Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) (d) 20 (e) 25 (f) 80. Totals/Marginal


 Evangeline Arnold
 2 years ago
 Views:
Transcription
1 Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) (d) 20 (e) 25 (f) 80 Totals/Marginal Step 1: Label Your Table. Label the 3x2 table (, Continues, BY with AND ) cells with a letter (i.e., 63 [a], 17 [b], 10 [c], then move to 2 nd row, 35 [d], 20 [e], 25 [f]). Step 2: IV and DV. Identify the IV(s) and the DV(s). IVs are rows and DVs are columns. IV is the whether parents are involved with substances. DV is the type of recommendation made by CPS. Step 3: Hypothesis. Develop the research and null hypotheses. What is your research hypothesis? o There is a relationship between the level of involvement with substances and the recommendations made by CPS. What is the null hypothesis? o There is not a relationship between the level of involvement with substances and the recommendations made by CPS. Page 1 of 6
2 Step 4: Complete a Dummy Table. A dummy table is a visual depiction of where large portions of the observations should fall if there is a relationship between the variables. Put asterisks in the cells where you would predict the outcomes to be. Table 2: Dummy Table for Substance abuse and ation * * * * Step 5: Calculate a Percentage Table. Use a percentage table to see the differences in the frequencies (to create a percentage, divide the number of observations in each cell by the total number of observations, in cell A, 63/90 =.7 = 70%). Complete the percentage table. Table 3: Percentages of Clients: Substance abuse history by ation Total Percentage 70% 18.9% 11.1% 100.0% 43.75% 25% 31.25% 100.0% Page 2 of 6
3 HOWEVER, THE TABLES DOES NOT TELL YOU WHETHER THESE DIFFERENCES IN PERCENTAGES ARE STATISTICALLY SIGNIFICANT. Step 6: Calculate Expected Frequencies. These are the frequencies you would expect to occur most often in an infinite number of samples if the null hypothesis is correct that is, there is NO true relationship between the two nominal level variables. These are a hypothesized number based on a mathematical formula. Expected cell frequency is: ( )( ) E = expected frequency R = Total number in that cell s row C = Total number in that cell s column Calculate the expected frequencies for each of the cells in our contingency table Table 4: Observed and Expected Frequencies Total/Marginal Obs. Expected Obs. Expected Obs. Expected Totals/Marginal Page 3 of 6
4 Step 7: Calculate the 2. Need to calculate the differences for each cell between the observed and expected frequencies divided by the expected frequencies for those cells. These are then totaled together to determine the ChiSquare estimate. = ( ) (for all cells) O= Observed frequency E= Expected frequency 2 = cell a + cell b + cell c + cell d + etc. Cell a b c d e f 2= ( ) + ( ) + ( ) + ( ) + ( ) + ( ) = = Step 8: Degrees of Freedom. Degrees of freedom represent the number of ways that a system can vary in either direction without violating the assumptions placed upon the system. The degrees of freedom are determined by the number of bits of information fed into the system. To determine the degrees of freedom for your table, multiply the (number of row variables minus 1) by the (number of column variables minus 1). df = (r1)(c1) r = number of rows; c = number of columns df = (21)(31) = (1)(2) = 2 Page 4 of 6
5 Step 9: Use df to determine critical value of 2 Use critical value table to determine critical χ 2 for the different probability levels (Google critical value table for chisq ) Using the df you estimated, go down the column on the far left and across the row to find the critical χ 2 value. When the critical χ 2 statistic you computed from the observed data exceeds the critical value in the table for at least a 0.05 probability level (i.e., = 0.95), then we reject null hypothesis. What is the computed χ 2 value? What is the critical value of the χ 2 = 5.99? Based upon these values, should you reject the null hypothesis (that there is no relation between the observed and statistically expected outcomes)? Here the computed value of the χ 2 statistic is 14.13, which is above the critical value at the.05 level. We can reject the null. In fact, on the table, it is beyond the.001 significance level. (Go along the row until find the calculated value and where it falls in terms of significance.) Step 10: Interpreting the findings. If significant: Tells you that the differences between the observed data and what would be expected based upon your values were not observed by chance. In other words, the relationship between the values observed is significant, but this alone will not allow us to assume a causal relationship. Can now go back to dummy table and see if the differences between observed and expected were as predicted. Look for disproportionately large frequencies (a disproportionately larger observed frequency is one that is greater than the expected frequency). You want to see if your findings support your hypothesis. They may not. There may be differences, but they may be between variables that were different than predicted. Before one can claim an identified relationship between variables would need to rule out other alternative explanations (this is the purpose of a research design, Module II). The most you can say is that there is a statistically significant relationship between the variables, but cannot say why, or that these results are generalizable to other samples. To do this, you need further evaluation to examine if the pattern persists. Page 5 of 6
6 AGAIN FOR COMPARISON Table 4: Observed and Expected Frequencies Total/Marginal Obs. Expected Obs. Expected Obs. Expected Totals/Marginal Highlighted sections show differences between expected and observed frequencies. Step 11: Report and interpret your findings. When reporting a chi square, or any statistic, it is important to interpret the findings. To do this, use the percentages or numbers observed contrasted with those expected. Put the findings in context before telling readers that the comparison was significant. For the statistics, provide the following chisquare details: χ 2 =, df =, p <. You may also present your contingency table to show readers the differences. You can report the results of the example here in the following manner: Among 170 CPS cases examined of caregivers with substance abuse involvement, more cases (n=25) were terminated than statistically expected and fewer cases (n = 35) were recommended for reunification. Among caregivers without substance abuse involvement, more cases (n = 63) were reunified than expected whereas fewer cases (n=10) than expected were recommended for termination of parentchild relations. When Comparing the recommendations of CPS workers (reunify, continue monitoring, terminate parentchild relations) with the parent substance abuse behavior, we see a statistically significant relationship between these conditions (χ 2 =14.13, df = 2, p <.0001). Page 6 of 6
CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY
CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples
More informationIs it statistically significant? The chisquare test
UAS Conference Series 2013/14 Is it statistically significant? The chisquare test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chisquare? Tests whether two categorical
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationPASS Sample Size Software
Chapter 250 Introduction The Chisquare test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
More informationTABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (Oneway χ 2 )... 1 Test of Independence (Twoway χ 2 )... 2 Hypothesis Testing
More informationBivariate Statistics Session 2: Measuring Associations ChiSquare Test
Bivariate Statistics Session 2: Measuring Associations ChiSquare Test Features Of The ChiSquare Statistic The chisquare test is nonparametric. That is, it makes no assumptions about the distribution
More informationChi Square Distribution
17. Chi Square A. Chi Square Distribution B. OneWay Tables C. Contingency Tables D. Exercises Chi Square is a distribution that has proven to be particularly useful in statistics. The first section describes
More informationOdds ratio, Odds ratio test for independence, chisquared statistic.
Odds ratio, Odds ratio test for independence, chisquared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
More informationTest Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 51: 2 x 2 Contingency Table
ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live
More informationChi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980)
Chi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980) For the Driver Behavior Study, the Chi Square Analysis II is the appropriate analysis below.
More informationChisquare test Fisher s Exact test
Lesson 1 Chisquare test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions
More informationChapter 23. Two Categorical Variables: The ChiSquare Test
Chapter 23. Two Categorical Variables: The ChiSquare Test 1 Chapter 23. Two Categorical Variables: The ChiSquare Test TwoWay Tables Note. We quickly review twoway tables with an example. Example. Exercise
More informationTesting differences in proportions
Testing differences in proportions Murray J Fisher RN, ITU Cert., DipAppSc, BHSc, MHPEd, PhD Senior Lecturer and Director Preregistration Programs Sydney Nursing School (MO2) University of Sydney NSW 2006
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More informationChi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationCHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS
CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack
More informationElementary Statistics
lementary Statistics Chap10 Dr. Ghamsary Page 1 lementary Statistics M. Ghamsary, Ph.D. Chapter 10 Chisquare Test for Goodness of fit and Contingency tables lementary Statistics Chap10 Dr. Ghamsary Page
More informationContingency Tables and the Chi Square Statistic. Interpreting Computer Printouts and Constructing Tables
Contingency Tables and the Chi Square Statistic Interpreting Computer Printouts and Constructing Tables Contingency Tables/Chi Square Statistics What are they? A contingency table is a table that shows
More informationAssociation Between Variables
Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi
More informationComparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
More informationCATEGORICAL DATA ChiSquare Tests for Univariate Data
CATEGORICAL DATA ChiSquare Tests For Univariate Data 1 CATEGORICAL DATA ChiSquare Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.
More informationAP: LAB 8: THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationChiSquare Test. Contingency Tables. Contingency Tables. ChiSquare Test for Independence. ChiSquare Tests for GoodnessofFit
ChiSquare Tests 15 Chapter ChiSquare Test for Independence ChiSquare Tests for Goodness Uniform Goodness Poisson Goodness Goodness Test ECDF Tests (Optional) McGrawHill/Irwin Copyright 2009 by The
More informationDEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS. Posc/Uapp 816 CONTINGENCY TABLES
DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 816 CONTINGENCY TABLES I. AGENDA: A. Crossclassifications 1. Twobytwo and R by C tables 2. Statistical independence 3. The interpretation
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationHaving a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.
Chisquare Goodness of Fit Test The chisquare test is designed to test differences whether one frequency is different from another frequency. The chisquare test is designed for use with data on a nominal
More informationCrosstabulation & Chi Square
Crosstabulation & Chi Square Robert S Michael Chisquare as an Index of Association After examining the distribution of each of the variables, the researcher s next task is to look for relationships among
More informationLAB : THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationChi Squared and Fisher's Exact Tests. Observed vs Expected Distributions
BMS 617 Statistical Techniques for the Biomedical Sciences Lecture 11: ChiSquared and Fisher's Exact Tests Chi Squared and Fisher's Exact Tests This lecture presents two similarly structured tests, Chisquared
More informationNonparametric Tests. ChiSquare Test for Independence
DDBA 8438: Nonparametric Statistics: The ChiSquare Test Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Nonparametric Statistics: The ChiSquare Test." My name is Dr. Jennifer Ann Morrow. In
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationHypothesis Testing for a Proportion
Math 122 Intro to Stats Chapter 6 Semester II, 201516 Inference for Categorical Data Hypothesis Testing for a Proportion In a survey, 1864 out of 2246 randomly selected adults said texting while driving
More informationMeasuring Evaluation Results with Microsoft Excel
LAURA COLOSI Measuring Evaluation Results with Microsoft Excel The purpose of this tutorial is to provide instruction on performing basic functions using Microsoft Excel. Although Excel has the ability
More informationFirstyear Statistics for Psychology Students Through Worked Examples
Firstyear Statistics for Psychology Students Through Worked Examples 1. THE CHISQUARE TEST A test of association between categorical variables by Charles McCreery, D.Phil Formerly Lecturer in Experimental
More informationSimulating ChiSquare Test Using Excel
Simulating ChiSquare Test Using Excel Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 524 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationRandom Uniform Clumped. 0 1 2 3 4 5 6 7 8 9 Number of Individuals per SubQuadrat. Number of Individuals per SubQuadrat
41 Population ecology Lab 4: Population dispersion patterns I. Introduction to population dispersion patterns The dispersion of individuals in a population describes their spacing relative to each other.
More informationTopic 8. Chi Square Tests
BE540W Chi Square Tests Page 1 of 5 Topic 8 Chi Square Tests Topics 1. Introduction to Contingency Tables. Introduction to the Contingency Table Hypothesis Test of No Association.. 3. The Chi Square Test
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationStatistical Impact of Slip Simulator Training at Los Alamos National Laboratory
LAUR1224572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia GarciaLopez Steven R. Booth September 2012
More information11. Chi Square. Go to Data/Weight Cases and select Freq as the weights. Select Analyze/Nonparametric Tests/Chi Square.
11. Chi Square Objectives Calculate goodness of fit Chi Square Calculate Chi Square for contingency tables Calculate effect size Save data entry time by weighting cases A Chi Square is used to analyze
More informationChapter 11. Chapter 11 Overview. Chapter 11 Objectives 11/24/2015. Other ChiSquare Tests
11/4/015 Chapter 11 Overview Chapter 11 Introduction 111 Test for Goodness of Fit 11 Tests Using Contingency Tables Other ChiSquare Tests McGrawHill, Bluman, 7th ed., Chapter 11 1 Bluman, Chapter 11
More informationCHAPTER 11 CHISQUARE AND F DISTRIBUTIONS
CHAPTER 11 CHISQUARE AND F DISTRIBUTIONS CHISQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chisquare tests of independence we use the hypotheses. H0: The variables are independent
More informationThis chapter discusses some of the basic concepts in inferential statistics.
Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details
More informationSydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.
Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under
More informationThe ANOVA for 2x2 Independent Groups Factorial Design
The ANOVA for 2x2 Independent Groups Factorial Design Please Note: In the analyses above I have tried to avoid using the terms "Independent Variable" and "Dependent Variable" (IV and DV) in order to emphasize
More informationEvaluation of Total Quality Management (TQM) Application in the Nigerian Telecommunication Industry: A Case study of Imo NITEL Owerri
Evaluation of Total Quality Management (TQM) Application in the Nigerian Telecommunication Industry: A Case study of Imo NITEL Owerri A.A.N. Keke Department of Management, Imo State University, Owerri.
More information2. Simple Linear Regression
Research methods  II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
More informationSection 12 Part 2. Chisquare test
Section 12 Part 2 Chisquare test McNemar s Test Section 12 Part 2 Overview Section 12, Part 1 covered two inference methods for categorical data from 2 groups Confidence Intervals for the difference of
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationTesting Research and Statistical Hypotheses
Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More information1. Comparing Two Means: Dependent Samples
1. Comparing Two Means: ependent Samples In the preceding lectures we've considered how to test a difference of two means for independent samples. Now we look at how to do the same thing with dependent
More information112 Goodness of Fit Test
112 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a oneway frequency table). We will use a hypothesis
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationThe ChiSquare Test. STAT E50 Introduction to Statistics
STAT 50 Introduction to Statistics The ChiSquare Test The Chisquare test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed
More informationChapter 7. Oneway ANOVA
Chapter 7 Oneway ANOVA Oneway ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The ttest of Chapter 6 looks
More information2 GENETIC DATA ANALYSIS
2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have
More informationChapter 13. ChiSquare. Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running two separate
1 Chapter 13 ChiSquare This section covers the steps for running and interpreting chisquare analyses using the SPSS Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:
More informationMINITAB ASSISTANT WHITE PAPER
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. OneWay
More informationDevelop hypothesis and then research to find out if it is true. Derived from theory or primary question/research questions
Chapter 12 Hypothesis Testing Learning Objectives Examine the process of hypothesis testing Evaluate research and null hypothesis Determine one or twotailed tests Understand obtained values, significance,
More informationCHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA
CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA Chapter 13 introduced the concept of correlation statistics and explained the use of Pearson's Correlation Coefficient when working
More informationThis can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
OneDegreeofFreedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
More informationJanuary 26, 2009 The Faculty Center for Teaching and Learning
THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i
More informationMind on Statistics. Chapter 15
Mind on Statistics Chapter 15 Section 15.1 1. A student survey was done to study the relationship between class standing (freshman, sophomore, junior, or senior) and major subject (English, Biology, French,
More informationNormality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com
More informationMath 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
More informationVariables Control Charts
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables
More informationHow to calculate an ANOVA table
How to calculate an ANOVA table Calculations by Hand We look at the following example: Let us say we measure the height of some plants under the effect of different fertilizers. Treatment Measures Mean
More informationChisquare (χ 2 ) Tests
Math 442  Mathematical Statistics II May 5, 2008 Common Uses of the χ 2 test. 1. Testing Goodnessoffit. Chisquare (χ 2 ) Tests 2. Testing Equality of Several Proportions. 3. Homogeneity Test. 4. Testing
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationModule 4 (Effect of Alcohol on Worms): Data Analysis
Module 4 (Effect of Alcohol on Worms): Data Analysis Michael Dunn Capuchino High School Introduction In this exercise, you will first process the timelapse data you collected. Then, you will cull (remove)
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationDescriptive Analysis
Research Methods William G. Zikmund Basic Data Analysis: Descriptive Statistics Descriptive Analysis The transformation of raw data into a form that will make them easy to understand and interpret; rearranging,
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationMath 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
More information12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
More informationCHAPTER 11. GOODNESS OF FIT AND CONTINGENCY TABLES
CHAPTER 11. GOODNESS OF FIT AND CONTINGENCY TABLES The chisquare distribution was discussed in Chapter 4. We now turn to some applications of this distribution. As previously discussed, chisquare is
More informationUsing Microsoft Excel to Analyze Data from the Disk Diffusion Assay
Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay Entering and Formatting Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure
More informationAmortized Loan Example
Amortized Loan Example Chris Columbus bought a house for $293,000. He put 20% down and obtained a 3 simple interest amortized loan for the balance at 5 % annually interest for 30 8 years. a. Find the amount
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationCalculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)
1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationPart 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217
Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing
More informationLecture 42 Section 14.3. Tue, Apr 8, 2008
the Lecture 42 Section 14.3 HampdenSydney College Tue, Apr 8, 2008 Outline the 1 2 the 3 4 5 the The will compute χ 2 areas, but not χ 2 percentiles. (That s ok.) After performing the χ 2 test by hand,
More informationUse of the ChiSquare Statistic. Marie DienerWest, PhD Johns Hopkins University
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
More informationCONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont
CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationKSTAT MINIMANUAL. Decision Sciences 434 Kellogg Graduate School of Management
KSTAT MINIMANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To
More informationQuantitative Methods in Enterprises Behavior Analysis under Risk an Uncertainty. Kayvan Miri LAVASSANI 2. Bahar MOVAHEDI 3.
DEVELOPMENTS IN ANALYSIS OF MULTIPLE RESPONSE SURVEY DATA IN CATEGORICAL DATA ANALYSIS: THE CASE OF ENTERPRISE SYSTEM IMPLEMENTATION IN LARGE NORTH AMERICAN FIRMS 1 Kayvan Miri LAVASSANI 2 PhD Candidate,
More informationCHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS. Table: 8 Perceived Usefulness of Different Advertisement Types
CHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS 5.1 Descriptive Analysis Part 3 of Questionnaire Table 8 shows the descriptive statistics of Perceived Usefulness of Banner Ads. The results
More informationAllele Frequencies and Hardy Weinberg Equilibrium
Allele Frequencies and Hardy Weinberg Equilibrium Summer Institute in Statistical Genetics 013 Module 8 Topic Allele Frequencies and Genotype Frequencies How do allele frequencies relate to genotype frequencies
More informationUsing SPSS to perform ChiSquare tests:
Using SPSS to perform ChiSquare tests: Graham Hole, January 2006: page 1: Using SPSS to perform ChiSquare tests: This handout explains how to perform the two types of ChiSquare test that were discussed
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More informationElectronic spreadsheets have become an
Chapter 2 Introduction to Electronic Spreadsheets Electronic spreadsheets have become an essential management tool. Throughout this book there are references to Microsoft s Excel spreadsheet software program.
More information