CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS


 Grace Day
 1 years ago
 Views:
Transcription
1 CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack of proper security system results in organizationally important Hypothesis 3: A proper security system in any organization increases data security and in turn efficiency and productivity of the organization. Hypothesis 4: Proper identification system reduces absenteeism 134
2 Types of Data: The random variables are of two types and two types of data are generated out of them: a) numerical and b) categorical A chi square (X 2 ) statistic is used in order to study whether the categorical variables differ from one another or not. The categorical variable generates data in the categories and numerical variable generates data in numerical form. For example, if it is asked  "What is your specialization?" or Do you own a bike?" are categorical type as they give data such as "computers" or "yes.", whereas questions like "What marks did you get?" or "What is your age?" are numerical type. It is very clear that the numerical data is basically of two types: 1) continuous, 2) discrete. To understand the differences between the types of numerical variables. Data Type Question Type Possible Responses Categorical What is your marital status? Married or unmarried Numerical(Discrete) Number of bikes that you 2 or 3 own? Numerical(Continuous) What s your height?
3  the Chi Square statistic compares the tallies or counts of categorical responses between two (or more) independent groups.  the Chi square tests are used only on actual numbers and not on percentages, proportions, or means. For example, A case of a medicine trial conducted on different animals. The hypothesis in this case was set that the animals consuming the drug shows increase in the heartbeat as compared to animals who did not consume the medicine. On conducting the study, researcher collected the following data: H0: The proportion of animals whose heartbeat increased is independent of medicine consumption.. H1: The proportion of animals whose heartbeat increased is associated with medicine treatment. Heartbeat Increased No Heartbeat Increase Total Treated Not treated Total
4 Applying the formula above we get: Chi square = 165[(56)(35)  (24)(50)] 2 / (80)(85)(59)(106) = The degree of freedom is very important before proceeding ahead. When a comparison is made between one sample and another, the degrees of freedom= (number of columns minus one) x (number of rows minus one) Thus, degree of freedom = (21) x (21) = 1. Now, the chi square statistic (x 2 = 2.818), alpha level of significance (0.05), and degrees of freedom (df = 1). From the data collected the Chi square distribution table has 1 degree of freedom and the value of x 2 (2.818) lies between and Thus we can see that the corresponding probability is between the 0.10 and 0.05 probability levels which means the pvalue is above As the pvalue> conventionally accepted significance level of 0.05 this proves that we accept the null hypothesis. Now if the new x 2 value is and this value exceeds the table value of (at 1 degree of freedom and an alpha level of 0.05). This means that p is less than the 0.05, so the alternative hypothesis is accepted. 137
5 Table 3. Chi Square distribution table. probability level (alpha) 138
6 4.1 Hypothesis 1: People are resistant to technological change in the security system of the organization. H 0 : Technological change in the security system and people s resistance are independent. H1 : Technological change in the security system and people s resistance are dependent. 22. Table showing readiness for change Table 4.1 : Table showing readiness for change S.No. Content Number of Respondents % of Respondents 1 Yes No The above table shows the view of the respondents for readiness for change. The total responses taken are 250 out of which 175 respondents are male and 75 respondents are female. 139
7 Consider the table below: Table : Table showing opinion of males and females for Table 4.1 Opinion Row Total Yes No Male Female Column Total Table : Table for Chi Square calculation for Table Groups OF EF OIJEIJ (OIJEIJ) 2 /EIJ Male Yes No Female Yes No
8 X 2 = (OIJEIJ)2/EI X 2 = Degree of freedom = (Column1) X (Row1) = (21) X (21) = 1 Significant level = 5% Table value for X 2 for 1 degree of freedom at 5% significance level = Conclusion: Calculated value of Chi Square [ ] is less than the table value [3.841]. So we accept the null hypothesis and conclude that technological change in the security system of the organization and people resistance towards change are independent. That is people are not resistance to the technological change in the security system of the organization. 141
9 4.2 Hypothesis 2: Lack of proper security system results in organizationally important information hacked and misused. H0: Security system and information hacking are independent H1: Security system and information hacking are dependent 18. Table showing views of the employees on use of a proper security system to save the data from getting hacked or misused if you feel data is not secured in a proper way. Table 4.2 : Table showing views of the employees on use of a proper security system to save the data from getting hacked or misused if you feel data is not secured in a proper way. S.No. Content Number of Respondents % of Respondents 1 Agree Indifferent Disagree
10 Table : Table showing opinion of males and females for Table 4.2 Opinion Row Total Agree Indifferent Disagree Male Female Column Total Table : Table for Chi Square calculation for Table Groups OF EF OIJEIJ (OIJEIJ) 2 /EIJ Male Agree Indifferent Disagree Female Agree Indifferent Disagree
11 X 2 = (OIJEIJ) 2 / EI X 2 = Degree of freedom = (Column1) X (Row1) = (31) X (21) = 2 Significant level = 5% Table value for X 2 for 1 degree of freedom at 5% significance level = Conclusion: Calculated value of Chi Square [ ] is greater than the table value [5.991]. So we reject the null hypothesis and conclude that security system and information hacking are dependent. I.e. if the security system is very strong information hacking is not possible. If there is a flaw in the security system the information can be easily hacked and it can be misused against the organization. 144
12 4.3 Hypothesis 3: A proper security system in any organization increases data security and in turn efficiency and productivity of the organization. H0: Proper identification system and data security are independent H1: Proper identification system and data security are dependent 19. Table showing employees views about the proper security system in the organization increases data security and in turn efficiency and productivity of the organizatoion. Table 4.3 : Table showing employees views about the proper security system in the organization increases data security and in turn efficiency and productivity of the organizatoion. S.No. Content Number of Respondents % of Respondents 1 Agree Indifferent Disagree
13 Table : Table showing opinion of males and females for Table 4.3 Opinion Row Total Agree Indifferent Disagree Male Female Column Total Table : Table for Chi Square calculation for Table Groups OF EF OIJEIJ (OIJEIJ) 2 /EIJ Male Agree Indifferent Disagree Female Agree Indifferent Disagree Total
14 X 2 = (OIJEIJ) 2 / EI X 2 = Degree of freedom = (Column1) X (Row1) = (31) X (21) = 2 Significant level = 5% Table value for X 2 for 1 degree of freedom at 5% significance level = Conclusion: Calculated value of Chi Square [ ] is greater than the table value [5.991]. So we reject the null hypothesis and conclude that proper security system and data security inturn efficiency and productivity are dependent. That is proper security system increase data security and inturn productivity and efficiency of the organization and security system. 147
15 4.4 Hypothesis 4: Proper identification system reduces absenteeism H0: Proper identification system and absenteeism are independent H1: Proper identification system and absenteeism are dependent 9. Table showing views about the proper identification system reduces absenteeism Table 4.4 : Table showing views about the proper identification system reduces absenteeism S.No. Content Number of Respondents % of Respondents 1 Agree Indifferent Disagree
16 Table : Table showing opinion of males and females for Table 4.4 Opinion Row Total Agree Indifferent Disagree Male Female Column Total Table : Table for Chi Square calculation for Table Groups OF EF OIJEIJ (OIJEIJ) 2 /EIJ Male Agree Indifferent Disagree Female Agree Indifferent Disagree
17 X 2 = (OIJEIJ) 2 /EI X 2 = Degree of freedom = (Column1) X (Row1) = (31) X (21) = 2 Significant level = 5% Table value for X 2 for 1 degree of freedom at 5% significance level = Conclusion: Calculated value of Chi Square [1.1092] is less than the table value [5.991]. So we accept the null hypothesis and conclude that proper identification system and absenteeism are independent. That is proper identification system does not bring any change in the absenteeism directly. 150
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More informationWISE Power Tutorial All Exercises
ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationSurvey on Persontoperson Direct Marketing Calls
RESEARCH REPORT SUBMITTED TO THE OFFICE OF THE PRIVACY COMMISSIONER FOR PERSONAL DATA Survey on Persontoperson Direct Marketing Calls Social Sciences Research Centre The University of Hong Kong August
More informationMINITAB ASSISTANT WHITE PAPER
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. OneWay
More informationDRIVER ATTRIBUTES AND REAREND CRASH INVOLVEMENT PROPENSITY
U.S. Department of Transportation National Highway Traffic Safety Administration DOT HS 809 540 March 2003 Technical Report DRIVER ATTRIBUTES AND REAREND CRASH INVOLVEMENT PROPENSITY Published By: National
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationThe Market Value of Online Degrees as a Credible Credential ABSTRACT
Calvin D. Fogle, DBA Western Governors University The Market Value of Online Degrees as a Credible Credential Devonda Elliott, Doctoral Candidate University of the Rockies ABSTRACT This exploratory research
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationResults from the 2014 AP Statistics Exam. Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu
Results from the 2014 AP Statistics Exam Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu The six freeresponse questions Question #1: Extracurricular activities
More informationBeginning Tutorials. PROC FREQ: It s More Than Counts Richard Severino, The Queen s Medical Center, Honolulu, HI OVERVIEW.
Paper 6925 PROC FREQ: It s More Than Counts Richard Severino, The Queen s Medical Center, Honolulu, HI ABSTRACT The FREQ procedure can be used for more than just obtaining a simple frequency distribution
More informationDraft 1, Attempted 2014 FR Solutions, AP Statistics Exam
Free response questions, 2014, first draft! Note: Some notes: Please make critiques, suggest improvements, and ask questions. This is just one AP stats teacher s initial attempts at solving these. I, as
More informationNonInferiority Tests for One Mean
Chapter 45 NonInferiority ests for One Mean Introduction his module computes power and sample size for noninferiority tests in onesample designs in which the outcome is distributed as a normal random
More informationChapter 9: TwoSample Inference
Chapter 9: TwoSample Inference Chapter 7 discussed methods of hypothesis testing about onepopulation parameters. Chapter 8 discussed methods of estimating population parameters from one sample using
More informationIBM SPSS Direct Marketing 22
IBM SPSS Direct Marketing 22 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 22, release
More informationWISE Sampling Distribution of the Mean Tutorial
Name Date Class WISE Sampling Distribution of the Mean Tutorial Exercise 1: How accurate is a sample mean? Overview A friend of yours developed a scale to measure Life Satisfaction. For the population
More informationTesting a Hypothesis about Two Independent Means
1314 Testing a Hypothesis about Two Independent Means How can you test the null hypothesis that two population means are equal, based on the results observed in two independent samples? Why can t you use
More informationMultivariate Analysis of Variance (MANOVA): I. Theory
Gregory Carey, 1998 MANOVA: I  1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the
More informationAP Statistics Packet 12/13
AP Statistics Packet 1/13 Inference for Proportions Inference for a Population Proportion Comparing Two Proportions Inference for Tables: ChiSquare Procedures Test for Goodness of Fit Inference for TwoWay
More informationInferential Statistics. What are they? When would you use them?
Inferential Statistics What are they? When would you use them? What are inferential statistics? Why learn about inferential statistics? Why use inferential statistics? When are inferential statistics utilized?
More informationAn analysis method for a quantitative outcome and two categorical explanatory variables.
Chapter 11 TwoWay ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that
More informationHypothesis Test for Mean Using Given Data (Standard Deviation Knownztest)
Hypothesis Test for Mean Using Given Data (Standard Deviation Knownztest) A hypothesis test is conducted when trying to find out if a claim is true or not. And if the claim is true, is it significant.
More information9. Sampling Distributions
9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling
More informationANOVA ANOVA. TwoWay ANOVA. OneWay ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups
ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status nonsmoking one pack a day > two packs a day dependent variable: number of
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationOnline Selection of Mediated and DomainSpecific Predictions for Improved Recommender Systems
Online Selection of Mediated and DomainSpecific Predictions for Improved Recommender Systems Stephanie Rosenthal, Manuela Veloso, Anind Dey School of Computer Science Carnegie Mellon University {srosenth,veloso,anind}@cs.cmu.edu
More informationSelecting a Subset of Cases in SPSS: The Select Cases Command
Selecting a Subset of Cases in SPSS: The Select Cases Command When analyzing a data file in SPSS, all cases with valid values for the relevant variable(s) are used. If I opened the 1991 U.S. General Social
More information