# Chi-Square Tests and the F-Distribution. Goodness of Fit Multinomial Experiments. Chapter 10

Save this PDF as:

Size: px
Start display at page:

Download "Chi-Square Tests and the F-Distribution. Goodness of Fit Multinomial Experiments. Chapter 10"

## Transcription

1 Chapter 0 Chi-Square Tests and the F-Distribution 0 Goodness of Fit Multinomial xperiments A multinomial experiment is a probability experiment consisting of a fixed number of trials in which there are more than two possible outcomes for each independent trial (Unlike the binomial experiment in which there were only two possible outcomes) A researcher claims that the distribution of favorite pizza toppings among teenagers is as shown below ach outcome is classified into categories Topping Cheese Pepperoni Sausage Mushrooms Onions Frequency, f 4% 5% 5% 0% 9% The probability for each possible outcome is fixed Larson & Farber, lementary Statistics: Picturing the World, 3e 3

2 Chi-Square Goodness-of-Fit Test A Chi-Square Goodness-of-Fit Test is used to test whether a frequency distribution fits an expected distribution To calculate the test statistic for the chi-square goodness-of-fit test, the observed frequencies and the expected frequencies are used The observed frequency O of a category is the frequency for the category observed in the sample data The expected frequency of a category is the calculated frequency for the category xpected frequencies are obtained assuming the specified (or hypothesized) distribution The expected frequency for the ith category is i = np i where n is the number of trials (the sample size) and p i is the assumed probability of the ith category Larson & Farber, lementary Statistics: Picturing the World, 3e 4 Observed and xpected Frequencies 00 teenagers are randomly selected and asked what their favorite pizza topping is The results are shown below Find the observed frequencies and the expected frequencies Topping Cheese Pepperoni Sausage Mushrooms Onions Results (n = 00) % of teenagers 4% 5% 5% 0% 9% Observed Frequency xpected Frequency 00(04) = 8 00(05) = 50 00(05) = 30 00(00) = 0 00(009) = 8 Larson & Farber, lementary Statistics: Picturing the World, 3e 5 Chi-Square Goodness-of-Fit Test For the chi-square goodness-of-fit test to be used, the following must be true The observed frequencies must be obtained by using a random sample ach expected frequency must be greater than or equal to 5 The Chi-Square Goodness-of-Fit Test If the conditions listed above are satisfied, then the sampling distribution for the goodness-of-fit test is approximated by a chi-square distribution with k degrees of freedom, where k is the number of categories The test statistic for the chi-square goodness-of-fit test is ( O ) The test is always a righttailed test χ = where O represents the observed frequency of each category and represents the expected frequency of each category Larson & Farber, lementary Statistics: Picturing the World, 3e 6

3 Chi-Square Goodness-of-Fit Test Performing a Chi-Square Goodness-of-Fit Test In Words Identify the claim State the null and alternative hypotheses In Symbols State H 0 and H a Specify the level of significance 3 Identify the degrees of freedom 4 Determine the critical value 5 Determine the rejection region Identify α df = k Use Table 6 in Appendix B Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 7 Chi-Square Goodness-of-Fit Test Performing a Chi-Square Goodness-of-Fit Test In Words In Symbols 6 Calculate the test statistic χ = ( O ) 7 Make a decision to reject or fail to reject the null hypothesis 8 Interpret the decision in the context of the original claim If χ is in the rejection region, reject H 0 Otherwise, fail to reject H 0 Larson & Farber, lementary Statistics: Picturing the World, 3e 8 Chi-Square Goodness-of-Fit Test A researcher claims that the distribution of favorite pizza toppings among teenagers is as shown below 00 randomly selected teenagers are surveyed Topping Cheese Pepperoni Sausage Mushrooms Onions Frequency, f 39% 6% 5% 5% 75% Using α = 00, and the observed and expected values previously calculated, test the surveyor s claim using a chi-square goodnessof-fit test Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 9 3

4 Chi-Square Goodness-of-Fit Test xample continued: H 0 : The distribution of pizza toppings is 39% cheese, 6% pepperoni, 5% sausage, 5% mushrooms, and 75% onions (Claim) H a : The distribution of pizza toppings differs from the claimed or expected distribution Because there are 5 categories, the chi-square distribution has k = 5 = 4 degrees of freedom With df = 4 and α = 00, the critical value is χ 0 = 377 Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 0 Chi-Square Goodness-of-Fit Test xample continued: χ 0 = 377 Rejection region α = 00 X Topping Cheese Pepperoni Sausage Mushrooms Onions Observed Frequency xpected Frequency ( O ) (78 8) χ = = 8 (5 50) (30 30) 30 + (5 0) 0 + (5 8) 8 05 Fail to reject H 0 There is not enough evidence at the % level to reject the surveyor s claim Larson & Farber, lementary Statistics: Picturing the World, 3e 0 Independence 4

5 Contingency Tables An r c contingency table shows the observed frequencies for two variables The observed frequencies are arranged in r rows and c columns The intersection of a row and a column is called a cell The following contingency table shows a random sample of 3 fatally injured passenger vehicle drivers by age and gender (Adapted from Insurance Institute for Highway Safety) Age Gender Male Female and older 0 6 Larson & Farber, lementary Statistics: Picturing the World, 3e 3 xpected Frequency Assuming the two variables are independent, you can use the contingency table to find the expected frequency for each cell Finding the xpected Frequency for Contingency Table Cells The expected frequency for a cell r,c in a contingency table is (Sum of row r ) (Sum of column c ) xpected frequency r, c = Sample size Larson & Farber, lementary Statistics: Picturing the World, 3e 4 xpected Frequency Find the expected frequency for each Male cell in the contingency table for the sample of 3 fatally injured drivers Assume that the variables, age and gender, are independent Gender Male Female Total Age and older Total Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 5 5

6 xpected Frequency xample continued: Age Gender and older Total Male Female Total (Sum of row r ) (Sum of column c ) xpected frequency r, c = Sample size , = 308, = ,3 = ,4 = 4307,5 = ,6 = Larson & Farber, lementary Statistics: Picturing the World, 3e 6 Chi-Square Independence Test A chi-square independence test is used to test the independence of two variables Using a chi-square test, you can determine whether the occurrence of one variable affects the probability of the occurrence of the other variable For the chi-square independence test to be used, the following must be true The observed frequencies must be obtained by using a random sample ach expected frequency must be greater than or equal to 5 Larson & Farber, lementary Statistics: Picturing the World, 3e 7 Chi-Square Independence Test The Chi-Square Independence Test If the conditions listed are satisfied, then the sampling distribution for the chi-square independence test is approximated by a chisquare distribution with (r )(c ) degrees of freedom, where r and c are the number of rows and columns, respectively, of a contingency table The test statistic for the chi-square independence test is ( O ) The test is always a righttailed test χ = where O represents the observed frequencies and represents the expected frequencies Larson & Farber, lementary Statistics: Picturing the World, 3e 8 6

7 Chi-Square Independence Test Performing a Chi-Square Independence Test In Words Identify the claim State the null and alternative hypotheses In Symbols State H 0 and H a Specify the level of significance 3 Identify the degrees of freedom 4 Determine the critical value 5 Determine the rejection region Identify α df = (r )(c ) Use Table 6 in Appendix B Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 9 Chi-Square Independence Test Performing a Chi-Square Independence Test In Words In Symbols 6 Calculate the test statistic χ = ( O ) 7 Make a decision to reject or fail to reject the null hypothesis 8 Interpret the decision in the context of the original claim If χ is in the rejection region, reject H 0 Otherwise, fail to reject H 0 Larson & Farber, lementary Statistics: Picturing the World, 3e 0 Chi-Square Independence Test The following contingency table shows a random sample of 3 fatally injured passenger vehicle drivers by age and gender The expected frequencies are displayed in parentheses At α = 005, can you conclude that the drivers ages are related to gender in such accidents? Gender Male Female (308) 3 (47) (49) (388) (570) 33 (780) 85 Age (4307) (093) (557) 0 (43) 38 6 and older 0 (077) 6 (53) 6 Total Larson & Farber, lementary Statistics: Picturing the World, 3e 7

8 Chi-Square Independence Test xample continued: Because each expected frequency is at least 5 and the drivers were randomly selected, the chi-square independence test can be used to test whether the variables are independent H 0 : The drivers ages are independent of gender H a : The drivers ages are dependent on gender (Claim) df = (r )(c ) = ( )(6 ) = ()(5) = 5 With df = 5 and α = 005, the critical value is χ 0 = 07 Continued Larson & Farber, lementary Statistics: Picturing the World, 3e Chi-Square Independence Test xample continued: χ 0 = 07 Rejection region α = 005 ( O χ = = 84 ) Fail to reject H 0 X O O (O ) ( O ) There is not enough evidence at the 5% level to conclude that age is dependent on gender in such accidents Larson & Farber, lementary Statistics: Picturing the World, 3e 3 03 Comparing Two Variances 8

9 F-Distribution Let s and s represent the sample variances of two different populations If both populations are normal and the population variances are equal, σthen and the σ sampling distribution of s F = is called an F-distribution s There are several properties of this distribution The F-distribution is a family of curves each of which is determined by two types of degrees of freedom: the degrees of freedom corresponding to the variance in the numerator, denoted df N, and the degrees of freedom corresponding to the variance in the denominator, denoted df D Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 5 F-Distribution Properties of the F-distribution continued: F-distributions are positively skewed 3 The total area under each curve of an F-distribution is equal to 4 F-values are always greater than or equal to 0 5 For all F-distributions, the mean value of F is approximately equal to df N = and df D = 8 df N = 8 and df D = 6 df N = 6 and df D = 7 df N = 3 and df D = 3 4 F Larson & Farber, lementary Statistics: Picturing the World, 3e 6 Critical Values for the F-Distribution Finding Critical Values for the F-Distribution Specify the level of significance α Determine the degrees of freedom for the numerator, df N 3 Determine the degrees of freedom for the denominator, df D 4 Use Table 7 in Appendix B to find the critical value If the hypothesis test is a one-tailed, use the α F-table b two-tailed, use the α F-table Larson & Farber, lementary Statistics: Picturing the World, 3e 7 9

10 Critical Values for the F-Distribution Find the critical F-value for a right-tailed test when α = 005, df N = 5 and df D = 8 df D : Degrees of freedom, denominator Appendix B: Table 7: F-Distribution α = 005 df N : Degrees of freedom, numerator The critical value is F 0 = 56 Larson & Farber, lementary Statistics: Picturing the World, 3e 8 Critical Values for the F-Distribution Find the critical F-value for a two-tailed test when α = 00, df N = 4 and df D = 6 df D : Degrees of freedom, denominator The critical value is F 0 = 453 α = (00) = 005 Appendix B: Table 7: F-Distribution α = 005 df N : Degrees of freedom, numerator Larson & Farber, lementary Statistics: Picturing the World, 3e 9 Two-Sample F-Test for Variances Two-Sample F-Test for Variances A two-sample F-test is used to compare two population variances when σ a sample is randomly selected from each population and σ The populations must be independent and normally distributed The test statistic is s F = s where s represent the sample variances with and s The s degrees s of freedom for the numerator is df N = n and the degrees of freedom for the denominator is df D = n, where n is the size of the sample having variance and n is the size of the sample having variance s s Larson & Farber, lementary Statistics: Picturing the World, 3e 30 0

11 Two-Sample F-Test for Variances Using a Two-Sample F-Test to Compare In Words Identify the claim State the null and alternative hypotheses Specify the level of significance 3 Identify the degrees of freedom 4 Determine the critical value In Symbols State H 0 and H a Identify α df N = n df D = n Use Table 7 in Appendix B Continued Larson & Farber, lementary Statistics: Picturing the World, 3e 3

### Chapter 11. Chapter 11 Overview. Chapter 11 Objectives 11/24/2015. Other Chi-Square Tests

11/4/015 Chapter 11 Overview Chapter 11 Introduction 11-1 Test for Goodness of Fit 11- Tests Using Contingency Tables Other Chi-Square Tests McGraw-Hill, Bluman, 7th ed., Chapter 11 1 Bluman, Chapter 11

### Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

### The Chi-Square Test. STAT E-50 Introduction to Statistics

STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed

### Hypothesis Testing. Bluman Chapter 8

CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

### PASS Sample Size Software

Chapter 250 Introduction The Chi-square test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial

### Chapter 23. Two Categorical Variables: The Chi-Square Test

Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine

### Elementary Statistics

lementary Statistics Chap10 Dr. Ghamsary Page 1 lementary Statistics M. Ghamsary, Ph.D. Chapter 10 Chi-square Test for Goodness of fit and Contingency tables lementary Statistics Chap10 Dr. Ghamsary Page

### Is it statistically significant? The chi-square test

UAS Conference Series 2013/14 Is it statistically significant? The chi-square test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chi-square? Tests whether two categorical

### Null Hypothesis H 0. The null hypothesis (denoted by H 0

Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

### CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY

CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples

### Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

### 11-2 Goodness of Fit Test

11-2 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a one-way frequency table). We will use a hypothesis

### Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table

ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live

### Chapter 7. Section Introduction to Hypothesis Testing

Section 7.1 - Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine

### Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

### Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### Chi-square (χ 2 ) Tests

Math 442 - Mathematical Statistics II May 5, 2008 Common Uses of the χ 2 test. 1. Testing Goodness-of-fit. Chi-square (χ 2 ) Tests 2. Testing Equality of Several Proportions. 3. Homogeneity Test. 4. Testing

### Hypothesis Testing for a Proportion

Math 122 Intro to Stats Chapter 6 Semester II, 2015-16 Inference for Categorical Data Hypothesis Testing for a Proportion In a survey, 1864 out of 2246 randomly selected adults said texting while driving

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### Difference of Means and ANOVA Problems

Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

### Chapter 8. Hypothesis Testing

Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Ch. 10 Chi SquareTests and the F-Distribution 10.1 Goodness of Fit 1 Find Expected Frequencies Provide an appropriate response. 1) The frequency distribution shows the ages for a sample of 100 employees.

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test

Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### Crosstabulation & Chi Square

Crosstabulation & Chi Square Robert S Michael Chi-square as an Index of Association After examining the distribution of each of the variables, the researcher s next task is to look for relationships among

### Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

### Lesson 2: Calculating Probabilities of Events Using Two-Way Tables

Calculating Probabilities of Events Using Two-Way Tables Classwork Example 1: Building a New High School The school board of Waldo, a rural town in the Midwest, is considering building a new high school

### Chapter 19 The Chi-Square Test

Tutorial for the integration of the software R with introductory statistics Copyright c Grethe Hystad Chapter 19 The Chi-Square Test In this chapter, we will discuss the following topics: We will plot

### Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.

Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal

### Simulating Chi-Square Test Using Excel

Simulating Chi-Square Test Using Excel Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 524 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu

### The Goodness-of-Fit Test

on the Lecture 49 Section 14.3 Hampden-Sydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20

### Mind on Statistics. Chapter 15

Mind on Statistics Chapter 15 Section 15.1 1. A student survey was done to study the relationship between class standing (freshman, sophomore, junior, or senior) and major subject (English, Biology, French,

### Factorial Analysis of Variance

Chapter 560 Factorial Analysis of Variance Introduction A common task in research is to compare the average response across levels of one or more factor variables. Examples of factor variables are income

### Solutions to Homework 10 Statistics 302 Professor Larget

s to Homework 10 Statistics 302 Professor Larget Textbook Exercises 7.14 Rock-Paper-Scissors (Graded for Accurateness) In Data 6.1 on page 367 we see a table, reproduced in the table below that shows the

### Section 12 Part 2. Chi-square test

Section 12 Part 2 Chi-square test McNemar s Test Section 12 Part 2 Overview Section 12, Part 1 covered two inference methods for categorical data from 2 groups Confidence Intervals for the difference of

### Bivariate Statistics Session 2: Measuring Associations Chi-Square Test

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### Lesson 3: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables

Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables Classwork Example 1 Students at Rufus King High School were discussing some of the challenges of finding space for

### Hypothesis Testing (unknown σ)

Hypothesis Testing (unknown σ) Business Statistics Recall: Plan for Today Null and Alternative Hypotheses Types of errors: type I, type II Types of correct decisions: type A, type B Level of Significance

### Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170

Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label

### In the past, the increase in the price of gasoline could be attributed to major national or global

Chapter 7 Testing Hypotheses Chapter Learning Objectives Understanding the assumptions of statistical hypothesis testing Defining and applying the components in hypothesis testing: the research and null

### Chi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980)

Chi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980) For the Driver Behavior Study, the Chi Square Analysis II is the appropriate analysis below.

### Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

### Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

### Comparing Multiple Proportions, Test of Independence and Goodness of Fit

Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2

### Nonparametric Statistics

1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables

### Chapter Five: Paired Samples Methods 1/38

Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If two events are mutually exclusive, what is the probability that one or the other occurs? A)

### Chi-square test Fisher s Exact test

Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions

### A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

### Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

### Chapter 14: 1-6, 9, 12; Chapter 15: 8 Solutions When is it appropriate to use the normal approximation to the binomial distribution?

Chapter 14: 1-6, 9, 1; Chapter 15: 8 Solutions 14-1 When is it appropriate to use the normal approximation to the binomial distribution? The usual recommendation is that the approximation is good if np

### STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico. Fall 2013

STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico Fall 2013 CHAPTER 18 INFERENCE ABOUT A POPULATION MEAN. Conditions for Inference about mean

### CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion

Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Learning Objectives Upon successful completion of Chapter 8, you will be able to: Understand terms. State the null and alternative

### The F-Test by Hand Calculator

1 The F-Test by Hand Calculator Where possible, one-way analysis of variance summaries should be obtained using a statistical computer package. Hand-calculation is a tedious and errorprone process, especially

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### 8 6 X 2 Test for a Variance or Standard Deviation

Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Confidence Interval: pˆ = E = Indicated decision: < p <

Hypothesis (Significance) Tests About a Proportion Example 1 The standard treatment for a disease works in 0.675 of all patients. A new treatment is proposed. Is it better? (The scientists who created

### Lecture 42 Section 14.3. Tue, Apr 8, 2008

the Lecture 42 Section 14.3 Hampden-Sydney College Tue, Apr 8, 2008 Outline the 1 2 the 3 4 5 the The will compute χ 2 areas, but not χ 2 percentiles. (That s ok.) After performing the χ 2 test by hand,

### Nonparametric Tests. Chi-Square Test for Independence

DDBA 8438: Nonparametric Statistics: The Chi-Square Test Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Nonparametric Statistics: The Chi-Square Test." My name is Dr. Jennifer Ann Morrow. In

### The Neyman-Pearson lemma. The Neyman-Pearson lemma

The Neyman-Pearson lemma In practical hypothesis testing situations, there are typically many tests possible with significance level α for a null hypothesis versus alternative hypothesis. This leads to

### Examination 110 Probability and Statistics Examination

Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiple-choice test questions. The test is a three-hour examination

### SPSS on two independent samples. Two sample test with proportions. Paired t-test (with more SPSS)

SPSS on two independent samples. Two sample test with proportions. Paired t-test (with more SPSS) State of the course address: The Final exam is Aug 9, 3:30pm 6:30pm in B9201 in the Burnaby Campus. (One

### Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory

LA-UR-12-24572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia Garcia-Lopez Steven R. Booth September 2012

### Guide to Microsoft Excel for calculations, statistics, and plotting data

Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

### A and B This represents the probability that both events A and B occur. This can be calculated using the multiplication rules of probability.

Glossary Brase: Understandable Statistics, 10e A B This is the notation used to represent the conditional probability of A given B. A and B This represents the probability that both events A and B occur.

### Sample Exam #1 Elementary Statistics

Sample Exam #1 Elementary Statistics Instructions. No books, notes, or calculators are allowed. 1. Some variables that were recorded while studying diets of sharks are given below. Which of the variables

### Chi Square Goodness of Fit & Two-way Tables (Create) MATH NSPIRED

Overview In this activity, you will look at a setting that involves categorical data and determine which is the appropriate chi-square test to use. You will input data into a list or matrix and conduct

### Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35

Statistiek I t-tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistiek-i/ John Nerbonne 1/35 t-tests To test an average or pair of averages when σ is known, we

### Chi Square Tests. Chapter 10. 10.1 Introduction

Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square

### 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

### Using Microsoft Excel to Analyze Data

Entering and Formatting Data Using Microsoft Excel to Analyze Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page. For the comparison of pipets:

### Conditional Probability and General Multiplication Rule

Conditional Probability and General Multiplication Rule Objectives: - Identify Independent and dependent events - Find Probability of independent events - Find Probability of dependent events - Find Conditional

### Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay

Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay Entering and Formatting Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure

### Multivariate Analysis of Variance (MANOVA)

Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various

### DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS. Posc/Uapp 816 CONTINGENCY TABLES

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 816 CONTINGENCY TABLES I. AGENDA: A. Cross-classifications 1. Two-by-two and R by C tables 2. Statistical independence 3. The interpretation

### Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

### Hypothesis Testing for Two Variances

Hypothesis Testing for Two Variances The standard version of the two-sample t test is used when the variances of the underlying populations are either known or assumed to be equal In other situations,

### CATEGORICAL DATA Chi-Square Tests for Univariate Data

CATEGORICAL DATA Chi-Square Tests For Univariate Data 1 CATEGORICAL DATA Chi-Square Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.

### + Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

### Statistical Inference and t-tests

1 Statistical Inference and t-tests Objectives Evaluate the difference between a sample mean and a target value using a one-sample t-test. Evaluate the difference between a sample mean and a target value

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### Hypothesis Testing I

ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),

### Multiple Hypothesis Testing: The F-test

Multiple Hypothesis Testing: The F-test Matt Blackwell December 3, 2008 1 A bit of review When moving into the matrix version of linear regression, it is easy to lose sight of the big picture and get lost

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### Chapter 3: Nonparametric Tests

B. Weaver (15-Feb-00) Nonparametric Tests... 1 Chapter 3: Nonparametric Tests 3.1 Introduction Nonparametric, or distribution free tests are so-called because the assumptions underlying their use are fewer

### statistics Chi-square tests and nonparametric Summary sheet from last time: Hypothesis testing Summary sheet from last time: Confidence intervals

Summary sheet from last time: Confidence intervals Confidence intervals take on the usual form: parameter = statistic ± t crit SE(statistic) parameter SE a s e sqrt(1/n + m x 2 /ss xx ) b s e /sqrt(ss

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### SPSS: Expected frequencies, chi-squared test. In-depth example: Age groups and radio choices. Dealing with small frequencies.

SPSS: Expected frequencies, chi-squared test. In-depth example: Age groups and radio choices. Dealing with small frequencies. Quick Example: Handedness and Careers Last time we tested whether one nominal

### Measuring the Power of a Test

Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection