Chapter 4: Atoms and Elements

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 4: Atoms and Elements"

Transcription

1 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 1 Chapter 4: Atoms and Elements Bonus Problems: 27, 29, 33, 35, 45, 51, 53, 67, 69, 73, 83, 87, 93, 95, 107, 109 Early Ideas on Matter: Philosophers (Chinese- yin/yang; Greeks-earth/wind/fire/water) speculated about the nature of stuff without relying on scientific evidence Leucippus (fifth century BC) and his student Democritus ( BC) first suggested the material world when broken down to the extreme would consist of tiny particles called atomos, meaning indivisible. Alchemists through the middle ages physically experimented with matter aiming to create gold from base metals and an elixir for everlasting life. Englishman Robert Boyle ( ) is generally credited as the first to study the separate science we call chemistry and the first to perform rigorous experiments. Antoine Lavoisier ( ) discovered the mass of combustion products exactly equals the mass of the starting reactants. Law of Mass Conservation (Law of Conservation of Matter); Mass is neither created nor destroyed in chemical reactions Joseph Proust ( ) studied copper carbonate, the two tin oxides, and the two iron sulfides. He made artificial copper carbonate and compared it to natural copper carbonate, showing that each had the same proportion of weights between the three elements involved (Cu, C, O). He showed that no intermediate indeterminate compounds exist between the two tin oxides or the two iron sulfides. Law of Definite Proportions (Law of Constant Composition); Elements combine together in specific proportions. All samples of a given compound, regardless of their source or how they were prepared have the same proportions of their constituent elements. These early ideas led to the foundation steps in atomic theory. Atomic theories explain the behavior of atoms. We will cover Dalton s Indivisible atom, J.J. Thomson s Plum Pudding model, Rutherford s Nuclear model of the atom, the Bohr s Quantum (orbit) model that mathematically only works for one electron systems and the Orbital Wave Mechanical model. The first three models are found in Chapter 4 while the last two are found in Chapters 9. You are to write a paper with references on these five models due Feb 14 th.

2 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 2 Dalton s Atomic Theory (1808): 1. Elements are composed of tiny, indivisible particles called atoms. 2. Atoms of a given element are identical in properties, but atoms of one element are different from the atoms of all other elements. 3. Compounds form when atoms of two or more different elements combine in whole number ratios. Chemical reactions do not create or destroy atoms, they are just rearranged. Dalton s atomic theory led to another scientific law Law of Multiple Proportions: When two elements form two different compounds, the masses of element (B) that combine with 1g of element (A) can be expressed as a ratio of small whole numbers. Example: CO(1 g C to 1.33 g O) vs CO 2 (1 g C to 2.67 g O) J. J. Thomson ( ); By the mid-1800 s new experiments gave data that was inconsistent with an indivisible atom. Cathode ray tubes (CRT) contain very low pressures of a gas and have high voltage passed through electrodes on either end. Experiments with CRT gave radiation that is negatively charged. The same negative charged substance that fluoresced (gave off light) was found using many different gases. By 1897, JJ Thomson published a paper that concluded the cathode rays are streams of negatively charged particles, later known as electrons.

3 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 3 Plum Pudding Model; This experiment led to a divisible neutral atom which must have both negative and positive charges. JJ Thomson called his atomic theory the Plum Pudding Model of the atom. A positive sphere like pudding contains particles (plums) of negatively charged electrons. Since the atom is neutral, there must be a positively charged electric field as well. Thomson assumed there were no positively charged particles since none showed up in the experiment. He predicted he mass of the atom comes from the mass of electrons. In 1909 Robert Millikin; Robert Millikin measured the charge of an electron ( x Coulombs) through an oil drop experiment performed numerous times over 5 tedious years. Using Thomson s charge to mass ratio ( x 10 8 C/g) the electron mass was accepted as x g, about 2000 times smaller than a single H atom. This caused the question: What is the major contributor of an atom s mass.

4 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 4 Ernest Rutherford ( ): In 1910 Ernest Rutherford created an experiment to test Thomson s Plum Pudding model, the gold foil experiment. The results showed that most of the heavy positive alpha particles passed right through a thin gold foil. Surprisingly, a small portion of alpha particles were deflected or even sent back. If Thomson s atomic model was correct, this would be similar to a rifle shot through tissue paper, and no bullet could be deflected. This led to Rutherford s Nuclear Model of the atom. The nuclear model has all the positive charge (protons) densely set in the center (nucleus) and the particles of electrons spread out in a cloud around the nucleus.

5 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 5 Neutrons: It did not make sense to have all the positive particles (protons) so close together in a nucleus, they would repel each other. Additionally, some mass was missing. One of Rutherford s students, James Chadwick ( ), proposed there are neutrons, neutral particles within the nucleus similar to protons. Neutrons were isolated later in Atomic Structure: What we have so far Particle Charge Mass (amu) Mass (g) Electron amu x g Proton amu x g Neutron amu x g 1 amu = x g Solve for the inverse of this number: amu = 1 g Atoms are extremely tiny with diameters around 1-5 x m: 1 angstrom = 1 x m All atoms are surrounded by a cloud of negatively charged electrons (-1). The nucleus contains almost all the mass of an atom. It is positively charged and contains protons (+1 ) and neutrons (0 charge) The nucleus is tiny with a diameter 10,000 times smaller than the atom. Example: a marble (nucleus) in the center of a large football stadium (atom). Neutral atoms have the same number of electrons and protons. Each chemical element (X) has a unique number of protons (atomic number, Z). The number of protons defines the element. Ions have more or less electrons than protons. Cations lose electrons, are positive (metals) Anions gain electrons, are negative (nonmetals) The number of neutrons may vary creating various isotopes. Isotopes are chemically identical. The protons plus neutrons is the Mass Number (A) Nuclide symbols indicate particular isotopes and ions. A Z X

6 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 6 Example 1: Fill in the nuclide symbols chart. Nuclide symbol, A Z X name protons neutrons electrons atomic mass carbon carbon Sulfide ion Potassium ion Periodic Table: Patterns and the Periodic Law Development: 1869 Dmitri Mendeleev (Russia) and Lothar Meyer (Germany) classified known elements (about 65 known at that time) and noted similar physical and chemical properties were found periodically when arranged by increasing atomic weight and grouped together by chemical reactivity. Several holes led to predictions of elements and their properties that were not yet discovered eka-aluminum (Ga) and eka-silicon (Ge). Periodic Law when the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically Ordered elements by atomic mass Put elements with similar properties in the same column Used pattern to predict properties of undiscovered elements Where atomic mass order did not fit other properties, he re-ordered by other properties Example: Te & I

7 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e Henry Moseley developed the concept of atomic numbers. He improved the periodic table by ordering the elements by increasing atomic number. More holes were found, which led to the discovery of more elements and the family of noble gases. The periodic table gives us a great amount of information in an organized manner. Vertical columns are called groups or families. If you are aware of the properties of a couple elements in a group, you can make a good guess at the properties of the other elements in the same group. Periods are the horizontal rows in the periodic table. Many patterns can be seen or predicted following periods and groups. Atomic Weights: The atomic mass scale is arbitrarily defined by international agreement and is based a standard isotope carbon-12, defining its mass to be exactly 12 amu. Weighted average atomic masses take into consideration the natural abundance of all the isotopes of an atom. Masses and isotopic abundances are measured by Mass Spectroscopy.

8 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 8 Mass Spectrum quantifies the results The mass spectrum for zirconium Isotopes: The 5 peaks in the mass spectrum shows that there are 5 isotopes of zirconium - with relative isotopic masses of 90, 91, 92, 94 and 96 on the 12 C scale. The abundance of the isotopes In this case, the 5 isotopes (with their relative percentage abundances) are: zirconium zirconium zirconium zirconium zirconium (This simple example rounds off much more than I generally accept.) Working out the relative atomic mass Using the equation Weighted Atomic Mass = (0.515 x 90)+(0.112 x 91)+(0.171 x 92)+(0.174 x 94)+(0.028 x 96) = 91.3 is the relative atomic mass of zirconium.

9 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 9 Mass: Simple vs. Weighted Average: Simple average: add all the numbers and divide by the count Solve for the simple average... Given: 12.0 g, 16.0 g, 17.0 g Weighted average: Mass = Weighted average takes into consideration the fractional abundance of each number. Fractional abundance is the decimal form of the percent abundance. All fractional abundance values add up to a total of one (1.00) so there is no reason to divide by the count. Solve for the weighted average Given: 12.0 g (80.0%), 16.0 g (15.0%), 17.0 g (5.0 %) Naturally occurring weighted masses for elements are found on the periodic table: Atomic mass = isotopic mass x fractional abundance Atomic mass = (mass A x fract. abund. A ) + (mass B x fract. abund. B ) + (. All the fractional abundance values add up to a total of one (1.00) Example 2: Use the weighted average to solve the average atomic mass found in nature for Si Given the following information on its naturally occurring isotopes Keep appropriate significant figures. 28 Si: amu 92.21% 29 Si: amu 4.70% 30 Si: amu 3.09%

10 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 10 Example 3: There are two naturally occurring isotopes of chlorine. Calculate the percent abundance of each isotope given the following information on the masses and given that the naturally occurring weighted atomic mass of chlorine is amu 35 Cl: amu (1-x) 37 Cl: amu (x) Periodic Table: Organization: family/group period metals nonmetals metalloids/semiconductors, Groups: Main Group Transition Metals Inner Transition Metals or Actinides and Lanthanides Alkali Metals Alkaline Earth Metals Halogens Noble Gas Coinage metals Others

11 C h e m i s t r y 1 2 C h 4 : A t o m s a n d E l e m e n t s P a g e 11 Preview of Chapter 5: Ions: Valence electrons (duet/octet rule) Cations Naming: Cations with known oxidation state of metal Group 1A (+1), 2A (+2), Al and Ga (+3), Zn and Cd (+2), Ag (+1) Name of ion is identical to the name of the atom for cations Variable oxidation state of metal Transition metals and metals below the nonmetal on the right have a variable oxidation state that must be indicated by Roman Numerals in parenthesis (this method is what I expect you to learn. Fe +3, iron (III); Fe +2, iron (II); Cu +1, copper (I); Sn +4, tin (IV) An alternative method differentiates from the higher oxidation number and lower oxidation number using the old form of the name and ic or ous as an ending respectively. (you are not responsible for knowing the ic and ous ending of metal cations) Fe +3, ferric Fe +2, ferrous; Cu +2, cupric; Cu +1, cuprous; Sn +4, stannic; Sn +2, stannous Anions Naming: Group VA (-3); VIA (-2), VIIA (-1) Name of the element root followed by ide. N -3, nitride; S -2, sulfide, Br -1, bromide Counting Atoms by Moles: Avogadro s number: x particles = 1 mole Converting atoms to moles Converting moles to atoms Molar Mass: Solving for molar mass of molecules and compounds O 2 H 2 O CoBr 3

Chapter 2. Atoms and Elements

Chapter 2. Atoms and Elements Chapter 2. Atoms and Elements John Dalton Robert Millikan J.J. Thomson Ernest Rutherford The Components of Matter Elements, Compounds, Mixtures Dalton s Atomic Theory Modern Atomic Theory Atomic and Mass

More information

5 Early Atomic Theory and Structure. Chapter Outline. Dalton s Model of the Atom. Dalton s Model of the Atom. Dalton s Model of the Atom 10/2/2013

5 Early Atomic Theory and Structure. Chapter Outline. Dalton s Model of the Atom. Dalton s Model of the Atom. Dalton s Model of the Atom 10/2/2013 5 Early Atomic Theory and Structure Chapter Outline 5.1 5.2 Electric Charge A. Discovery of Ions 5.3 Subatomic Parts of the Atom Lightning occurs when electrons move to neutralize charge difference between

More information

1) Scientific law = a generalization of scientific observations that describes what happens (does not explain)

1) Scientific law = a generalization of scientific observations that describes what happens (does not explain) I. Law vs. Theory 1) Scientific law = a generalization of scientific observations that describes what happens (does not explain) 2) Theory (model) = a set of assumptions used to explain observations and

More information

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.

More information

Theories of Matter Composition

Theories of Matter Composition Chapter 2 Theories of Matter Composition Democritus (5 th 4 th century BC) ATOMISM Aristotle (4 th 5 th century BC) CONTINUOUS MATTER FOUR ELEMENTS Earth, Air, Fire, Water Boyle (17 th century) Reintroduced

More information

The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom

The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom 1 The Atom Unit 3 Atomic Structure And Nuclear Chemistry What are the basic parts of an atom? How is an atom identified? What is nuclear chemistry? How is a nuclear equation written? Atom Smallest particle

More information

Chapter 4: Atoms and Elements

Chapter 4: Atoms and Elements Chapter 4 Page 1 Chapter 4: Atoms and Elements Atoms are EXTREMELY SMALL particles out of which all knownmatter is made. They are the smallest particle of a chemical element that still have the properties

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 4: The Structure of the Atom CHAPTER 4 Section 4.1 Section 4.2 Section 4.3 Section 4.4 Table Of Contents Early Ideas About Matter Defining the Atom How Atoms Differ

More information

Atomic Theory: History of the Atom

Atomic Theory: History of the Atom Atomic Theory: History of the Atom Atomic Theory: experimental observations that led scientists to postulate the existence of the atom (smallest bit of an element). 1. Law of Conservation of Mass -During

More information

Chemistry 101 Chapter 2 ATOMIC MODEL. atoms (Carbon atoms in diamond) molecules (H 2 O molecules in water) ions (Na + and Cl ions in sodium chloride)

Chemistry 101 Chapter 2 ATOMIC MODEL. atoms (Carbon atoms in diamond) molecules (H 2 O molecules in water) ions (Na + and Cl ions in sodium chloride) ATOMIC MODEL All forms of matter are made up of PARTICLES These PARTICLES may be: atoms (Carbon atoms in diamond) molecules (H 2 O molecules in water) ions (Na + and Cl ions in sodium chloride) The particulate

More information

Atomic Theory. Chapter 3. History of the Atom. Structure & Models of Atoms

Atomic Theory. Chapter 3. History of the Atom. Structure & Models of Atoms Chapter 3 Atoms Atomic Theory As early as 400 BC scientists have believed in an atomic theory thanks to Democritus. Atoms were the building blocks of matter. 2000 years later we can see the atom! History

More information

CHAPTER 4: ATOMIC STRUCTURE. Intro Video! (nothing about Bohr, I promise)

CHAPTER 4: ATOMIC STRUCTURE. Intro Video! (nothing about Bohr, I promise) CHAPTER 4: ATOMIC STRUCTURE Intro Video! (nothing about Bohr, I promise) I. HISTORY OF ATOMIC THEORY A. Highlights: 1. Democritus: suggested matter was made of tiny indivisible particles 2. Aristotle:

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model. John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of

More information

Physical Science Notes Properties of Atoms and the Periodic Table

Physical Science Notes Properties of Atoms and the Periodic Table Physical Science Notes Properties of Atoms and the Periodic Table Structure of the Atom Elements are abbreviated in scientific shorthand. Symbols on the periodic table are short or abbreviated ways to

More information

Chapter Two Study Guide Answers

Chapter Two Study Guide Answers Chapter Two Study Guide Answers Concepts 1. Know the law of conservation of mass 2. Know about the structure of the atom and who did what including Thomson, Rutheford, Millikan, Bohr 3. Know the three

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

Quick Review Concept Map

Quick Review Concept Map Quick Review - Scientific Method - qualitative and quantitative observations. - Hypothesis - possible explanation for an observation. - Theory vs. a Law - SI units and prefixes (memorize) - Significant

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

Atoms, Molecules, Formulas, and Subatomic Particles

Atoms, Molecules, Formulas, and Subatomic Particles Introduction to Chemistry Chapter 5 1 Atoms, Molecules, Formulas, and Subatomic Particles The Atom: The smallest particle of an element that can exist and still have the properties of the element building

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

More information

Lecture 4 - Observations that Led to the Nuclear Model of the Atom. Chem 103, Section F0F Unit I - An Overview of Chemistry Lecture 4

Lecture 4 - Observations that Led to the Nuclear Model of the Atom. Chem 103, Section F0F Unit I - An Overview of Chemistry Lecture 4 Chem 103, Section F0F Unit I - An Overview of Chemistry Lecture 4 Some observations that led to the nuclear model for the structure of the atom The modern view of the atomic structure and the elements

More information

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai, Ch1 1) Which of the following underlined items is not an intensive property? A) A chemical reaction requires 3.00 g of oxygen. B) The density of helium at 25 C is 1.64 10-4 g/cm3. C) The melting point

More information

Early Atomic Theory and Structure. Beginning Days (Theory of an Atom) Beginning Days 8/14/2011. Chapter 5

Early Atomic Theory and Structure. Beginning Days (Theory of an Atom) Beginning Days 8/14/2011. Chapter 5 Early Atomic Theory and Structure Chapter 5 Beginning Days (Theory of an Atom) 5 th century B.C., Greek philosophers Empedocles and Democritus proposed their own theories about an atom. Empedocles stated

More information

The Beginnings of Atomic Theory

The Beginnings of Atomic Theory Atoms Section 1 The Beginnings of Atomic Theory Who came up with the first theory of atoms? In the fourth century BCE, the Greek philosopher Democritus suggested that the universe was made of indivisible

More information

Chapter 5: Early Atomic Theory and Structure. 5.1 Early Thoughts. In the year 440 B.C., believed that all matter was made of 4 elements (list them):

Chapter 5: Early Atomic Theory and Structure. 5.1 Early Thoughts. In the year 440 B.C., believed that all matter was made of 4 elements (list them): Chapter 5: Early Atomic Theory and Structure Name: 5.1 Early Thoughts In the year 440 B.C., believed that all matter was made of 4 elements (list them): Around 370 B.C., proposed that all matter was composed

More information

Elements may combine in more than one proportion to form more than one compound. Examples...

Elements may combine in more than one proportion to form more than one compound. Examples... 1 UNIT 5 - ATOMIC THEORY: THE NUCLEAR MODEL OF THE ATOM 2 3 Dalton s Atomic Theory 1) Each element is made up of tiny, individual particles called atoms. 2) Atoms are indivisible; they cannot be created

More information

Name Date Period. Chemistry: Unit 3 - Atoms Test Review KEY

Name Date Period. Chemistry: Unit 3 - Atoms Test Review KEY Name Date Period Concepts to know for the Unit 3 test: Chemistry: Unit 3 - Atoms Test Review KEY 1. Summarize the major experimental evidence that led to the development of various atomic models, both

More information

Page 1. Atomic Theory

Page 1. Atomic Theory About 440 B.C. Empedocles stated that all matter was composed of four "elements" earth, air, water, and fire. Democritus (460-370 BC) Theorized that all matter is composed of small indivisible particles

More information

Atomic Theory: The Nuclear Model of the Atom

Atomic Theory: The Nuclear Model of the Atom Chapter 5 Atomic Theory: The Nuclear Model of the Atom Section 5.1 Dalton s Atomic Theory Goal 1 Precursors to John Dalton s atomic theory Law of Definite Composition The percentage by mass of the elements

More information

Table of Contents. Chapter 4 Elements and the Periodic Table. Chapter Preview. 4.1 Introduction to Atoms. 4.2 Organizing the Elements. 4.

Table of Contents. Chapter 4 Elements and the Periodic Table. Chapter Preview. 4.1 Introduction to Atoms. 4.2 Organizing the Elements. 4. Table of Contents Chapter Preview 4.1 Introduction to Atoms 4.2 Organizing the Elements 4.3 Metals 4.4 Nonmetals, Inert Gases, and Semimetals 4.5 Radioactive Elements Chapter Preview Questions 1. Groups

More information

Elements, Atoms & Ions

Elements, Atoms & Ions Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms, Ions and Molecules The Building Blocks of Matter Atoms, Ions and Molecules The Building Blocks of Matter Chapter 2 1 Chapter Outline 2.1 The Rutherford Model of Atomic Structure 2.2 Nuclides and Their Symbols 2.3 Navigating the Periodic Table 2.4 The

More information

Name Date Class ATOMIC STRUCTURE

Name Date Class ATOMIC STRUCTURE Name Date Class 4 ATOMIC STRUCTURE SECTION 4.1 DEFINING THE ATOM (pages 101 103) This section describes early atomic theories of matter and provides ways to understand the tiny size of individual atoms.

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Section 4.1 Early Ideas About Matter Section 4.2 Defining the Atom Section 4.3 How Atoms Differ Section 4.4 Unstable Nuclei and Radioactive Decay Click a hyperlink or folder tab

More information

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms, Ions and Molecules The Building Blocks of Matter Atoms, Ions and Molecules The Building Blocks of Matter Chapter 2 1 Chapter Outline 2.1 The Rutherford Model of Atomic Structure 2.2 Nuclides and Their Symbols 2.3 Navigating the Periodic Table 2.4 The

More information

Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions)

Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions) Name: Period: Date: Unit 3 Review: things you will need to know 1. Atomic Theories: Know all the scientists in order. What did they discover? What experiment did they use? 2. Development of the periodic

More information

1/7/2013. Chapter 2. Atoms and the Periodic Table. Chemistry: Atoms First Julia Burdge & Jason Overby. 2.1 Atoms First

1/7/2013. Chapter 2. Atoms and the Periodic Table. Chemistry: Atoms First Julia Burdge & Jason Overby. 2.1 Atoms First Chemistry: Atoms First Julia Burdge & Jason Overby 2 Atoms and the Periodic Table Chapter 2 Atoms and the Periodic Table Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright (c) The McGraw-Hill

More information

Atoms, Elements, and the Periodic Table (Chapter 2)

Atoms, Elements, and the Periodic Table (Chapter 2) Atoms, Elements, and the Periodic Table (Chapter 2) Atomic Structure 1. Historical View - Dalton's Atomic Theory Based on empirical observations, formulated as Laws of: Conservation of Mass Definite Proportions

More information

Atomic Structure. Atoms and elements

Atomic Structure. Atoms and elements Atomic Structure Atoms and elements Everything in the world is made up from about 100 elements. Every element is made up of very small particles called atoms. An element is a substance in which all the

More information

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and

More information

Name PRE-TEST. Directions: Circle the letter indicating whether the following statements are either true ("T") or false ("F").

Name PRE-TEST. Directions: Circle the letter indicating whether the following statements are either true (T) or false (F). 1 PRETEST Directions: Circle the letter indicating whether the following statements are either true ("T") or false ("F"). T F 1. Chemical elements with similar chemical properties are referred to as a

More information

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE Chapter 3 Vocabulary Words (27 words) Nucleus Atomic number Proton Mass number Neutron Isotopes Electron Atomic mass unit (amu) Energy level Average

More information

NOTES ON The Structure of the Atom

NOTES ON The Structure of the Atom NOTES ON The Structure of the Atom Chemistry is the study of matter and its properties. Those properties can be explained by examining the atoms that compose the matter. An atom is the smallest particle

More information

The Structure of the Atom

The Structure of the Atom Before You Read Review scientific law Define the following terms describes a relationship in nature that is supported by many experiments theory an explanation supported by many experiments; is still subject

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass Composition and Structure of the Atom Atom: basic unit of an element; smallest unit that retains chemical properties of an element Subatomic particles: Small particles that are the building blocks from

More information

Scientists create models to understand how things work, including atoms.

Scientists create models to understand how things work, including atoms. CHEM100 Week 4 Notes Page 1 of 6 Scientists create models to understand how things work, including atoms. Dalton created a theory for the atom with these 5 postulates 1. Elements consist of one or more

More information

What is an Atom? smallest particle of an element that still has the properties of that element

What is an Atom? smallest particle of an element that still has the properties of that element Date: Science 10 4.1 Atomic Theory & Bonding What is an Atom? smallest particle of an element that still has the properties of that element An atom = proton(s) + electron(s) + neutron(s) (PEN) Fun Fact:

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Atomic Structure ELECTRONS AND THE STRUCTURE OF ATOMS 4.1 Defining the Atom Essential Understanding Atoms are the fundamental building blocks of matter. Lesson Summary Early Models of the Atom The scientific

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

The Components of Matter. 1. Development of atomic structure. 2. Atomic number and atomic mass. 5. Atoms and moles. 6. The periodic table

The Components of Matter. 1. Development of atomic structure. 2. Atomic number and atomic mass. 5. Atoms and moles. 6. The periodic table Chapter 2 The Components of Matter 1. Development of atomic structure 2. Atomic number and atomic mass 3. Isotopes 4. Atomic weight 5. Atoms and moles 6. The periodic table 2.7 & 2.8 is not required. General

More information

1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more

1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more 1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more 8. The diagram below represents the nucleus of an atom. A) electrons B) neutrons C) positrons D) protons

More information

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY UNIT 2 - ATOMIC THEORY VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic number Bohr model Cation Compound Electron Electron Configuration Element Excited state Ground state

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: Hour: Date: Directions: Answer each of the following questions. You need not use complete sentences. 1. Who first published the classification of the

More information

Chapter 3 Applying Your Knowledge- Even Numbered

Chapter 3 Applying Your Knowledge- Even Numbered Chapter 3 Applying Your Knowledge- Even Numbered 2. Elements in a specific compound are always present in a definite proportion by mass; for example, in methane, CH 4, 12 g of carbon are combined with

More information

Chapter Five: Atomic Theory and Structure

Chapter Five: Atomic Theory and Structure Chapter Five: Atomic Theory and Structure Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

More information

Chapter 2 The Periodic Table

Chapter 2 The Periodic Table Chapter 2 The Periodic Table Periodic Pattern Classification of the Elements A. Metals vs. Nonmetals (Before 1800) 1. Metals - Solids, Lustrous, Malleable, Ductile, Conductors 2. Nonmetals - Solids, Liquids,

More information

Tro's "Introductory Chemistry", Chapter 4

Tro's Introductory Chemistry, Chapter 4 1 Introductory Chemistry, 3 rd Edition Nivaldo Tro Atoms and Elements Opening figure showing a shore scene with molecules of O 2, N 2, triethyl amine (CH 3 CH 2 ) 3 N, and rocks made of silicates containing

More information

CHAPTER 4: ATOMS AND ELEMENTS

CHAPTER 4: ATOMS AND ELEMENTS CHAPTER 4: ATOMS AND ELEMENTS Problems: 1-70 then after Chapter 9, complete 71-94, 103-104, 107-108, 113-114 4.1 Experiencing Atoms at Tiburon atom: smallest identifiable unit of an element All matter

More information

Atomic Theory. Democritus was known as The Laughing Philosopher. Democritus s version of the atom

Atomic Theory. Democritus was known as The Laughing Philosopher. Democritus s version of the atom Democritus (460 B.C.E.) and the Greek Philosophers Before we discuss the experiments and evidence that have convinced scientists matter is made up of atoms, it is only fair to credit the man who proposed

More information

Introduction to Atoms

Introduction to Atoms Introduction to Atoms What is the smallest particle into which an element can be divided and still be the same substance? A. electron B. neutron C. proton D. atom What is the smallest particle into which

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 2: Atomic Theory

Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 2: Atomic Theory *STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry NOTE PACKET Unit 2: Atomic Theory 1 *STUDENT* UNIT 2 - ATOMIC THEORY *STUDENT* VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic

More information

Worked solutions to student book questions Chapter 2 A particle view of matter

Worked solutions to student book questions Chapter 2 A particle view of matter Q1. Dalton and Thomson each proposed a model of an atom. a What experimental evidence did Thomson have that was not available to Dalton? b As a result of this experimental evidence, how did Thomson s model

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Section 4.1 Early Ideas About Matter In your textbook, read about the philosophers, John Dalton, and defining the atom. For each statement below, write true or false. 1. Ancient

More information

CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure

CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure Matching. A. Bohr B. Democritus C. Rutherford D. Dalton E. Thomson F. Schrodinger name HPS # date: 1. 2. 3. 4. 5. 6. Greek thinker; called nature

More information

Atomic Structure Practice Test

Atomic Structure Practice Test Atomic Structure Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If 6.0 g of element K combine with 17 g of element L, how many grams of

More information

Chemistry 104 Chapter Three PowerPoint Notes

Chemistry 104 Chapter Three PowerPoint Notes Atomic Structure and the Periodic Table Chapter 3 Chemistry 104 Professor Michael Russell Atomic Theory Chemistry founded on four fundamental assumptions about atoms and matter which make up the modern

More information

Introduction to Atoms

Introduction to Atoms CHAPTER 11 VOCABULARY & NOTES WORKSHEET Introduction to Atoms By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter. CHAPTER 11 SECTION

More information

Early Atomic Theory. Atoms, Molecules, and Ions. Preparation of College Chemistry Luis Avila Columbia University Department of Chemistry

Early Atomic Theory. Atoms, Molecules, and Ions. Preparation of College Chemistry Luis Avila Columbia University Department of Chemistry Early Atomic Theory Atoms, Molecules, and Ions Preparation of College Chemistry Luis Avila Columbia University Department of Chemistry Atoms Atomic theory Components of the Atom Atomic Number Mass Number

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More

KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More The Modern Periodic Table The Periodic Law - when elements are arranged according

More information

Ch 3 Atomic Structure and the Periodic Table. Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5

Ch 3 Atomic Structure and the Periodic Table. Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5 1 Ch 3 Atomic Structure and the Periodic Table Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5 2 Atoms are very small and spherical. Radii Range 0.9 x 10-10

More information

Chapter 2 Atoms, Molecules, and Ions

Chapter 2 Atoms, Molecules, and Ions Chapter 2 Atoms, Molecules, and Ions 1. Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen, a ration of 3:1 by mass. In ethane,

More information

Periodic Table & Periodic Trends I. Importance of Classification II. History & Development law of octaves III. Periodic Law

Periodic Table & Periodic Trends I. Importance of Classification II. History & Development law of octaves III. Periodic Law Periodic Table & Periodic Trends I. Importance of Classification A. Makes large sums of information manageable. B. In chemistry, it reduces the number of reactions that need to be studied. II. History

More information

Atomic Theory Part 1

Atomic Theory Part 1 Atomic Theory Part 1 Reading: Ch 2 sections 1 6, 8 Homework: Chapter 2: 39, 47, 43, 49, 51*, 53, 55, 57, 71, 73, 77, 99, 103 (optional) * = important homework question The Atomic Theory (John Dalton, 1803)

More information

Foldable Creation. Let s create a chemistry book. The book will serve as a major score and an awesome study guide. (40 days of chemistry)

Foldable Creation. Let s create a chemistry book. The book will serve as a major score and an awesome study guide. (40 days of chemistry) Foldable Creation Let s create a chemistry book. The book will serve as a major score and an awesome study guide. (40 days of chemistry) Take five sheets of paper lined paper and one sheet of construction

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A Chapter 4 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. One of the first people to state that matter is made

More information

How did scientists determine the structures that are inside an atom?

How did scientists determine the structures that are inside an atom? Chapter 4 Atomic Structure 4.1 Defining the Atom 4.2 Structure of the Nuclear Atom 4.3 Distinguishing Among Atoms 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

Organizing the Elements

Organizing the Elements The Periodic Table Organizing the Elements A few elements, such as gold and copper, have been known for thousands of years - since ancient times Yet, only about 13 had been identified by the year 1700.

More information

Multiple Choice Questions

Multiple Choice Questions Chapter 4 STRUCTURE OF THE ATOM Multiple Choice Questions 1. Which of the following correctly represent the electronic distribution in the Mg atom? 3, 8, 1 (b) 2, 8, 2 (c) 1, 8, 3 (d) 8, 2, 2 2. Rutherford

More information

2. All of the atoms of argon have the same. 1. The atomic number of an atom is always equal to the total number of. A. mass number B.

2. All of the atoms of argon have the same. 1. The atomic number of an atom is always equal to the total number of. A. mass number B. 1. The atomic number of an atom is always equal to the total number of A. neutrons in the nucleus B. protons in the nucleus 2. All of the atoms of argon have the same A. mass number B. atomic number C.

More information

4.1 Studying Atoms Ancient Greek Models of Atoms

4.1 Studying Atoms Ancient Greek Models of Atoms Studying the structure of atoms is a little like studying wind. Because you cannot see air, you must use indirect evidence to tell the direction of the wind. Atoms pose a similar problem because they are

More information

The Periodic Table. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question:

The Periodic Table. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question: Name: Class: Date:, ID: A The Periodic Table Multiple Choice Identify the choice that best completes the statement or answers the question: 1. What are the elements with atomic numbers from 58 to 71 called?

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

3.01 Elements, Symbols and Periodic Table

3.01 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry 00 Miramar College.0 Elements, symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of

More information

CHAPTER 6: THE PERIODIC TABLE

CHAPTER 6: THE PERIODIC TABLE CHAPTER 6: THE PERIODIC TABLE Problems to try in the textbook. Answers in Appendix I: 5,9,13,15,17,19,21,25,27,29,31,33,35,41,43,45,47,49,55abcde,57,59,61,63,65,67,69,71,73,75,89,91 6.1 CLASSIFICATION

More information

8/29/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory (1808) J. J. Thomson. Thomson s Experiment

8/29/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory (1808) J. J. Thomson. Thomson s Experiment Atomic Structure & The Periodic Table The Greek Philosophers Democritus believed that all matter is made up of tiny particles that could not be divided Aristotle -- thought that matter was made of only

More information

Chemistry A: Periodic Table Packet Name: Hour: Page 1. Chemistry A Periodic Table

Chemistry A: Periodic Table Packet Name: Hour: Page 1. Chemistry A Periodic Table Chemistry A: Periodic Table Packet Name: Hour: Page 1 Chemistry A Periodic Table Chemistry A: Periodic Table Packet Name: Hour: Page 2 Worksheet #1: Periodic Table Inquiry Activity Directions: I know that

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus Atoms are mostly empty space Atomic Structure Two regions of every atom: Nucleus - is made of protons and neutrons - is small and dense Electron cloud -is a region where you might find an electron -is

More information

1. Structure and Properties of the Atom

1. Structure and Properties of the Atom SACE Stage 1 Chemistry - The Essentials 1. Structure and Properties of the Atom 1.1 Atoms: A simple definition of the atom is that it is the smallest particle that contains the properties of that element.

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information