Goodness of Fit. Proportional Model. Probability Models & Frequency Data


 Justin Bryant
 2 years ago
 Views:
Transcription
1 Probability Models & Frequency Data Goodness of Fit Proportional Model Chisquare Statistic Example R Distribution Assumptions Example R 1 Goodness of Fit Goodness of fit tests are used to compare any observed frequency distribution against an expected frequency distribution. We previously did specialized examples of this for a probability distribution (the 50:50 expected right vs. lefthand toad example) and binomial distribution (sperm genes on X chromosome of mice). The binomial test we did is a specialized form for categorical variables with only two outcomes. Here we will introduce a more generalized form. 2 Proportional Model The proportional model is one of the simplest probability model. The frequency of occurrence of events is proportional to the number of opportunities (e.g., X chromosome example). What would we do, however, if we had multiple proportions? A more generalized form of this test is the chisquare (χ 2 ) goodnessoffittest. 3
2 Example 8.1: Under the proportional model, one would expect babies born in the U.S. to be born in equal proportions across the days of the week (i.e., 14.28% per day). Is this true? Shown are a random sample of 350 births from across the U.S. During the year GoodnessofFit Test The χ 2 goodnessoffit test use the chisquare statistic (based upon the chissquare distribution) to compare frequency data to a model stated by the null hypothesis. Continuing with our example: H 0 : The probability of birth is the same every day of the week. H A : The probability of birth is not the same every day of the week. Again, H 0 and H A are statements about the population from which the sample is obtained. 5 In order to proceed, we need to determine the expected frequencies under the null model. In examining the calender for 1999, we see that there are not an even number of each day (52) in the year (there was an additional Friday), so we need to adjust for this. 6
3 GoodnessofFit Test The calculation of the expected frequencies is straight forward. Expected = 350 (52/365) = NB: the sum of the expected frequencies must sum to the total observed (350). Once you have a full set of observed and expected frequencies, one can then determine a chisquare statistic and associated probability. 7 Chisquare Statistic The chisquare statistic measures the discrepancy between between observed and expected frequncies (make sure to always use the absolute frquencies [counts] not relative frequencies [proportions]). Chisquare for each element can be calculated as: 2 = Observed Expected 2 Expected = = Chisquare Statistic Τηε χ 2 statistic is additive across all levels, so: χ 2 = = We now have a calculated test statistic and as usual need to compare it to a table value at a particular degree of freedom to make our decision. In other words, is large enough to be significantly different? df = (number of categories) 1 = 71 = 6 From Statistical Table A in your text, we see that at df = 6, the critical value for χ 2 is Therefore, we reject the null hypothesis and conclude that there are unequal proportions of births among days. 9
4 Chisquare Statistic This type of problem can most easily be solved using a table format: 10 Chisquare Statistic Assuming equal probabilities this can be very easily done in R using chisq.test: > births<c(33,41,63,63,47,56,47) > chisq.test(births) Chisquared test for given probabilities data: births Xsquared = 15.24, df = 6, pvalue = How can we do this with the unequal probabilities that we have? This is a bit more complicated, but still straightforward: 11 Chisquare Statistic > obsbirths<births > days<c(52,52,52,52,52,53,52) > expbirths<350*(days/365) > expbirths [1] [7] > chi<sum((obsbirthsexpbirths)^2/expbirths) > chi [1] >?pchisq > pchisq(chi,df=6) [1] > pchisq(chi,df=6,lower.tail=false) [1] What's going on here? 12
5 Chisquare Distribution The chisquare distribution is a theoretical probability distribution (analogous to normal, binomial, poisson, etc.). Note that the distribution is not symmetrical and is highly skewed. When df = 1 then asymptotic to both axes! 13 Chisquare Distribution If χ 2 is a random variable with a chisquare distribution: χ 2 is a positive real number The density function depends only on n (df) The expected value of χ 2 = n The variance of χ 2 = 2 n The graph of f (χ 2 ) is not symmetrical The graph of f (χ 2 ) approaches symmetry as ν= 14 Chisquare Distribution 15
6 We can explore the properties of the chisquare distribution through the use of R functions and graphics: > par(mfrow=c(2,2),mar=c(3,4,3,3)) > layout.show(4) > plot(dchisq(1,df=1:30)) > plot(dchisq(5,df=1:30)) > plot(dchisq(10,df=1:30)) > plot(dchisq(15,df=1:30)) Chisquare Assumptions The sampling distribution of the chisquare statistic only approximately follows the chisquare distribution (but pretty closely). Two assumptions apply: 1) None of the categories should have an expected frequency less than one. 2) No more than 25% of the categories should have expected frequencies less than five. 18
7 GoodnessofFit Test  Two Proportions  The chisquare goodness of fit test is a very general one and can be used in a variety of situations. It can also be used when there are only two proportions, a replacement for the binomial test, but at a cost...it is much less powerful in this situation. So, use the binomial test whenever appropriate. 19 The poisson distribution describes the number of successes in blocks of time or space, when successes happen independently of each other and occur with equal probability at every point in time or space. The poisson is often useful in biological studies because it is a starting place for evaluating whether or not an observed pattern is random or not. If the null model is rejected, the distribution may be either clumped or dispersed. 20 A clumped distribution arises when the presence of one success is increases the probability of success for adjacent observations (e.g., occurrences of a contagious disease). A dispersed distribution is the opposite: the presence of one success decreases the probability of success for adjacent observations (e.g., animals with well defended territories). 21
8 22 The poisson distribution is constructed using the probability of X successes occurring in any given block of time or space: Pr [ X successes]= e x X! Where mu is the mean number of independent successes in time or space (expressed as a unit count) and e is the base of the natural log Example  Example 8.6 provides the example of an assessment of the fossil record. They ask, do extinctions occur randomly through the fossil record or are their periods where extinction rates are unusually high (mass extinctions) compared to background rates? Fossil marine invertebrates are an ideal taxa to test this question as they preserve well. The data are the number of recorded extinctions in 76 contiguous blocks of time. 24
9 25 The hypotheses are:  Example  H 0 : The number of extinctions per time interval has a Poisson distribution. H A : The number of extinctions per time interval does not have a P distr. We need to begin by estimating μ, the mean number of extinctions per time interval. As usual, μ, can be estimated by xbar (= 4.21, n = 76). We need to use the same protocol and generate expected values to compare to our observed values, so return to the formula for calculation of the poisson distribution Example  For example, for 3 extinctions: Pr [3 extinctions]= e ! Expected[3 extinctions] = 76 x = No, expand for all categories... 27
10 28  Example  We now have a chisquare test statistic calculated. We need to determine the degrees of freedom. In the broadest sense, df normally is n 1. However, in a variety of circumstances, we need to also subtract the number of parameters being estimated from the data. So, df = 811=6. The critical value for χ 2 of at P = 0.05 and df = 6 is Thus, we reject the null hypothesis and conclude extinctions are nonrandom. 29 > extinctions<c(0,13,15,16,7,10,4,2,1,2,6) >?dpois > dpois(extinctions, 4.21) [1] e e e e06 [5] e e e e01 [9] e e e01 > hist(dpois(extinctions, 4.21)) 30
11  Example  > extinctions2<c(13,15,16,7,10,4,2,9) > chisq.test(extinctions2) Chisquared test for given probabilities data: extinctions2 Xsquared = , df = 7, pvalue = We can explore the properties of the chisquare distribution through the use of R functions and graphics: > par(mfrow=c(2,2),mar=c(3,4,3,3)) > layout.show(4) > plot(dpois(1:25,1)) > plot(dpois(1:25,2)) > plot(dpois(1:25,4.21)) Our example > plot(dpois(1:25,10)) 32 33
112 Goodness of Fit Test
112 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a oneway frequency table). We will use a hypothesis
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationRandom Uniform Clumped. 0 1 2 3 4 5 6 7 8 9 Number of Individuals per SubQuadrat. Number of Individuals per SubQuadrat
41 Population ecology Lab 4: Population dispersion patterns I. Introduction to population dispersion patterns The dispersion of individuals in a population describes their spacing relative to each other.
More informationBivariate Statistics Session 2: Measuring Associations ChiSquare Test
Bivariate Statistics Session 2: Measuring Associations ChiSquare Test Features Of The ChiSquare Statistic The chisquare test is nonparametric. That is, it makes no assumptions about the distribution
More informationComparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
More informationChapter 23. Two Categorical Variables: The ChiSquare Test
Chapter 23. Two Categorical Variables: The ChiSquare Test 1 Chapter 23. Two Categorical Variables: The ChiSquare Test TwoWay Tables Note. We quickly review twoway tables with an example. Example. Exercise
More informationEMPIRICAL FREQUENCY DISTRIBUTION
INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION  described by mathematical models 2 1 when some empirical distribution approximates
More informationChiSquare Test. Contingency Tables. Contingency Tables. ChiSquare Test for Independence. ChiSquare Tests for GoodnessofFit
ChiSquare Tests 15 Chapter ChiSquare Test for Independence ChiSquare Tests for Goodness Uniform Goodness Poisson Goodness Goodness Test ECDF Tests (Optional) McGrawHill/Irwin Copyright 2009 by The
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationCATEGORICAL DATA ChiSquare Tests for Univariate Data
CATEGORICAL DATA ChiSquare Tests For Univariate Data 1 CATEGORICAL DATA ChiSquare Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationCHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY
CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More informationTesting Research and Statistical Hypotheses
Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you
More informationHypothesis testing: Examples. AMS7, Spring 2012
Hypothesis testing: Examples AMS7, Spring 2012 Example 1: Testing a Claim about a Proportion Sect. 7.3, # 2: Survey of Drinking: In a Gallup survey, 1087 randomly selected adults were asked whether they
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationHypothesis Testing. Bluman Chapter 8
CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 81 Steps in Traditional Method 82 z Test for a Mean 83 t Test for a Mean 84 z Test for a Proportion 85 2 Test for
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationLecture 42 Section 14.3. Tue, Apr 8, 2008
the Lecture 42 Section 14.3 HampdenSydney College Tue, Apr 8, 2008 Outline the 1 2 the 3 4 5 the The will compute χ 2 areas, but not χ 2 percentiles. (That s ok.) After performing the χ 2 test by hand,
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationNormality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com
More informationInference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
More informationHYPOTHESIS TESTING WITH SPSS:
HYPOTHESIS TESTING WITH SPSS: A NONSTATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER
More informationChapter 2, part 2. Petter Mostad
Chapter 2, part 2 Petter Mostad mostad@chalmers.se Parametrical families of probability distributions How can we solve the problem of learning about the population distribution from the sample? Usual procedure:
More informationChi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
More informationCHISQUARE: TESTING FOR GOODNESS OF FIT
CHISQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More information3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationThe ChiSquare Test. STAT E50 Introduction to Statistics
STAT 50 Introduction to Statistics The ChiSquare Test The Chisquare test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed
More informationStatistical Testing of Randomness Masaryk University in Brno Faculty of Informatics
Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics Jan Krhovják Basic Idea Behind the Statistical Tests Generated random sequences properties as sample drawn from uniform/rectangular
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:
More informationOneSample ttest. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools
OneSample ttest Example 1: Mortgage Process Time Problem A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to establish
More informationChi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980)
Chi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980) For the Driver Behavior Study, the Chi Square Analysis II is the appropriate analysis below.
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More informationStatistics 641  EXAM II  1999 through 2003
Statistics 641  EXAM II  1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the
More informationTopic 21 Goodness of Fit
Topic 21 Goodness of Fit Fit of a Distribution 1 / 14 Outline Fit of a Distribution Blood Bank Likelihood Function Likelihood Ratio Lagrange Multipliers Hanging ChiGram 2 / 14 Fit of a Distribution Goodness
More information1. Comparing Two Means: Dependent Samples
1. Comparing Two Means: ependent Samples In the preceding lectures we've considered how to test a difference of two means for independent samples. Now we look at how to do the same thing with dependent
More information2. DATA AND EXERCISES (Geos2911 students please read page 8)
2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is
More informationHypothesis Testing for a Proportion
Math 122 Intro to Stats Chapter 6 Semester II, 201516 Inference for Categorical Data Hypothesis Testing for a Proportion In a survey, 1864 out of 2246 randomly selected adults said texting while driving
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationIntroduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More informationSolutions to Homework 10 Statistics 302 Professor Larget
s to Homework 10 Statistics 302 Professor Larget Textbook Exercises 7.14 RockPaperScissors (Graded for Accurateness) In Data 6.1 on page 367 we see a table, reproduced in the table below that shows the
More informationHypothesis Testing. Hypothesis Testing. Inferential Statistics
Making Hypotheses : Example1: Probability distr. Example2: Zdistribution Errors in One vs. Twosided Tests Inferential Statistics Sample Population Observations Statistics Inference Hypothesis testing
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationVariables Control Charts
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More information1. Rejecting a true null hypothesis is classified as a error. 2. Failing to reject a false null hypothesis is classified as a error.
1. Rejecting a true null hypothesis is classified as a error. 2. Failing to reject a false null hypothesis is classified as a error. 8.5 Goodness of Fit Test Suppose we want to make an inference about
More informationLecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationMATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS
MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution
More informationIs it statistically significant? The chisquare test
UAS Conference Series 2013/14 Is it statistically significant? The chisquare test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chisquare? Tests whether two categorical
More informationChapter 14: 16, 9, 12; Chapter 15: 8 Solutions When is it appropriate to use the normal approximation to the binomial distribution?
Chapter 14: 16, 9, 1; Chapter 15: 8 Solutions 141 When is it appropriate to use the normal approximation to the binomial distribution? The usual recommendation is that the approximation is good if np
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationChi Squared and Fisher's Exact Tests. Observed vs Expected Distributions
BMS 617 Statistical Techniques for the Biomedical Sciences Lecture 11: ChiSquared and Fisher's Exact Tests Chi Squared and Fisher's Exact Tests This lecture presents two similarly structured tests, Chisquared
More informationThe alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.
Section 8.28.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the
More informationSupplement on the KruskalWallis test. So what do you do if you don t meet the assumptions of an ANOVA?
Supplement on the KruskalWallis test So what do you do if you don t meet the assumptions of an ANOVA? {There are other ways of dealing with things like unequal variances and nonnormal data, but we won
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationNonparametric TwoSample Tests. Nonparametric Tests. Sign Test
Nonparametric TwoSample Tests Sign test MannWhitney Utest (a.k.a. Wilcoxon twosample test) KolmogorovSmirnov Test Wilcoxon SignedRank Test TukeyDuckworth Test 1 Nonparametric Tests Recall, nonparametric
More informationChapter 11. Chapter 11 Overview. Chapter 11 Objectives 11/24/2015. Other ChiSquare Tests
11/4/015 Chapter 11 Overview Chapter 11 Introduction 111 Test for Goodness of Fit 11 Tests Using Contingency Tables Other ChiSquare Tests McGrawHill, Bluman, 7th ed., Chapter 11 1 Bluman, Chapter 11
More informationCHAPTER 11. GOODNESS OF FIT AND CONTINGENCY TABLES
CHAPTER 11. GOODNESS OF FIT AND CONTINGENCY TABLES The chisquare distribution was discussed in Chapter 4. We now turn to some applications of this distribution. As previously discussed, chisquare is
More informationPoisson Models for Count Data
Chapter 4 Poisson Models for Count Data In this chapter we study loglinear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationLAB : THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationHypothesis Testing for Two Variances
Hypothesis Testing for Two Variances The standard version of the twosample t test is used when the variances of the underlying populations are either known or assumed to be equal In other situations,
More informationPASS Sample Size Software
Chapter 250 Introduction The Chisquare test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
More informationConfidence Interval: pˆ = E = Indicated decision: < p <
Hypothesis (Significance) Tests About a Proportion Example 1 The standard treatment for a disease works in 0.675 of all patients. A new treatment is proposed. Is it better? (The scientists who created
More informationDirectional (Circular) Statistics
Directional (Circular) Statistics Directional or circular distributions are those that have no true zero and any designation of high or low values is arbitrary: Compass direction Hours of the day Months
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationMAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More information103 Measures of Central Tendency and Variation
103 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.
More informationChisquare test Fisher s Exact test
Lesson 1 Chisquare test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions
More information6. Statistical Inference: Significance Tests
6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More information1 SAMPLE SIGN TEST. NonParametric Univariate Tests: 1 Sample Sign Test 1. A nonparametric equivalent of the 1 SAMPLE TTEST.
NonParametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A nonparametric equivalent of the 1 SAMPLE TTEST. ASSUMPTIONS: Data is nonnormally distributed, even after log transforming.
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationInvestigating the Investigative Task: Testing for Skewness An Investigation of Different Test Statistics and their Power to Detect Skewness
Investigating the Investigative Task: Testing for Skewness An Investigation of Different Test Statistics and their Power to Detect Skewness Josh Tabor Canyon del Oro High School Journal of Statistics Education
More informationTable 21. Sucrose concentration (% fresh wt.) of 100 sugar beet roots. Beet No. % Sucrose. Beet No.
Chapter 2. DATA EXPLORATION AND SUMMARIZATION 2.1 Frequency Distributions Commonly, people refer to a population as the number of individuals in a city or county, for example, all the people in California.
More informationindividualdifferences
1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,
More information13: Additional ANOVA Topics. Post hoc Comparisons
13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated KruskalWallis Test Post hoc Comparisons In the prior
More informationStatistical Impact of Slip Simulator Training at Los Alamos National Laboratory
LAUR1224572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia GarciaLopez Steven R. Booth September 2012
More informationStatistical Inference and ttests
1 Statistical Inference and ttests Objectives Evaluate the difference between a sample mean and a target value using a onesample ttest. Evaluate the difference between a sample mean and a target value
More informationANOVA  Analysis of Variance
ANOVA  Analysis of Variance ANOVA  Analysis of Variance Extends independentsamples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationEcon 424/Amath 462 Hypothesis Testing in the CER Model
Econ 424/Amath 462 Hypothesis Testing in the CER Model Eric Zivot July 23, 2013 Hypothesis Testing 1. Specify hypothesis to be tested 0 : null hypothesis versus. 1 : alternative hypothesis 2. Specify significance
More information