An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS"

Transcription

1 The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice Problems Instructors: Dr. Samir Safi Mr. Ibrahim Abed SECTION I: MULTIPLE-CHOICE 1. The t test for the difference between the means of independent populations assumes that the respective a. sample sizes are equal. b. sample variances are equal. c. populations are approximately normal. d. All of the above.. If we are testing for the difference between the means of related populations with samples of n 1 = 0 and n = 0, the number of degrees of freedom is equal to a. 39. b. 38. c. 19. d In testing for differences between the means of two related populations, the null hypothesis is a. H 0 D =. b. H : 0 0 µ D =. c. H : 0 0 µ D <. d. H 0 D > In testing for differences between the means of two independent populations, the null hypothesis is: a. H 0: µ 1 µ =. b. H 0 1 µ = 0. c. H 0 1 µ > 0. d. H 0 1 µ <. 1

2 5. When testing H 0 1 µ 0 versus H 1 1 µ > 0, the observed value of the Z- score was found to be.13. The p-value for this test would be a b c d If we wish to determine whether there is evidence that the proportion of items of interest is higher in group 1 than in group, the appropriate test to use is a) the Z test for the difference between two proportions. b) the F test for the difference between two variances. c) the pooled-variance t test for the difference between two proportions. d) the F test for the difference between two proportions.

3 SECTION II: TRUE OR FALSE 1. The sample size in each independent sample must be the same if we are to test for differences between the means of independent populations. False. When testing for differences between the means of related populations, we can use either a one-tailed or two-tailed test. 3. The test for the equality of population variances assumes that each of the populations is normally distributed. 4. When the sample sizes are equal, the pooled variance of the groups is the average of the sample variances. 5. A researcher is curious about the effect of sleep on students test performances. He chooses 60 students and gives each tests: one given after hours sleep and one after 8 hours sleep. The test the researcher should use would be a related samples test. 6. A statistics professor wanted to test whether the grades on a statistics test were the same for upper and lower classmen. The professor took a random sample of size 10 from each, conducted a test and found out that the variances were equal. For this situation, the professor should use a t test with related samples. False 7. In testing the difference between two proportions using the normal distribution, we may use a two-tailed Z test. 3

4 SECTION III: FREE RESPONSE QUESTIONS TABLE (A) A researcher randomly sampled 30 graduates of an MBA program and recorded data concerning their starting salaries. Of primary interest to the researcher was the effect of gender on starting salaries. Analysis of the mean salaries of the females and males in the sample is given below. Hypothesized Difference 0 Level of Significance 0.05 Population 1 Sample Sample Size 18 Sample Mean Sample Standard Deviation Population Sample Sample Size 1 Sample Mean Sample Standard Deviation Difference in Sample Means t-test Statistic Lower-Tail Test Lower Critical Value p-value the researcher was attempting to show statistically that the female MBA graduates have a significantly lower mean starting salary than the male MBA graduates. According to the test run, which of the following is an appropriate alternative hypothesis? H > µ a. 1 females males b. H 1 females < µ males c. H 1 females µ males d. H 1 females = µ males. the researcher was attempting to show statistically that the female MBA graduates have a significantly lower mean starting salary than the male MBA graduates. From the analysis in Table 10-, the correct test statistic is: a b c d. 6,

5 3. the researcher was attempting to show statistically that the female MBA graduates have a significantly lower mean starting salary than the male MBA graduates. The proper conclusion for this test is: a. At the α = 0.10 level, there is sufficient evidence to indicate a difference in the mean starting salaries of male and female MBA graduates. b. At the α = 0.10 level, there is sufficient evidence to indicate that females have a lower mean starting salary than male MBA graduates. c. At the α = 0.10 level, there is sufficient evidence to indicate that females have a higher mean starting salary than male MBA graduates. d. At the α = 0.10 level, there is insufficient evidence to indicate any difference in the mean starting salaries of male and female MBA graduates. 4. the researcher was attempting to show statistically that the female MBA graduates have a significantly lower mean starting salary than the male MBA graduates. What assumptions were necessary to conduct this hypothesis test? a. Both populations of salaries (male and female) must have approximate normal distributions. b. The population variances are approximately equal. c. The samples were randomly and independently selected. d. All of the above assumptions were necessary. 5. what is the 99% confidence interval estimate for the difference between two means? \$0, to \$6, what is the 95% confidence interval estimate for the difference between two means? \$ to \$3, what is the 90% confidence interval estimate for the difference between two means? \$14, to \$1, TABLE (B) To test the effectiveness of a business school preparation course, 8 students took a general business test before and after the course. The results are given below. Exam Score Exam Score Student Before Course (1) After Course () ,

6 8. the number of degrees of freedom is a. 14. b. 13. c. 8. d the value of the sample mean difference is if the difference scores reflect the results of the exam after the course minus the results of the exam before the course. a. 0 b. 50 c. 68 d the value of the standard error of the difference scores is a b c..991 d what is the critical value for testing at the 5% level of significance whether the business school preparation course is effective in improving exam scores? a..365 b..145 c d at the 0.05 level of significance, the decision for this hypothesis test would be: e. reject the null hypothesis. f. do not reject the null hypothesis. g. reject the alternative hypothesis. h. It cannot be determined from the information given. 13. at the 0.05 level of significance, the conclusion for this hypothesis test would be: i. the business school preparation course does improve exam score. j. the business school preparation course does not improve exam score. k. the business school preparation course has no impact on exam score. l. It cannot be drawn from the information given. 14. the calculated value of the test statistic is the p-value of the test statistic is (using Excel) or between 0.05 and 0.05 (using Table E.3 with 7 degrees of freedom) 6

7 16. or False: in examining the differences between related samples we are essentially sampling from an underlying population of difference "scores." TABLE (C) To investigate the efficacy of a diet, a random sample of 16 male patients is drawn from a population of adult males using the diet. The weight of each individual in the sample is taken at the start of the diet and at a medical follow-up 4 weeks later. Assuming that the population of differences in weight before versus after the diet follow a normal distribution, the t-test for related samples can be used to determine if there was a significant decrease in the mean weight during this period. Suppose the mean decrease in weights over all 16 subjects in the study is 3.0 pounds with the standard deviation of differences computed as 6.0 pounds. 1. the t test should be -tailed. one. the computed t statistic is there are degrees of freedom for this test the critical value for a one-tailed test of the null hypothesis of no difference at the α = 0.05 level of significance is a one-tailed test of the null hypothesis of no difference would (be rejected/not be rejected) at the α = 0.05 level of significance. be rejected 6. the p-value for a one-tailed test whose computed t statistic is.00 is between and if we were interested in testing against the two-tailed alternative that µ D is not equal to zero at the α = 0.05 level of significance, the null hypothesis would (be rejected/not be rejected). not be rejected 8. the p-value for a two-tailed test whose computed statistic is.00 is between and what is the 95% confidence interval estimate for the mean difference in weight before and after the diet? 0.0 to what is the 99% confidence interval estimate for the mean difference in weight before and after the diet? 1.4 to 7.4 7

8 11. what is the 90% confidence interval estimate for the mean difference in weight before and after the diet? 0.37 to 5.63 TABLE (D) A few years ago, Pepsi invited consumers to take the Pepsi Challenge. Consumers were asked to decide which of two sodas, Coke or Pepsi, they preferred in a blind taste test. Pepsi was interested in determining what factors played a role in people s taste preferences. One of the factors studied was the gender of the consumer. Below are the results of analyses comparing the taste preferences of men and women with the proportions depicting preference for Pepsi. Males: n = 109, p M = Females: n = 5, p F = 0.5 p M p F = Z = to determine if a difference exists in the taste preferences of men and women, give the correct alternative hypothesis that Pepsi would test. a) H 1 M µ F 0 b) H 1 M µ F > 0 c) H 1 : π M π F 0 d) H 1 : π M π F = 0. suppose Pepsi wanted to test to determine if the males preferred Pepsi more than the females. Using the test statistic given, compute the appropriate p-value for the test. a) b) c) d) suppose Pepsi wanted to test to determine if the males preferred Pepsi less than the females. Using the test statistic given, compute the appropriate p-value for the test. a) b) c) d) suppose that the two-tailed p-value was really State the proper conclusion. a) At α = 0.05, there is sufficient evidence to indicate the proportion of males preferring Pepsi differs from the proportion of females preferring Pepsi. b) At α = 0.10, there is sufficient evidence to indicate the proportion of males preferring Pepsi differs from the proportion of females preferring Pepsi. c) At α = 0.05, there is sufficient evidence to indicate the proportion of males preferring Pepsi equals the proportion of females preferring Pepsi. d) At α = 0.08, there is insufficient evidence to indicate the proportion of males preferring Pepsi differs from the proportion of females preferring Pepsi. 8

9 5. construct a 90% confidence interval estimate of the difference between the proportion of males and females who prefer Pepsi to construct a 95% confidence interval estimate of the difference between the proportion of males and females who prefer Pepsi. 0.0 to construct a 99% confidence interval estimate of the difference between the proportion of males and females who prefer Pepsi to 0.37 TABLE (E) A corporation randomly selects 150 salespeople and finds that 66% who have never taken a self-improvement course would like such a course. The firm did a similar study 10 years ago in which 60% of a random sample of 160 salespeople wanted a self-improvement course. The groups are assumed to be independent random samples. Let π 1 and π represent the true proportion of workers who would like to attend a self-improvement course in the recent study and the past study, respectively. 1. if the firm wanted to test whether this proportion has changed from the previous study, which represents the relevant hypotheses? a) H 0 : π 1 π = 0 versus H 1 : π 1 π 0 b) H 0 : π1 π 0 versus H 1 : π1 π = 0 c) H 0 : π1 π 0 versus H 1 : π1 π > 0 d) H 0 : π1 π 0 versus H 1 : π1 π < 0. if the firm wanted to test whether a greater proportion of workers would currently like to attend a self-improvement course than in the past, which represents the relevant hypotheses? a) H 0 : π1 π = 0 versus H 1 : π1 π 0 b) H 0 : π1 π 0 versus H 1 : π1 π = 0 c) H 0 : π1 π 0 versus H 1 : π1 π > 0 d) H 0 : π1 π 0 versus H 1 : π1 π < 0 3. what is the unbiased point estimate for the difference between the two population proportions? a) 0.06 b) 0.10 c) 0.15 d) what is/are the critical value(s) when performing a Z test on whether population proportions are different if α = 0.05? a) ± b) ±

10 c) 1.96 d) ± what is/are the critical value(s) when testing whether population proportions are different if α = 0.10? a) ± b) ± 1.96 c) d) ± what is/are the critical value(s) when testing whether the current population proportion is higher than before if α = 0.05? a) ± b) c) ± 1.96 d) what is the estimated standard error of the difference between the two sample proportions? a) 0.69 b) c) d) 0 8. what is the value of the test statistic to use in evaluating the alternative hypothesis that there is a difference in the two population proportions? a) b) 1.96 c) d) 0 9. the company tests to determine at the 0.05 level whether the population proportion has changed from the previous study. Which of the following is most correct? a) Reject the null hypothesis and conclude that the proportion of employees who are interested in a self-improvement course has changed over the intervening 10 years. b) Do not reject the null hypothesis and conclude that the proportion of employees who are interested in a self-improvement course has not changed over the intervening 10 years. c) Reject the null hypothesis and conclude that the proportion of employees who are interested in a self-improvement course has increased over the intervening 10 years. d) Do not reject the null hypothesis and conclude that the proportion of employees who are interested in a self-improvement course has increased over the intervening 10 years. 10. construct a 99% confidence interval estimate of the difference in proportion of workers who would like to attend a self-improvement course in the recent study and the past study. 10

11 0.08 to construct a 95% confidence interval estimate of the difference in proportion of workers who would like to attend a self-improvement course in the recent study and the past study to construct a 90% confidence interval estimate of the difference in proportion of workers who would like to attend a self-improvement course in the recent study and the past study to

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 9 - FUNDAMENTALS OF HYPOTHESIS TESTING: ONE-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 302) Spring Semester 20 Chapter 9 - FUNDAMENTALS OF HYPOTHESIS

Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

Practice Problems and Exams

Practice Problems and Exams 1 The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 1302) Spring Semester 2009-2010

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

The alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.

Section 8.2-8.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the

Basic Statistics Self Assessment Test

Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A soda-dispensing machine fills 12-ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

Basic Elements of a Hypothesis Test. Hypothesis Testing of Proportions and Small Sample Means. Proportions. Proportions

Hypothesis Testing of Proportions and Small Sample Means Dr. Tom Ilvento FREC 408 Basic Elements of a Hypothesis Test H 0 : H a : : : Proportions The Pepsi Challenge asked soda drinkers to compare Diet

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

Chapter Five: Paired Samples Methods 1/38

Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery

CHAPTER 9 HYPOTHESIS TESTING

CHAPTER 9 HYPOTHESIS TESTING The TI-83 Plus and TI-84 Plus fully support hypothesis testing. Use the key, then highlight TESTS. The options used in Chapter 9 are given on the two screens. TESTING A SINGLE

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

E205 Final: Version B

Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

p1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0.

Practice for chapter 9 and 10 Disclaimer: the actual exam does not mirror this. This is meant for practicing questions only. The actual exam in not multiple choice. Find the number of successes x suggested

Hypothesis Testing or How to Decide to Decide Edpsy 580

Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Hypothesis Testing or How to Decide to Decide

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

HypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540

Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540 1. Assume you are tossing a coin 11 times. The following distribution gives the likelihoods of getting a particular number of

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

Lecture Topic 6: Chapter 9 Hypothesis Testing

Lecture Topic 6: Chapter 9 Hypothesis Testing 9.1 Developing Null and Alternative Hypotheses Hypothesis testing can be used to determine whether a statement about the value of a population parameter should

Module 2 Probability and Statistics

Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution

SPSS on two independent samples. Two sample test with proportions. Paired t-test (with more SPSS)

SPSS on two independent samples. Two sample test with proportions. Paired t-test (with more SPSS) State of the course address: The Final exam is Aug 9, 3:30pm 6:30pm in B9201 in the Burnaby Campus. (One

Solutions to Worksheet on Hypothesis Tests

s to Worksheet on Hypothesis Tests. A production line produces rulers that are supposed to be inches long. A sample of 49 of the rulers had a mean of. and a standard deviation of.5 inches. The quality

Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

Name: Date: Use the following to answer questions 3-4:

Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

Difference of Means and ANOVA Problems

Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

Chapter 11-12 1 Review

Chapter 11-12 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data

Chapter 16 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

Two-sample hypothesis testing, I 9.07 3/09/2004

Two-sample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given

Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

Mind on Statistics. Chapter 13

Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test

Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics

MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6

MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the Pepsi-Cola Co. is interested

Comparing Two Populations OPRE 6301

Comparing Two Populations OPRE 6301 Introduction... In many applications, we are interested in hypotheses concerning differences between the means of two populations. For example, we may wish to decide

Null Hypothesis H 0. The null hypothesis (denoted by H 0

Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

Sampling and Hypothesis Testing

Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus

Hypothesis Testing. Hypothesis Testing

Hypothesis Testing Daniel A. Menascé Department of Computer Science George Mason University 1 Hypothesis Testing Purpose: make inferences about a population parameter by analyzing differences between observed

Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 7 - Sampling and Sampling Distributions

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 7 - Sampling and Sampling

Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm.

Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm. Political Science 15 Lecture 12: Hypothesis Testing Sampling

Chapter 8 Hypothesis Tests Chapter Table of Contents Introduction...157 One-Sample t-test...158 Paired t-test...164 Two-Sample Test for Proportions...169 Two-Sample Test for Variances...172 Discussion

Hypothesis testing S2

Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Sample Practice problems - chapter 12-1 and 2 proportions for inference - Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide

Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

Testing Hypotheses using SPSS

Is the mean hourly rate of male workers \$2.00? T-Test One-Sample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 One-Sample Test Test Value = 2 95% Confidence Interval Mean of the

Hypothesis Testing. Hypothesis Testing CS 700

Hypothesis Testing CS 700 1 Hypothesis Testing! Purpose: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if

Notes 8: Hypothesis Testing

Notes 8: Hypothesis Testing Julio Garín Department of Economics Statistics for Economics Spring 2012 (Stats for Econ) Hypothesis Testing Spring 2012 1 / 44 Introduction Why we conduct surveys? We want

22. HYPOTHESIS TESTING

22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

Math 62 Statistics Sample Exam Questions

Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected

Confidence Intervals (Review)

Intro to Hypothesis Tests Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Confidence Intervals (Review) 1. Each year, construction contractors and equipment distributors from

The calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n

EXAMPLE 1: Paired t-test and t-interval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel

Hypothesis testing: Examples. AMS7, Spring 2012

Hypothesis testing: Examples AMS7, Spring 2012 Example 1: Testing a Claim about a Proportion Sect. 7.3, # 2: Survey of Drinking: In a Gallup survey, 1087 randomly selected adults were asked whether they

Chapter 8. Hypothesis Testing

Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

Hypothesis Testing: Two Means, Paired Data, Two Proportions

Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

Stats Review Chapters 9-10

Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

Basic concepts and introduction to statistical inference

Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence

Epidemiology-Biostatistics Exam Exam 2, 2001 PRINT YOUR LEGAL NAME:

Epidemiology-Biostatistics Exam Exam 2, 2001 PRINT YOUR LEGAL NAME: Instructions: This exam is 30% of your course grade. The maximum number of points for the course is 1,000; hence this exam is worth 300

About Hypothesis Testing TABLE OF CONTENTS About Hypothesis Testing... 1 What is a HYPOTHESIS TEST?... 1 Hypothesis Testing... 1 Hypothesis Testing... 1 Steps in Hypothesis Testing... 2 Steps in Hypothesis

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

Hypothesis Testing. Bluman Chapter 8

CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Ch. 10 Chi SquareTests and the F-Distribution 10.1 Goodness of Fit 1 Find Expected Frequencies Provide an appropriate response. 1) The frequency distribution shows the ages for a sample of 100 employees.

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

Sections 4.5-4.7: Two-Sample Problems. Paired t-test (Section 4.6)

Sections 4.5-4.7: Two-Sample Problems Paired t-test (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)

1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting

Hypothesis testing for µ:

University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

The Basics of a Hypothesis Test

Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A

IQ of deaf children example: Are the deaf children lower in IQ? Or are they average? If µ100 and σ 2 225, is the 88.07 from the sample of N59 deaf chi

PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 All inferential statistics have the following in common: Use of some descriptive statistic Use of probability Potential for estimation

BUS/ST 350 Exam 3 Spring 2012

BUS/ST 350 Exam 3 Spring 2012 Name Lab Section ID # INSTRUCTIONS: Write your name, lab section #, and ID# above. Note the statement at the bottom of this page that you must sign when you are finished with

Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

Example for testing one population mean:

Today: Sections 13.1 to 13.3 ANNOUNCEMENTS: We will finish hypothesis testing for the 5 situations today. See pages 586-587 (end of Chapter 13) for a summary table. Quiz for week 8 starts Wed, ends Monday

Chi-Square Tests. In This Chapter BONUS CHAPTER

BONUS CHAPTER Chi-Square Tests In the previous chapters, we explored the wonderful world of hypothesis testing as we compared means and proportions of one, two, three, and more populations, making an educated