SecondOrder Linear Differential Equations


 Eric Singleton
 1 years ago
 Views:
Transcription
1 SecondOrder Linear Differential Equations A secondorder linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1 that equations of this type arise in the study of the motion of a spring. In Additional Topics: Applications of SecondOrder Differential Equations we will further pursue this application as well as the application to electric circuits. In this section we study the case where Gx 0, for all x, in Equation 1. Such equations are called homogeneous linear equations. Thus, the form of a secondorder linear homogeneous differential equation is 2 Px d 2 y dx 2 dy Qx dx Rxy 0 If Gx 0 for some x, Equation 1 is nonhomogeneous and is discussed in Additional Topics: Nonhomogeneous Linear Equations. Two basic facts enable us to solve homogeneous linear equations. The first of these says that if we know two solutions y 1 and y 2 of such an equation, then the linear combination y c 1 y 1 c 2 y 2 is also a solution. 3 Theorem If y 1 x and y 2 x are both solutions of the linear homogeneous equation (2) and and are any constants, then the function c 1 c 2 yx c 1 y 1 x c 2 y 2 x is also a solution of Equation 2. y 1 y 2 Proof Since and are solutions of Equation 2, we have Pxy 1 Qxy 1 Rxy 1 0 and Pxy 2 Qxy 2 Rxy 2 0 Therefore, using the basic rules for differentiation, we have Pxy Qxy Rxy Pxc 1 y 1 c 2 y 2 Qxc 1 y 1 c 2 y 2 Rxc 1 y 1 c 2 y 2 Pxc 1 y 1 c 2 y 2 Qxc 1 y 1 c 2 y 2 Rxc 1 y 1 c 2 y 2 c 1 Pxy 1 Qxy 1 Rxy 1 c 2 Pxy 2 Qxy 2 Rxy 2 c 1 0 c Thus, y c 1 y 1 c 2 y 2 is a solution of Equation 2. The other fact we need is given by the following theorem, which is proved in more advanced courses. It says that the general solution is a linear combination of two linearly independent solutions y 1 and y 2. This means that neither y 1 nor y 2 is a constant multiple of the other. For instance, the functions f x x 2 and tx 5x 2 are linearly dependent, but f x e x and tx xe x are linearly independent. 1
2 2 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS 4 Theorem If y 1 and y 2 are linearly independent solutions of Equation 2, and Px is never 0, then the general solution is given by where and are arbitrary constants. c 1 c 2 yx c 1 y 1 x c 2 y 2 x Theorem 4 is very useful because it says that if we know two particular linearly independent solutions, then we know every solution. In general, it is not easy to discover particular solutions to a secondorder linear equation. But it is always possible to do so if the coefficient functions P, Q, and R are constant functions, that is, if the differential equation has the form 5 ay by cy 0 where a, b, and c are constants and a 0. It s not hard to think of some likely candidates for particular solutions of Equation 5 if we state the equation verbally. We are looking for a function y such that a constant times its second derivative y plus another constant times y plus a third constant times y is equal to 0. We know that the exponential function y e rx (where r is a constant) has the property that its derivative is a constant multiple of itself: y re rx. Furthermore, y r 2 e rx. If we substitute these expressions into Equation 5, we see that y e rx is a solution if ar 2 e rx bre rx ce rx 0 or ar 2 br ce rx 0 But e rx is never 0. Thus, y e rx is a solution of Equation 5 if r is a root of the equation 6 ar 2 br c 0 Equation 6 is called the auxiliary equation (or characteristic equation) of the differential equation ay by cy 0. Notice that it is an algebraic equation that is obtained from the differential equation by replacing y by r 2, y by r, and y by 1. Sometimes the roots r 1 and r 2 of the auxiliary equation can be found by factoring. In other cases they are found by using the quadratic formula: 7 r 1 b sb 2 4ac 2a r 2 b sb 2 4ac 2a We distinguish three cases according to the sign of the discriminant b 2 4ac. CASE I b 2 4ac 0 In this case the roots r and of the auxiliary equation are real and distinct, so y 1 e r1x 1 r 2 and are two linearly independent solutions of Equation 5. (Note that e r2 x y 2 e r2 x is not a constant multiple of e r1x.) Therefore, by Theorem 4, we have the following fact. 8 If the roots r and of the auxiliary equation ar 2 1 r 2 br c 0 are real and unequal, then the general solution of ay by cy 0 is y c 1 e r1x c 2 e r2 x
3 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS 3 In Figure 1 the graphs of the basic solutions f x e 2x and tx e 3x of the differential equation in Example 1 are shown in black and red, respectively. Some of the other solutions, linear combinations of f and t, are shown in blue. 8 5f+g f+5g f+g f g _1 1 gf fg EXAMPLE 1 Solve the equation y y 6y 0. SOLUTION The auxiliary equation is r 2 r 6 r 2r 3 0 whose roots are r 2, 3. Therefore, by (8) the general solution of the given differential equation is y c 1 e 2x c 2 e 3x We could verify that this is indeed a solution by differentiating and substituting into the differential equation. FIGURE 1 _5 EXAMPLE 2 Solve 3 d 2 y. dx dy 2 dx y 0 SOLUTION To solve the auxiliary equation 3r 2 r 1 0 we use the quadratic formula: r 1 s13 6 Since the roots are real and distinct, the general solution is y c 1 e (1s13 )x6 (1s13 )x6 c 2 e CASE II b 2 4ac 0 In this case r 1 r 2 ; that is, the roots of the auxiliary equation are real and equal. Let s denote by r the common value of and r 2. Then, from Equations 7, we have r 1 9 r b 2a so 2ar b 0 We know that y is one solution of Equation 5. We now verify that y 2 xe rx 1 e rx is also a solution: ay 2 by 2 cy 2 a2re rx r 2 xe rx be rx rxe rx cxe rx 2ar be rx ar 2 br cxe rx 0e rx 0xe rx 0 The first term is 0 by Equations 9; the second term is 0 because r is a root of the auxiliary equation. Since y and y 2 xe rx 1 e rx are linearly independent solutions, Theorem 4 provides us with the general solution. 10 If the auxiliary equation ar 2 br c 0 has only one real root r, then the general solution of ay by cy 0 is y c 1 e rx c 2 xe rx EXAMPLE 3 Solve the equation 4y 12y 9y 0. SOLUTION The auxiliary equation 4r 2 12r 9 0 can be factored as 2r 3 2 0
4 4 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS Figure 2 shows the basic solutions f x e 3x2 and tx xe 3x2 in Example 3 and some other members of the family of solutions. Notice that all of them approach 0 as x l. f FIGURE 2 fg 8 _5 5f+g f+5g _2 2 f+g gf g so the only root is r 3 2. By (10) the general solution is y c 1 e 3x2 c 2 xe 3x2 CASE III b 2 4ac 0 In this case the roots r 1 and r 2 of the auxiliary equation are complex numbers. (See Appendix I for information about complex numbers.) We can write r 1 i r 2 i b2a where and are real numbers. [In fact,,.] Then, using Euler s equation e i cos i sin s4ac b 2 2a from Appendix I, we write the solution of the differential equation as y C 1 e r1x C 2 e r2 x C 1 e ix C 2 e ix C 1 e x cos x i sin x C 2 e x cos x i sin x e x C 1 C 2 cos x ic 1 C 2 sin x e x c 1 cos x c 2 sin x where c 1 C 1 C 2, c 2 ic 1 C 2. This gives all solutions (real or complex) of the differential equation. The solutions are real when the constants c 1 and c 2 are real. We summarize the discussion as follows. 11 If the roots of the auxiliary equation ar 2 br c 0 are the complex numbers r 1 i, r 2 i, then the general solution of ay by cy 0 is y e x c 1 cos x c 2 sin x Figure 3 shows the graphs of the solutions in Example 4, f x e 3x cos 2x and tx e 3x sin 2x, together with some linear combinations. All solutions approach 0 as x l. 3 f+g g fg f _3 2 EXAMPLE 4 Solve the equation y 6y 13y 0. SOLUTION The auxiliary equation is r 2 6r By the quadratic formula, the roots are r 6 s s16 2 By (11) the general solution of the differential equation is y e 3x c 1 cos 2x c 2 sin 2x 3 2i FIGURE 3 _3 InitialValue and BoundaryValue Problems An initialvalue problem for the secondorder Equation 1 or 2 consists of finding a solution y of the differential equation that also satisfies initial conditions of the form yx 0 y 0 yx 0 y 1 where y 0 and y 1 are given constants. If P, Q, R, and G are continuous on an interval and Px 0 there, then a theorem found in more advanced books guarantees the existence and uniqueness of a solution to this initialvalue problem. Examples 5 and 6 illustrate the technique for solving such a problem.
5 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS 5 EXAMPLE 5 Solve the initialvalue problem y y 6y 0 y0 1 y0 0 Figure 4 shows the graph of the solution of the initialvalue problem in Example 5. Compare with Figure SOLUTION From Example 1 we know that the general solution of the differential equation is yx c 1 e 2x c 2 e 3x Differentiating this solution, we get yx 2c 1 e 2x 3c 2 e 3x To satisfy the initial conditions we require that _2 2 0 FIGURE y0 c 1 c 2 1 y0 2c 1 3c 2 0 From (13) we have c 2 2 3c 1 and so (12) gives c 1 2 3c 1 1 c Thus, the required solution of the initialvalue problem is c y 3 5e 2x 2 5 e 3x The solution to Example 6 is graphed in Figure 5. It appears to be a shifted sine curve and, indeed, you can verify that another way of writing the solution is y s13 sinx where tan EXAMPLE 6 Solve the initialvalue problem y y 0 y0 2 y0 3 SOLUTION The auxiliary equation is r 2 1 0, or r 2 1, whose roots are i. Thus,, and since e 0x 1, the general solution is 0 1 yx c 1 cos x c 2 sin x _2π 2π Since yx c 1 sin x c 2 cos x the initial conditions become _5 y0 c 1 2 y0 c 2 3 FIGURE 5 Therefore, the solution of the initialvalue problem is yx 2cos x 3sin x A boundaryvalue problem for Equation 1 consists of finding a solution y of the differential equation that also satisfies boundary conditions of the form yx 0 y 0 yx 1 y 1 In contrast with the situation for initialvalue problems, a boundaryvalue problem does not always have a solution. EXAMPLE 7 Solve the boundaryvalue problem y 2y y 0 y0 1 y1 3 SOLUTION The auxiliary equation is r 2 2r 1 0 or r 1 2 0
6 6 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS Figure 6 shows the graph of the solution of the boundaryvalue problem in Example 7. 5 _1 5 _5 FIGURE 6 whose only root is r 1. Therefore, the general solution is yx c 1 e x c 2 xe x The boundary conditions are satisfied if y0 c 1 1 y1 c 1 e 1 c 2 e 1 3 The first condition gives c 1 1, so the second condition becomes e 1 c 2 e 1 3 Solving this equation for c 2 by first multiplying through by e, we get 1 c 2 3e so c 2 3e 1 Thus, the solution of the boundaryvalue problem is Summary: Solutions of ay by c 0 y e x 3e 1xe x Roots of ar 2 br c 0 r 1, r 2 real and distinct r 1 r 2 r r 1, r 2 complex: i General solution y c 1 e r1x c 2 e r2 x y c 1 e rx c 2 xe rx y e x c 1 cos x c 2 sin x Exercises 1 13 Solve the differential equation. 1. y 6y 8y 0 2. y 4y 8y 0 3. y 8y 41y y y y 0 5. y 2y y y 5y 7. 4y y y 24y 9y y y y 4y 0 d 2 y dt 2 dy y 0 2 dt 13. ; Graph the two basic solutions of the differential equation and several other solutions. What features do the solutions have in common? d d 2 y y 15. dx 8 dy dx dy 2 dx 16y 0 2 dx 2y A d 2 y dt 2 Click here for answers. d 2 y dx 2 dy dt y 0 2 dy dx 5y 0 d 2 y dt 2 6 dy dt 4y 0 S Click here for solutions Solve the initialvalue problem y 5y 3y 0, y0 3, 18. y 3y 0, y0 1, 19. 4y 4y y 0, y0 1, 20. 2y 5y 3y 0, y0 1, 21. y 16y 0, y4 3, 22. y 2y 5y 0, y 0, 23. y 2y 2y 0, y0 2, 24. y 12y 36y 0, y1 0, Solve the boundaryvalue problem, if possible y y 0, y0 3, 26. y 2y 0, y0 1, 27. y 3y 2y 0, y0 1, 28. y 100y 0, y0 2, y y 6y 25y 0, y0 1, 30. y 6y 9y 0, y0 1, y 4 y1 2 y0 1.5 y4 4 y 2 y0 1 y3 0 y 5 y0 4 y0 4 y1 1 y 2 y y 4y 13y 0, y0 2, y2 1
7 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS y 18y 10y 0, y0 0, y 1 (b) For the case, find the values of for which this problem has a nontrivial solution and give the corresponding 33. Let L be a nonzero real number. (a) Show that the boundaryvalue problem y y 0, y0 0, yl 0 has only the trivial solution y 0 for solution. 34. If a, b, and c are all positive constants and yx is a solution of the differential equation ay by cy 0, show that the cases and. lim x l yx
8 8 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS Answers S Click here for solutions. 1. y c 1e 4x c 2e 2x 3. y e 4x c 1 cos 5x c 2 sin 5x 5. y c 1e x c 2xe x 7. y c 1 cosx2 c 2 sinx2 9. y c 1 c 2e x4 11. y c 1e (1s2 )t (1s2 )t c 2e y e t2 [c 1 cos(s3t2) c 2 sin(s3t2)] g 40 f _0.2 1 _40 All solutions approach 0 as x l and approach as x l. 17. y 2e 3x2 e x 19. y e x/2 2xe x2 21. y 3 cos 4x sin 4x 23. y e x 2 cos x 3 sin x y e x3 e 3 1 e 2x y 3 cos( 1 2 x) 4 sin( 1 2 x) 1 e No solution 31. y e 2x 2 cos 3x e sin 3x 33. (b), n a positive integer; y C sinnxl n 2 2 L 2
9 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS 9 Solutions: SecondOrder Linear Differential Equations 1. The auxiliary equation is r 2 6r +8=0 (r 4)(r 2) = 0 r =4, r =2.Thenby(8)thegeneral solution is y = c 1 e 4x + c 2 e 2x. 3. The auxiliary equation is r 2 +8r +41=0 r = 4 ± 5i. Thenby(11)thegeneralsolutionis y = e 4x (c 1 cos 5x + c 2 sin 5x). 5. The auxiliary equation is r 2 2r +1=(r 1) 2 =0 r =1. Then by (10), the general solution is y = c 1 e x + c 2 xe x. 7. The auxiliary equation is 4r 2 +1=0 r = ± 1 2 i,soy = c1 cos 1 2 x + c 2 sin 1 2 x. 9. The auxiliary equation is 4r 2 + r = r(4r +1)=0 r =0, r = 1 4,soy = c1 + c2e x/ The auxiliary equation is r 2 2r 1=0 r =1± 2,soy = c 1 e (1+ 2)t + c 2 e (1 2)t. 13. The auxiliary equation is r 2 + r +1=0 r = 1 2 ± 3 2 i,soy = e t/2 hc 1 cos 15. r 2 8r +16=(r 4) 2 =0so y = c 1 e 4x + c 2 xe 4x. The graphs are all asymptotic to the xaxis as x, and as x the solutions tend to ±. ³ 3 2 t + c 2 sin ³ 3 2 t i r 2 +5r +3=(2r +3)(r +1)=0,sor = 3 2, r = 1 and the general solution is y = c1e 3x/2 + c 2e x. Then y(0) = 3 c 1 + c 2 =3and y 0 (0) = c1 c2 = 4, soc1 =2and c2 =1. Thus the solution to the initialvalue problem is y =2e 3x/2 + e x r 2 4r +1=(2r 1) 2 =0 r = 1 2 and the general solution is y = c1ex/2 + c 2xe x/2.theny(0) = 1 c 1 =1and y 0 (0) = c1 + c2 = 1.5, soc2 = 2 and the solution to the initialvalue problem is y = e x/2 2xe x/ r 2 +16=0 r = ±4i and the general solution is y = e 0x (c 1 cos 4x + c 2 sin 4x) =c 1 cos 4x + c 2 sin 4x. Then y π 4 = 3 c1 = 3 c 1 =3and y 0 π 4 =4 4c2 =4 c 2 = 1, sothe solution to the initialvalue problem is y =3cos4x sin 4x. 23. r 2 +2r +2=0 r = 1 ± i and the general solution is y = e x (c 1 cos x + c 2 sin x). Then2=y(0) = c 1 and 1=y 0 (0) = c 2 c 1 c 2 =3and the solution to the initialvalue problem is y = e x (2 cos x +3sinx) r 2 +1=0 r = ± 1 2 i and the general solution is y = c1 cos 1 2 x + c 2 sin 1 2 x.then3=y(0) = c 1 and 4 =y(π) =c 2, so the solution of the boundaryvalue problem is y =3cos 1 x 4sin 1 x r 2 3r +2=(r 2)(r 1) = 0 r =1, r =2and the general solution is y = c 1e x + c 2e 2x.Then 1=y(0) = c 1 + c 2 and 0=y(3) = c 1 e 3 + c 2 e 6 so c 2 =1/(1 e 3 ) and c 1 = e 3 /(e 3 1). The solution of the boundaryvalue problem is y = ex+3 e e2x 1 e r 2 6r +25=0 r =3± 4i and the general solution is y = e 3x (c 1 cos 4x + c 2 sin 4x). But1=y(0) = c 1 and 2=y(π) =c 1e 3π c 1 =2/e 3π, so there is no solution.
10 10 SECONDORDER LINEAR DIFFERENTIAL EQUATIONS 31. r 2 +4r +13=0 r = 2 ± 3i and the general solution is y = e 2x (c 1 cos 3x + c 2 sin 3x). But 2=y(0) = c 1 and 1=y π 2 = e π ( c 2), so the solution to the boundaryvalue problem is y = e 2x (2 cos 3x e π sin 3x). 33. (a) Case 1 (λ =0): y 00 + λy =0 y 00 =0which has an auxiliary equation r 2 =0 r =0 y = c 1 + c 2x where y(0) = 0 and y(l) =0.Thus,0=y(0) = c 1 and 0=y(L) =c 2L c 1 = c 2 =0. Thus, y =0. Case 2 (λ < 0): y 00 + λy =0has auxiliary equation r 2 = λ r = ± λ (distinct and real since λ < 0) y = c 1 e λx + c 2 e λx where y(0) = 0 and y(l) =0. Thus, 0=y(0) = c 1 + c 2 ( ) and 0=y(L) =c 1e λl + c 2e λl ( ). Multiplying ( ) bye ³ λl and subtracting ( )givesc 2 e λl e λl =0 c 2 =0and thus c 1 =0from ( ). Thus, y =0for the cases λ =0and λ < 0. (b) y 00 + λy =0has an auxiliary equation r 2 + λ =0 r = ±i λ y = c 1 cos λ x + c 2 sin λ x where y(0) = 0 and y(l) =0.Thus,0=y(0) = c 1 and 0=y(L) =c 2 sin λl since c 1 =0.Sincewe cannot have a trivial solution, c 2 6= 0and thus sin λ L =0 λ L = nπ where n is an integer λ = n 2 π 2 /L 2 and y = c 2 sin(nπx/l) where n is an integer.
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationApproximating functions by Taylor Polynomials.
Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More information1 The Concept of a Mapping
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationSystem of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 6 Woman teaching geometry, from a fourteenthcentury edition of Euclid s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationHow to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationTHE CONGRUENT NUMBER PROBLEM
THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean
More informationPROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationLinear Control Systems
Chapter 3 Linear Control Systems Topics : 1. Controllability 2. Observability 3. Linear Feedback 4. Realization Theory Copyright c Claudiu C. Remsing, 26. All rights reserved. 7 C.C. Remsing 71 Intuitively,
More informationSwitching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
More information(2) f(x) = o(g(x)) as x ( little o ) if lim. f(x)
1. Introduction To perturbation Theory & Asymptotic Expansions Example 1.0.1. Consider x = ε coshx (1.1) For ε 0 we cannot solve this in closed form. (Note: ε = 0 x = ) The equation defines a function
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationThe Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
More informationHow to Differentiate a Number
1 3 7 6 3 11 Journal of Integer Sequences, Vol. 6 (003), Article 03.3. How to Differentiate a Number Victor Ufnarovski Centre for Mathematical Sciences Lund Institute of Technology P.O. Box 118 SE1 00
More informationAn Introduction to Proofs and the Mathematical Vernacular 1
An Introduction to Proofs and the Mathematical Vernacular 1 Martin V. Day Department of Mathematics Virginia Tech Blacksburg, Virginia 24061 http://www.math.vt.edu/people/day/proofsbook Dedicated to the
More informationALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities
More information