µ M y dµ µ = µ N x + N dµ dx = 1 ( M N y N ) dx x = f(x)dx by hypothesis µ = e R f(x)dx
24 ECG59I Asset Pricing. Lecture 2: Present Value 24 Conclusion 2: If M(x, y)dx + N(x, y)dy = and if ( 1 M N y N ) = f(x), x then e R f(x)dx is the integrating function.
25 ECG59I Asset Pricing. Lecture 2: Present Value 25 For the first example, we can find the integrating factor using these results. Remember we had Which can be written dv t dt = RV t RV t dt + dv t = We see that, remembering that we want to get V t (take y = V t ) x = t, y = V t, M(x, y) = RV t, N(x, y) = 1 So we get 1 N ( M y N ) x = 1 ( R ) = R 1 Hence, µ = e R Rdt = e Rt.
26 ECG59I Asset Pricing. Lecture 2: Present Value 26 If you want more, have a look at the fine notes on ordinary differential and difference equations written by Professor John Seater. You ll find them on Professor Seater s website: jjseater Or on the website of this course.
Finding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationPoisson processes (and mixture distributions)
Poisson processes (and mixture distributions) James W. Daniel Austin Actuarial Seminars www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction in whole or in part without
More informationProblem Set II: budget set, convexity
Problem Set II: budget set, convexity Paolo Crosetto paolo.crosetto@unimi.it Exercises will be solved in class on January 25th, 2010 Recap: Walrasian Budget set, definition Definition (Walrasian budget
More informationExcel s Business Tools: WhatIf Analysis
Excel s Business Tools: Introduction is an important aspect of planning and managing any business. Understanding the implications of changes in the factors that influence your business is crucial when
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationWhich Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios Riaz Ahmad Course Director for CQF, 7city, London Paul Wilmott Wilmott Associates, London Abstract:
More informationUsing Credit to Your Advantage.
Using Credit to Your Advantage. Topic Overview. The Using Credit To Your Advantage topic will provide participants with all the basic information they need to understand credit what it is and how to make
More informationWorking While Disabled How We Can Help
Working While Disabled How We Can Help 2015 Contacting Social Security Visit our website At our website, www.socialsecurity.gov, you can: Create a my Social Security account to review your Social Security
More informationBottomup sales forecasting for Prerevenue Startups
Sales & Revenue Forecasting Series Bottomup sales forecasting for Prerevenue Startups MaRS Discovery District, May 2011 See Terms and Conditions MaRS 2 Introduction What to expect This workbook guide
More informationDiscreteTime Signals and Systems
2 DiscreteTime Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
More informationVariable Annuities. Information is an investor s best tool. What You Should Know WHAT YOU SHOULD KNOW 1
Variable Annuities What You Should Know Information is an investor s best tool WHAT YOU SHOULD KNOW 1 2 VARIABLE ANNUITIES Variable Annuities Variable annuities have become a part of the retirement and
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More informationAdvanced Fixed Income Callable Bonds Professor Anh Le
1 What are callable bonds? When you take out a fixed rate mortgage to buy a house, you usually have the option of pre paying the mortgage. The common term to use is to refinance. And people would refinance
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationCritical analysis. Be more critical! More analysis needed! That s what my tutors say about my essays. I m not really sure what they mean.
Critical analysis Be more critical! More analysis needed! That s what my tutors say about my essays. I m not really sure what they mean. I thought I had written a really good assignment this time. I did
More informationDetailed guidance for employers
April 2015 7 Detailed guidance for employers Opting out: How to process optouts from workers who want to leave a pension scheme Publications in the series 1 2 3 3a 3b 3c 4 5 6 7 8 9 10 11 Employer duties
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationFindTheNumber. 1 FindTheNumber With Comps
FindTheNumber 1 FindTheNumber With Comps Consider the following twoperson game, which we call FindTheNumber with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationManual on CloseOut Procedures. Third Edition January 1985
Manual on CloseOut Procedures Third Edition January 1985 Manual on CloseOut Procedures Third Edition January 1985 Municipal Securities Rulemaking Board 1900 Duke Street, Suite 600 Alexandria, VA 22314
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationInvesting for the Long Run when Returns Are Predictable
THE JOURNAL OF FINANCE VOL. LV, NO. 1 FEBRUARY 2000 Investing for the Long Run when Returns Are Predictable NICHOLAS BARBERIS* ABSTRACT We examine how the evidence of predictability in asset returns affects
More informationYou can afford your mortgage now, but what if...?
You can afford your mortgage now, but what if...? The Money Advice Service is here to help you manage your money better. We provide clear, unbiased advice to help you make informed choices. We try to ensure
More informationHow Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.
How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of
More informationTable of Contents. Leaving Your Money in the TSP...3 Transferring Money Into the TSP... 3 Limitations on Leaving Your Money in the TSP...
Table of Contents Introduction... 1 Life Expectancy for a 65YearOld Person...1 Questions to Ask Before Withdrawing Your Account...2 Tailoring Your Withdrawal Decisions to Your Personal Needs...3 Leaving
More information