# How To Check For Differences In The One Way Anova

Size: px
Start display at page:

Transcription

1 MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way ANOVA Overview One-way ANOVA is used to compare the means of three or more groups to determine whether they differ significantly from one another. Another important function is to estimate the differences between specific groups. The most common method to detect differences among groups in one-way ANOVA is the F-test, which is based on the assumption that the populations for all samples share a common, but unknown, standard deviation. We recognized, in practice, that samples often have different standard deviations. Therefore, we wanted to investigate the Welch method, an alternative to the F-test, which can handle unequal standard deviations. We also wanted to develop a method to calculate multiple comparisons that accounts for samples with unequal standard deviations. With this method, we can graph the individual intervals, which provide an easy way to identify groups that differ from one another. In this paper, we describe how we developed the methods used in the Minitab Assistant One- Way ANOVA procedure for: Welch test Multiple comparison intervals Additionally, we examine conditions that can affect the validity of the one-way ANOVA results, including the presence of unusual data, the sample size and power of the test, and the normality of the data. Based on these conditions, the Assistant automatically performs the following checks on your data and reports the findings in the Report Card: Unusual data Sample size Normality of data

2 In this paper, we investigate how these conditions relate to one-way ANOVA in practice and we describe how we established the guidelines to check for these conditions in the Assistant. ONE-WAY ANOVA 2

3 One-way ANOVA methods The F-test versus the Welch test The F-test commonly used in one-way ANOVA is based on the assumption that all of the groups share a common, but unknown, standard deviation (σ). In practice, this assumption rarely holds true, which leads to problems controlling the Type I error rate. Type I error is the probability of incorrectly rejecting the null hypothesis (concluding the samples are significantly different when they are not). When the samples have different standard deviations, there is a greater likelihood that the test will reach an incorrect conclusion. To address this problem, the Welch test was developed as an alternative to the F-test (Welch, 1951). Objective We wanted to determine whether to use the F-test or the Welch test for the One-Way ANOVA procedure in the Assistant. To do this, we needed to evaluate how closely the actual test results for the F-test and the Welch test matched the target level of significance (alpha, or Type I error rate) for the test; that is, whether the test incorrectly rejected the null hypothesis more often or less often than intended given different sample sizes and sample standard deviations. Method To compare the F-test and the Welch test, we performed multiple simulations, varying the number of samples, the sample size, and the sample standard deviation. For each condition, we performed 10,000 ANOVA tests using both the F-test and the Welch method. We generated random data so that the means of the samples were the same and thus, for each test, the null hypothesis was true. Then, we performed the tests using target significance levels of and. We counted the number of times out of 10,000 tests the F-test and Welch tests actually rejected the null hypothesis, and compared this proportion to the target significance level. If the test performs well, the estimated Type I error should be very close to the target significance level. Results We found that Welch method performed as well as or better than the F-test under all of the conditions we tested. For example, when comparing 5 samples using the Welch test, the Type I error rates were between and 40, very close to the target significance level of. This indicates that Type I error rate for the Welch method matches the target value even when sample size and standard deviation varies across samples. ONE-WAY ANOVA 3

4 On the other hand, the Type I error rates for the F-test were between and In particular, the F-test did poorly under the following conditions: The Type I error rates fell below when the largest sample also had the largest standard deviation. This condition results in a more conservative test and demonstrates that simply increasing the sample size is not a viable solution when the standard deviations for the samples are not equal. The Type I error rates were above when the sample sizes were equal but standard deviations were different. The rates were also greater than when the sample with a larger standard deviation was of a smaller size than the other samples. In particular, when smaller samples have larger standard deviations, there is a substantial increase in the risk that this test incorrectly rejects the null hypothesis. For more information on the simulation methodology and results, see Appendix A. Because the Welch method performed well when the standard deviations and sizes of the samples were unequal, we use the Welch method for the One-way ANOVA procedure in the Assistant. Comparison intervals When an ANOVA test is statistically significant, indicating that at least one of the sample means is different from the others, the next step in the analysis is to determine which samples are statistically different. An intuitive way to make this comparison is to graph the confidence intervals and identify the samples whose intervals do not overlap. However, the conclusions drawn from the graph may not match the test results because the individual confidence intervals are not designed for comparisons. Although a published method for multiple comparisons exists for samples with equal standard deviations, we needed to extend this method to account for samples with unequal standard deviations. Objective We wanted to develop a method to calculate individual comparison intervals that can be used to make comparisons across samples and that also match the test results as closely as possible. We also wanted to provide a visual method for determining which samples are statistically different from the others. Method Standard multiple comparison methods (Hsu 1996) provide an interval for the difference between each pair of means while controlling for the increased error that occurs when making multiple comparisons. In the special case of equal sample sizes and under the assumption of equal standard deviations, it is possible to display individual intervals for each mean in a way that corresponds exactly to the intervals for the differences of all the pairs. For the case of unequal sample sizes, with the assumption of equal standard deviations, Hochberg, Weiss, and Hart (1982) developed individual intervals that are approximately equivalent to the intervals for ONE-WAY ANOVA 4

5 differences among pairs, based on the Tukey-Kramer method of multiple comparisons. In the Assistant, we apply the same approach to the Games-Howell method of multiple comparisons, which does not assume equal standard deviations. The approach used in the Assistant in release 16 of Minitab was similar in concept, but was not based directly on the Games-Howell approach. For more details, see Appendix B. Results The Assistant displays the comparison intervals in the Means Comparison Chart in the One-Way ANOVA Summary Report. When the ANOVA test is statistically significant, any comparison interval that does not overlap with at least one other interval is marked in red. It is possible for the test and the comparison intervals to disagree, although this outcome is rare because both methods have the same probability of rejecting the null hypothesis when it is true. If the ANOVA test is significant yet all of the intervals overlap, then the pair with the smallest amount of overlap is marked in red. If the ANOVA test is not statistically significant, then none of the intervals are marked in red, even if some of the intervals do not overlap. ONE-WAY ANOVA 5

6 Data checks Unusual data Unusual data are extremely large or small data values, also known as outliers. Unusual data can have a strong influence on the results of the analysis and can affect the chances of finding statistically significant results, especially when the sample is small. Unusual data can indicate problems with data collection, or may be due to unusual behavior of the process you are studying. Therefore, these data points are often worth investigating and should be corrected when possible. Objective We wanted to develop a method to check for data values that are very large or very small relative to the overall sample, which may affect the results of the analysis. Method We developed a method to check for unusual data based on the method described by Hoaglin, Iglewicz, and Tukey (1986) to identify outliers in boxplots. Results The Assistant identifies a data point as unusual if it is more than 1.5 times the interquartile range beyond the lower or upper quartile of the distribution. The lower and upper quartiles are the 25 th and 75 th percentiles of the data. The interquartile range is the difference between the two quartiles. This method works well even when there are multiple outliers because it makes it possible to detect each specific outlier. When checking for unusual data, the Assistant displays the following status indicators in the Report Card: Status Condition There are no unusual data points. At least one data point is unusual and may have a strong influence on the results. ONE-WAY ANOVA 6

7 Sample size Power is an important property of any hypothesis test because it indicates the likelihood that you will find a significant effect or difference when one truly exists. Power is the probability that you will reject the null hypothesis in favor of the alternative hypothesis. Often, the easiest way to increase the power of a test is to increase the sample size. In the Assistant, for tests with low power, we indicate how large your sample needs to be to find the difference you specified. If no difference is specified, we report the difference you could detect with adequate power. To provide this information, we needed to develop a method for calculating power because the Assistant uses the Welch method, which does not have an exact formula for power. Objective To develop a methodology for calculating power, we needed to address two questions. First, the Assistant does not require that users enter a full set of means; it only requires that they enter a difference between means that has practical implications. For any given difference, there are an infinite number of possible configurations of means that could produce that difference. Therefore, we needed to develop a reasonable approach to determine which means to use when calculating power, given that we could not calculate power for all possible configurations of means. Second, we needed to develop a method to calculate power because the Assistant uses the Welch method, which does not require equal sample sizes or standard deviations. Method To address the infinite number of possible configurations of means, we developed a method based on the approach used in the standard one-way ANOVA procedure in Minitab (Stat > ANOVA > One-Way). We focused on the cases where only two of the means differ by the stated amount and the other means are equal (set to the weighted average of the means). Because we assume that only two means differ from the overall mean (and not more than two), the approach provides a conservative estimate of power. However, because the samples may have different sizes or standard deviations, the power calculation still depends on which two means are assumed to differ. To solve this problem, we identify the two pairs of means that represent the best and worst cases. The worst case occurs when the sample size is small relative to the sample variance, and power is minimized; the best case occurs when the sample size is large relative to the sample variance, and power is maximized. All of the power calculations consider these two extreme cases, which minimize and maximize the power under the assumption that exactly two means differ from the overall weighted average of means. To develop the power calculation, we used a method shown in Kulinskaya et al. (2003). We compared the power calculations from our simulation, the method we developed to address the configuration of means and the method shown in Kulinskaya et al. (2003). We also examined another power approximation that shows more clearly how power depends on the configuration of means. For more information on the power calculation, see Appendix C. ONE-WAY ANOVA 7

8 Results Our comparison of these methods showed that the Kulinskaya method provides a good approximation of power and that our method for handling the configuration of means is appropriate. When the data does not provide enough evidence against the null hypothesis, the Assistant calculates practical differences that can be detected with an 80% and a 90% probability for the given sample sizes. In addition, if you specify a practical difference, the Assistant calculates the minimum and maximum power values for this difference. When the power values are below 90%, the Assistant calculates a sample size based on the specified difference and the observed sample standard deviations. To ensure that the sample size results in both the minimum and maximum power values being 90% or greater, we assume that the specified difference is between the two means with the greatest variability. If the user does not specify a difference, the Assistant finds the largest difference at which the maximum of the range of power values is 60%. This value is labeled at the boundary between the red and yellow bars on the Power Report, corresponding to 60% power. We also find the smallest difference at which the minimum of the range of power values is 90%. This value is labeled at the boundary between the yellow and green bars on the Power Report, corresponding to 90% power. When checking for power and sample size, the Assistant displays the following status indicators in the Report Card: Status Condition The data does not provide sufficient evidence to conclude that there are differences among the means. No difference was specified. The test finds a difference between the means, so power is not an issue. OR Power is sufficient. The test did not find a difference between the means, but the sample is large enough to provide at least a 90% chance of detecting the given difference. Power may be sufficient. The test did not find a difference between the means, but the sample is large enough to provide an 80% to 90% chance of detecting the given difference. The sample size required to achieve 90% power is reported. Power might not be sufficient. The test did not find a difference between the means, and the sample is large enough to provide a 60% to 80% chance of detecting the given difference. The sample sizes required to achieve 80% power and 90% power are reported. Power is not sufficient. The test did not find a difference between the means, and the sample is not large enough to provide at least a 60% chance of detecting the given difference. The sample sizes required to achieve 80% power and 90% power are reported. ONE-WAY ANOVA 8

9 Normality A common assumption in many statistical methods is that the data are normally distributed. Fortunately, even when data are not normally distributed, methods based on the normality assumption can work well. This is in part explained by the central limit theorem, which says that the distribution of any sample mean has an approximate normal distribution and that the approximation becomes almost normal as the sample size gets larger. Objective Our objective was to determine how large the sample needs to be to give a reasonably good approximation of the normal distribution. We wanted to examine the Welch test and comparison intervals with samples of small to moderate size with various nonnormal distributions. We wanted to determine how closely the actual test results for Welch method and the comparison intervals matched the chosen level of significance (alpha, or Type I error rate) for the test; that is, whether the test incorrectly rejected the null hypothesis more often or less often than expected given different sample sizes, numbers of levels, and nonnormal distributions. Method To estimate the Type I error, we performed multiple simulations, varying the number of samples, sample size, and the distribution of the data. The simulations included skewed and heavy-tailed distributions that depart substantially from the normal distribution. The size and standard deviation were constant across samples within each test. For each condition, we performed 10,000 ANOVA tests using the Welch method and the comparison intervals. We generated random data so that the means of the samples were the same and thus, for each test, the null hypothesis was true. Then, we performed the tests using a target significance level of. We counted the number of times out of 10,000 when the tests actually rejected the null hypothesis, and compared this proportion to the target significance level. For the comparison intervals, we counted the number of times out of 10,000 when the intervals indicated one or more difference. If the test performs well, the Type I error should be very close to the target significance level. Results Overall, the tests and the comparison intervals perform very well across all conditions with sample sizes as small as 10 or 15. For tests with 9 or fewer levels, in almost every case, the results are all within 3 percentage points of the target significance level for a sample size of 10 and within 2 percentage points for a sample size of 15. For tests that have 10 or more levels, in most cases the results are within 3 percentage points with a sample size of 15 and within 2 percentage points with a sample size of 20. For more information, see Appendix D. ONE-WAY ANOVA 9

10 Because the tests perform well with relatively small samples, the Assistant does not test the data for normality. Instead, the Assistant checks the size of the samples and indicates when the samples are less than 15 for 2-9 levels and less than 20 for levels. Based on these results, the Assistant displays the following status indicators in the Report Card: Status Condition The sample sizes are at least 15 or 20, so normality is not an issue. Because some sample sizes are less than 15 or 20, normality may be an issue. ONE-WAY ANOVA 10

11 References Dunnet, C. W. (1980). Pairwise Multiple Comparisons in the Unequal Variance Case. Journal of the American Statistical Association, 75, Hoaglin, D. C., Iglewicz, B., and Tukey, J. W. (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81, Hochberg, Y., Weiss G., and Hart, S. (1982). On graphical procedures for multiple comparisons. Journal of the American Statistical Association, 77, Hsu, J. (1996). Multiple comparisons: Theory and methods. Boca Raton, FL: Chapman & Hall. Kulinskaya, E., Staudte, R. G., and Gao, H. (2003). Power approximations in testing for unequal means in a One-Way ANOVA weighted for unequal variances, Communication in Statistics, 32 (12), Welch, B.L. (1947). The generalization of Student s problem when several different population variances are involved. Biometrika, 34, Welch, B.L. (1951). On the comparison of several mean values: An alternative approach. Biometrika 38, ONE-WAY ANOVA 11

12 Appendix A: The F-test versus the Welch test The F-test can result in an increase of the Type I error rate when the assumption of equal standard deviations is violated; the Welch test is designed to avoid these problems. Welch test Random samples of sizes n 1,, n k from k populations are observed. Let μ 1,,μ k denote the population means and let,, denote the population variances. Let,, denote the sample means and let,, denote the sample variances. We are interested in testing the hypotheses: H 0 : H 1 : for some i, j. The Welch test for testing the equality of k means compares the statistic to the F(k 1, f) distribution, where,,, and., The Welch test rejects the null hypothesis if,,, the percentile of the F distribution that is exceeded with probability. Unequal standard deviations In this section we demonstrate the sensitivity of the F-test to violations of the assumption of equal standard deviations and compare it to the Welch test. The results below are for one-way ANOVA tests using 5 samples of N(0, σ 2 ). Each row is based on 10,000 simulations using the F-test and the Welch test. We tested two conditions for the standard deviation by increasing the standard deviation of the fifth sample, doubling it and ONE-WAY ANOVA 12

13 quadrupling it compared to the other samples. We tested three different conditions for the sample size: samples sizes are equal, the fifth sample is greater than the others, and the fifth sample is less than the others. Table 1 Type I error rates for simulated F-tests and Welch tests with 5 samples with target significance level = Standard deviation (σ1, σ2, σ3, σ4, σ5) Sample size (n1, n2, n3, n4, n5) F-test Welch test 1, 1, 1, 1, 2 10, 10, 10, 10, , 1, 1, 1, 2 20, 20, 20, 20, , 1, 1, 1, 2 20, 20, 20, 20, , 1, 1, 1, 4 10, 10, 10, 10, , 1, 1, 1, 4 20, 20, 20, 20, , 1, 1, 1, 4 20, 20, 20, 20, When the sample sizes are equal (rows 2 and 5), the probability that the F-test incorrectly rejects the null hypothesis is greater than the target, and the probability increases when the inequality among standard deviations is greater. The problem is made even worse by decreasing the size of the sample with the largest standard deviation. On the other hand, increasing the size of the sample with the largest standard deviation reduces the probability of rejection. However, increasing the sample size by too much makes the probability of rejection too small, which not only makes the test more conservative than necessary under the null hypothesis, but also adversely affects the power of the test under the alternative hypothesis. Compare these results with the Welch test, which agrees well with the target significance level of in every case. Next we conducted a simulation for cases with k = 7 samples. Each row of the table summarizes 10,000 simulated F-tests. We varied the standard deviations and sizes of the samples. The target significance levels are = and =. As above, we see deviations from the target values that can be quite severe. Using a smaller sample size when variability is higher leads to very large Type I error probabilities, while using a larger sample can lead to an extremely conservative test. The results are shown in Table 2 below. Table 2 Type I error rates for simulated F-tests with 7 samples Standard deviation (σ1, σ2, σ3, σ4, σ5, σ6, σ7) Sample sizes (n1, n2, n3, n4, n5, n6, n7) Target = Target = 1.85, 1.85, 1.85, 1.85, 1.85, 1.85, , 21, 21, 21, 22, 22, , 1.85, 1.85, 1.85, 1.85, 1.85, , 21, 21, 21, 21, 24, ONE-WAY ANOVA 13

14 Standard deviation (σ1, σ2, σ3, σ4, σ5, σ6, σ7) Sample sizes (n1, n2, n3, n4, n5, n6, n7) Target = Target = 1.85, 1.85, 1.85, 1.85, 1.85, 1.85, , 21, 21, 21, 21, 21, , 1.85, 1.85, 1.85, 1.85, 1.85, , 20, 20, 21, 21, 23, , 1.85, 1.85, 1.85, 1.85, 1.85, , 20, 20, 20, 21, 21, , 1.85, 1.85, 1.85, 1.85, 1.85, , 20, 20, 20, 20, 20, , 1.85, 1.85, 1.85, 1.85, 1.85, , 19, 19, 20, 20, 20, , 1.85, 1.85, 1.85, 1.85, 1.85, , 18, 18, 18, 18, 18, , 1.85, 1.85, 1.85, 1.85, 1.85, , 18, 18, 19, 20, 20, , 1.85, 1.85, 1.85, 1.85, 1.85, , 18, 18, 18, 19, 19, , 1.85, 1.85, 1.85, 1.85, 1.85, , 15, 15, 15, 15, 15, , 1.85, 1.85, 1.85, 1.85, 1.85, , 12, 12, 12, 12, 12, , 1.75, 1.75, 1.75, 1.75, 1.75, , 21, 21, 21, 22, 22, , 1.75, 1.75, 1.75, 1.75, 1.75, , 21, 21, 21, 21, 24, , 1.75, 1.75, 1.75, 1.75, 1.75, , 21, 21, 21, 21, 21, , 1.75, 1.75, 1.75, 1.75, 1.75, , 20, 20, 21, 21, 23, , 1.75, 1.75, 1.75, 1.75, 1.75, , 20, 20, 20, 21, 21, , 1.75, 1.75, 1.75, 1.75, 1.75, , 20, 20, 20, 20, 20, , 1.75, 1.75, 1.75, 1.75, 1.75, , 19, 19, 20, 20, 20, , 1.75, 1.75, 1.75, 1.75, 1.75, , 18, 18, 18, 18, 18, , 1.75, 1.75, 1.75, 1.75, 1.75, , 18, 18, 19, 20, 20, , 1.75, 1.75, 1.75, 1.75, 1.75, , 18, 18, 18, 19, 19, , 1.75, 1.75, 1.75, 1.75, 1.75, , 15, 15, 15, 15, 15, , 1.75, 1.75, 1.75, 1.75, 1.75, , 12, 12, 12, 12, 12, , , , , , , , , , , , , , 21, 21, 21, 22, 22, , 21, 21, 21, 21, 24, ONE-WAY ANOVA 14

15 Standard deviation (σ1, σ2, σ3, σ4, σ5, σ6, σ7) Sample sizes (n1, n2, n3, n4, n5, n6, n7) Target = Target = , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 21, 21, 21, 21, 21, , 20, 20, 21, 21, 23, , 20, 20, 20, 21, 21, , 20, 20, 20, 20, 20, , 19, 19, 20, 20, 20, , 18, 18, 18, 18, 18, , 18, 18, 19, 20, 20, , 18, 18, 18, 19, 19, , 15, 15, 15, 15, 15, , 12, 12, 12, 12, 12, , 1.55, 1.55, 1.55, 1.55, 1.55, , 21, 21, 21, 22, 22, , 1.55, 1.55, 1.55, 1.55, 1.55, , 21, 21, 21, 21, 24, , 1.55, 1.55, 1.55, 1.55, 1.55, , 21, 21, 21, 21, 21, , 1.55, 1.55, 1.55, 1.55, 1.55, , 20, 20, 21, 21, 23, , 1.55, 1.55, 1.55, 1.55, 1.55, , 20, 20, 20, 21, 21, , 1.55, 1.55, 1.55, 1.55, 1.55, , 20, 20, 20, 20, 20, , 1.55, 1.55, 1.55, 1.55, 1.55, , 19, 19, 20, 20, 20, , 1.55, 1.55, 1.55, 1.55, 1.55, , 18, 18, 18, 18, 18, , 1.55, 1.55, 1.55, 1.55, 1.55, , 18, 18, 19, 20, 20, , 1.55, 1.55, 1.55, 1.55, 1.55, , 18, 18, 18, 19, 19, , 1.55, 1.55, 1.55, 1.55, 1.55, , 15, 15, 15, 15, 15, ONE-WAY ANOVA 15

16 Standard deviation (σ1, σ2, σ3, σ4, σ5, σ6, σ7) Sample sizes (n1, n2, n3, n4, n5, n6, n7) Target = Target = 1.55, 1.55, 1.55, 1.55, 1.55, 1.55, , 12, 12, 12, 12, 12, ONE-WAY ANOVA 16

17 Appendix B: Comparison intervals The means comparison chart allows you to evaluate the statistical significance of differences among the population means. One-Way ANOVA for C1, C2, C3, C4 Summary Report Do the means differ? > 0.5 Yes No P < Differences among the means are significant (p < ). Sample C1 C2 C3 C4 Which means differ? Differs from C3 C4 C4 C1 C1 C2 Means Comparison Chart Red intervals that do not overlap differ. Comments C1 Test: You can conclude that there are differences among the means at the level of significance. Comparison Chart: Look for red comparison intervals that do not overlap to identify means that differ from each other. Consider the size of the differences to determine if they have practical implications. C2 C3 C Figure 1 The Means Comparison Chart in the Assistant One-Way ANOVA Summary Report ONE-WAY ANOVA 17

18 A similar set of intervals appears in the output for the standard one-way ANOVA procedure in Minitab (Stat > ANOVA > One-Way): Interval Plot of C1, C2,... 95% CI for the Mean 10 8 Data C1 C2 C3 C4 Individual standard deviations were used to calculate the intervals. Worksheet: Worksheet 1 However, note that the intervals above are simply individual confidence intervals for the means. When the ANOVA test (either F or Welch) concludes that some means are different, there is a natural tendency to look for intervals that do not overlap and draw conclusions about which means differ. This informal analysis of the individual confidence intervals will often lead to reasonable conclusions, but it does not control for the probability of error the same way the ANOVA test does. Depending on the number of populations, the intervals may be substantially more or less likely than the test to conclude that there are differences. As a result, the two methods can easily reach inconsistent conclusions. The comparison chart is designed to more consistently match the Welch test results when making multiple comparisons, although it is not always possible to achieve complete consistency. Multiple comparison methods, such as such as the Tukey-Kramer and Games-Howell comparisons in Minitab (Stat > ANOVA > One-Way), allow you to draw statistically valid conclusions about differences among the individual means. These two methods are pairwise comparison methods, which provide an interval for the difference between each pair of means. The probability that all intervals simultaneously contain the differences they are estimating is at least 1. The Tukey-Kramer method depends on the assumption of equal variances, while the Games-Howell method does not require equal variances. If the null hypothesis of equal means is true, then all the differences are zero, and the probability that any of the Games-Howell intervals will fail to contain zero is at most. So we can use the intervals to perform a hypothesis test ONE-WAY ANOVA 18

19 with significance level. We use Games-Howell intervals as the starting point for deriving the comparison chart intervals in the Assistant. Given a set of intervals [L ij, U ij ] for all the differences μ i μ j, 1 i < j k, we want to find a set of intervals [L i, U i ] for the individual means μ i, 1 i k, that conveys the same information. This requires that any difference d is in the interval [L ij, U ij ] if, and only if, there exists, and, such that. The endpoints of the intervals must be related by the equations. For k = 2, we have only one difference but two individual intervals, so it is possible to obtain exact comparison intervals. In fact, there is quite a bit of flexibility in the width of the intervals that satisfy this condition. For k = 3, there are three differences and three individual intervals, so again it is possible to satisfy the condition, but now without the flexibility in setting the width of the intervals. For k = 4, there are six differences but only four individual intervals. Comparison intervals must try to convey the same information using fewer intervals. In general, for k 4, there are more differences than individual means, so there is not an exact solution unless additional conditions are imposed on the intervals for differences, such as equal widths. Tukey-Kramer intervals have equal widths only if all the sample sizes are the same. The equal widths are also a consequence of assuming equal variances. Games-Howell intervals do not assume equal variances, and so do not have equal widths. In the Assistant, we will have to rely on approximate methods to define comparison intervals. The Games-Howell interval for is, where, is the appropriate percentile of the studentized range distribution, which depends on k, the number of means being compared, and on ν ij, the degrees of freedom associated with the pair (i, j): Hochberg, Weiss, and Hart (1982) obtained individual intervals that are approximately equivalent to these pairwise comparisons by using:,. The values are selected to minimize, ONE-WAY ANOVA 19

20 Where: 1 1. We adapt this approach to the case of unequal variances by deriving intervals from Games- Howell comparisons of the form. The values are selected to minimize Where:,,. The solution is,,. The graphs below compare simulation results for the Welch test with the results for comparison intervals using two methods: the Games-Howell based method we use now, and the method used in release 16 of Minitab based on an averaging of degrees of freedom. The vertical axis is the proportion of times out of 10,000 simulations that the Welch test incorrectly rejects the null hypotheses or that not all the comparison intervals overlap. The target alpha is in these examples. These simulations cover various cases of unequal standard deviations and sample sizes; each position along the horizontal axis represents a different case. ONE-WAY ANOVA 20

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### Variables Control Charts

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### SPSS Manual for Introductory Applied Statistics: A Variable Approach

SPSS Manual for Introductory Applied Statistics: A Variable Approach John Gabrosek Department of Statistics Grand Valley State University Allendale, MI USA August 2013 2 Copyright 2013 John Gabrosek. All

### Appendix 2.1 Tabular and Graphical Methods Using Excel

Appendix 2.1 Tabular and Graphical Methods Using Excel 1 Appendix 2.1 Tabular and Graphical Methods Using Excel The instructions in this section begin by describing the entry of data into an Excel spreadsheet.

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### ESTIMATING COMPLETION RATES FROM SMALL SAMPLES USING BINOMIAL CONFIDENCE INTERVALS: COMPARISONS AND RECOMMENDATIONS

PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 49th ANNUAL MEETING 200 2 ESTIMATING COMPLETION RATES FROM SMALL SAMPLES USING BINOMIAL CONFIDENCE INTERVALS: COMPARISONS AND RECOMMENDATIONS Jeff

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Skewed Data and Non-parametric Methods

0 2 4 6 8 10 12 14 Skewed Data and Non-parametric Methods Comparing two groups: t-test assumes data are: 1. Normally distributed, and 2. both samples have the same SD (i.e. one sample is simply shifted

### Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

Table of Contents Introduction to Minitab...2 Example 1 One-Way ANOVA...3 Determining Sample Size in One-way ANOVA...8 Example 2 Two-factor Factorial Design...9 Example 3: Randomized Complete Block Design...14

### Non-Inferiority Tests for One Mean

Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random

### Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Multiple-Comparison Procedures

Multiple-Comparison Procedures References A good review of many methods for both parametric and nonparametric multiple comparisons, planned and unplanned, and with some discussion of the philosophical

### How To Write A Data Analysis

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

### Confidence Intervals for Cp

Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### WISE Power Tutorial All Exercises

ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### Comparing Means in Two Populations

Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

### January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

### Draft 1, Attempted 2014 FR Solutions, AP Statistics Exam

Free response questions, 2014, first draft! Note: Some notes: Please make critiques, suggest improvements, and ask questions. This is just one AP stats teacher s initial attempts at solving these. I, as

### Statistics courses often teach the two-sample t-test, linear regression, and analysis of variance

2 Making Connections: The Two-Sample t-test, Regression, and ANOVA In theory, there s no difference between theory and practice. In practice, there is. Yogi Berra 1 Statistics courses often teach the two-sample

### Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

### Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### How To Test For Significance On A Data Set

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### CHAPTER 13. Experimental Design and Analysis of Variance

CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection

### TImath.com. F Distributions. Statistics

F Distributions ID: 9780 Time required 30 minutes Activity Overview In this activity, students study the characteristics of the F distribution and discuss why the distribution is not symmetric (skewed

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### Confidence Intervals for the Difference Between Two Means

Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

### Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

### Statistical Functions in Excel

Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.

### Confidence Intervals for Cpk

Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

### Confidence Intervals for One Standard Deviation Using Standard Deviation

Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### 12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

### Visualization Quick Guide

Visualization Quick Guide A best practice guide to help you find the right visualization for your data WHAT IS DOMO? Domo is a new form of business intelligence (BI) unlike anything before an executive

### Unit 31: One-Way ANOVA

Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which

### Name: Date: Use the following to answer questions 3-4:

Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

### Tests for Two Proportions

Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

### Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of

### Biostatistics: Types of Data Analysis

Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS

### Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

### ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of

### Unit 27: Comparing Two Means

Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

### Chi Square Tests. Chapter 10. 10.1 Introduction

Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square

### Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

### Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

### Drawing a histogram using Excel

Drawing a histogram using Excel STEP 1: Examine the data to decide how many class intervals you need and what the class boundaries should be. (In an assignment you may be told what class boundaries to

### Analysis of Student Retention Rates and Performance Among Fall, 2013 Alternate College Option (ACO) Students

1 Analysis of Student Retention Rates and Performance Among Fall, 2013 Alternate College Option (ACO) Students A Study Commissioned by the Persistence Committee Policy Working Group prepared by Jeffrey

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

### MEASURES OF LOCATION AND SPREAD

Paper TU04 An Overview of Non-parametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the

### Exploratory Data Analysis

Exploratory Data Analysis Learning Objectives: 1. After completion of this module, the student will be able to explore data graphically in Excel using histogram boxplot bar chart scatter plot 2. After