HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.


 Leslie Long
 11 months ago
 Views:
Transcription
1 Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed. Complicaed one: an elecronic communicaion sends coded messages o a cell phone, he cell phone hen decodes he elecronic communicaion. In his case, i is ESSENTIAL ha he inverse funcion decodes he signal correcly. Mahemaics and inverse funcions are exremely imporan in he developmen of communicaion sysems. B.) Finding Inverses: Inverses in Mahemaics are associaed wih he basic concep of reversing a calculaion and arriving a an original resul. x +0 For example: In he expression,, we ook an x added 0 and divided he resul by. The inverse of his would be o ake x, muliply i by and subrac 0, i.e. x 0. The inverse UNDOES he operaion on x. C.) A New Symbol f  (x) The exponen on f does NOT mean over f. I is simply a symbol indicaing he inverse of f. Examples: f(x) = x + hen he inverse funcion is defined as f  (x) = x f(4) = 9 and f  (9) = 4 D.) To find an inverse from a se of poins: Inerchange he coordinaes of each ordered pair. Examples: Le f = he following se of ordered pairs (,), (,4), (,7). If we inerchange he x and y s, we ge (,), (4,), (7,). Since each x has one y, his new inverse funcion is a funcion. We say ha he original funcion is INVERTIBLE. However, look a he ordered pairs: (4,6), (, 6), (7, 9). If we inerchange hese, we ge (6, 4), (6, ) and (9,7). In his case each x does no have a unique y since if x= 6 we have wo yvalues. We say his funcion is NOT inverible. I does no have an inverse. The easies way o find ou if a funcion is inverible is o check o see if i passes he horizonal line es. * Some ideas and problems are from College Algebra by Mark Dugopolski. Reading, MA. 998 and College Algebra by Rockswold, Hornsby, and Lial. Reading, MA. 999.
2 E.) Consider he x funcion. Is i inverible? No. I does no pass he horizonal line es. However, his funcion is so imporan in mahemaics ha we need some way o make i inverible. There are also oher funcions in mahemaics ha we would like o have an inverse. (e.g rig funcions.) Therefore, mahemaicians have decided o RESTRICT he domain of hese imporan funcions Thus he domain for he x funcion is resriced o all posiive x and now i passes he horizonal line es F) More KEY POINTS: Funcions ha pass he horizonal line es are said o be oneoone. One o one funcions are inverible. Le f be a oneoone funcion. Then g is he INVERSE funcion of f if he following composiions occur: f(g(x)) = x for every x in he domain of g and g(f(x)) = x for every x in he domain of f. Then we give g he symbol, f  If f is he funcion and g is is inverse hen, he o he domain of f = he range of g and o he range of f = he domain of g This means ha if (a, b) is on f, hen (b, a) is on f  for every x. G.) Graphically, a funcion and is inverse are reflecions of each oher over he line y = x. Demonsraed in class.
3 Algebraic Mehod for Finding he Inverse Finding he Inverse Funcion: As we saw, o find he inverse, we simply swiched he x and y values. If we have an algebraic equaion represening a funcion, we can proceed o find is inverse by swiching he x and y in he equaion and solving for y. (I does no maer if he x and y are swiched a he beginning or a he end. I swich hem a he beginning so I won forge!!) + Example : Find he inverse funcion for f ( x) = x x +. Replace f(x) wih y y = y +. Swich he x and y x =. Solve for y x = y + x = y x = y y = x 4. Replace y by f ( x ) f ( x ) = x. Check domain of inverse. I should be he range of funcion. In his case he domain and range of he funcion and he inverse is all reals. Example : Find he inverse funcion for g ( x) = e x+. Replace g(x) wih y y = x+ e. Swich he x and y x = y+ e. Solve for y ln x = y + ln x = y ln x = y or ln x y = 4. Replace y by g ( x) ( x ln x g ) = Check domain and range: Domain of inverse is all real x > 0 Range of original funcion is all y > 0 Range of Inverse is all reals Domain of original funcion is all reals
4 Example : Find he inverse funcion for s( x) = + log x. Replace s(x) wih y. Swich he x and y y = + log x x = + log y. Solve for y x( + log y) = x + x log y = x log y = x x log y = x y = 0 x x x 4. Replace y by s  x (x) s ( x) = 0 Check domain and range. The range of he inverse funcion is found by checking i from he domain of he funcion. I can be seen graphically. Unforunaely, i requires a change in he window parameers which someimes requires a bi of effor. There is a horizonal asympoe a y =.0 for he inverse and a verical asympoe a x=.0 for he original funcion. Domain of inverse is all real x 0 Range of original funcion is all y 0 Range of Inverse is all reals y > 0 y.0 Domain of original funcion is all reals x > 0, x.0 Trigonomeric Inverses More laer Trig Inverse Funcions have resriced domains Inverse Cosine Funcion =Arccos or cos ( y ) = x if y = cos x and 0 x π Inverse Sine Funcion = Arcsin or Inverse Tan Funcion = Arcan or sin ( y ) = x an ( y ) = x if y = sin x and π/ x π/ if y = an x and π/ x π/ Example 4: Find a soluion o he equaion: Cos x = x π This says, find all he angles beween zero and Pi whose cosine is 0.6. We know ha here are wo angles in a circle where he cosine is posiive. The inverse cosine funcion will give us he angle in he firs quadran. The oher angle is in he 4 h quadran and we use reference angles o find ha angle. (Nex secion, bu we can figure i ou.) So cos  (0.6) = x Using he calculaor, we find x = 0.97 in degrees, his is. The angle in he 4 h quadran is π 0.97 =.6 in degrees,
5 Reference Angles Find reference angle A r o a given angle A. Wha is he reference angle o an angle in sandard posiion? If A is an angle in sandard posiion, is reference angle A r is he acue angle formed by he x axis and he erminal side of angle A. See figure below. Two or more coerminal angles have he same reference angle. Assume angle A is posiive and less han 60 o (π), we have 4 possible cases:. If angle A is in quadran I hen he reference angle A r = A.. If angle A is in quadran II hen he reference angle A r = 80 o A if A is given degrees or A r = π A if A is given in radians.. If angle A is in quadran III hen he reference angle A r = A 80 o if A is given degrees or A r = A π if A is given in radians. 4. If angle A is in quadran IV hen he reference angle A r = 60 o A if A is given degrees or A r = π A if A is given in radians. Adaped from: hp://www.analyzemah.com/angle/reference_angle.hml
6 Example : Find he reference angle o angle A = 0 o. Soluion: Angle A is in quadran II and he reference angle is given by A r = 80 o 0 o = 60 o in Radians his would be π π/ π Example : Find he reference o angle A =. 4 Soluion: Firs find he quadran where his angle lands. The given angle is no posiive. Also noice ha more han one revoluion in he clockwise direcion is required o ge o he erminal side of his angle. (Tha is, we need o find ou wha quadran his angle is in.) Figure ou how many revoluions of posiive π in fourhs (since he denominaor is in 4hs) we need o go around o find he coerminal angle. 8π/4 is no enough. 6π/4 would pu us righ a he 0 or π posiion. So: π/4 + 6π/4 = π/4. This pus us in he s Quadran. Therefore he reference angle is π/4. Example : (# Page 9) This one is no quie as nice. Find he reference o angle A = 46π. 7 Firs find he quadran for his angle, A = 46π/7. Similar o Example above, find ou how many posiive revoluions of π s in sevenhs we need o ge o land a 0 again. π in sevenhs = 4π/7 he closes muliple of 4π/7 o 46π/7 is revoluions around = 4π/7. This lands us a he π posiion, hen we can figure ou how many 7 hs we have. 46π 4π 4π + = If we go in he clockwise direcion from he π posiion we land in he rd quadran. The measure in he posiive direcion is π/7. You could also reason ha 4 revoluions from he 0 posiion is 4*4π/7 = 6π/7. Now we have 6π/7 46π/7 = 0π/7. This again lands us in he rd quadran (7π /7 + π/7 = 0π/7). Again our reference angle is π/7. (Using he rule above for hird quadran angles, A = 0π/7 so A r = A π = 0π/7 7π/7) In order o find he coordinaes of 46π/7 we use he sine and cosine of π/7 making sure he signs fi wih rd quadran angles. 6
7 Using Reference angles wih Inverse Trig Problems wih Soluions Example : an θ = Find all he exac soluions for 0 θ π. Answer: Since he angen of some angle is negaive, ha angle mus be in he nd or 4 h quadran. Firs: ake he inverse angen. θ = an  ( ) This says, Thea is he angle in he nd or 4 h quadrans whose angen is negaive roo. The calculaor gives: θ = an  ( ) = This angle is in he 4 h quadran. We recognize ha he angle is a π/ angle. If we canno remember his, conver o degrees 80 using he conversion formula by muliplying by. We ge 60 and we see ha π Tan 60 = sin 60 /cos 60 = = /. We now have a reference angle we can use o find he exac angles. π/ is in he 4 h quadran. We wish o express our answers as posiive angles since we wan 0 θ π. So he wo angles in he second and 4 h quadrans ha have heir angens = ( ) are: θ = π/ and π/. How did we find hese. Since he reference angle is π/, and we need ha angle in he nd quadran, simply subrac π/ from π o ge π/. Similarly, in he 4 h quadran, go back π/ unis from π. Thus π π/ = π/ Our answer needs o be in radians since he quesion was o find 0 θ π. However, in degrees, hese are 0 and 00. We can also graph he angen funcion in he calculaor and look o see where i mees he line y =. We ge he same answers only we have numbers like.094 and.6. Noice hese are approximaions o π/ and π/. 7
8 Example : sin θ = 4 Find all he exac soluions for 0 θ π. Hin: There are 4 soluions for θ. Answer: Take he square roo of boh sides. We ge sin θ = ± so we need o find sin (+ ) and sin  ( ) We should recognize ha his is a π/6 angle. If no use he calculaor. sin (+ ) =.988 (.988 looks like i is in he firs quadran.) The angles beween 0 and π ha have a sin = posiive. are in he firs and second quadrans. Noice he reference angle for an angle wih a sin =. is π/6. Thus he angles we are looking for from he s and second quadrans are. π/6 and π π/6= π/6 Similarly, we find he oher angles in he rd and 4 h quadran, i.e. sin  ( ) =.988 = π/6 (his angle is in he 4 h quadran) so angle in rd quadran = π + π/6 = 7π/6 and π π/6 = π/6 in he 4 h. Summarizing: we ge π/6, π/6, 7π/6, π/6 These are all he values beween 0 and π ha have a sine equal o ± ½. You can also skech a graph and find hese values. 8
9 Mah E0 Precalc Trig Ideniies Tangen Secan Cosecan Coangen sin an = cos sec = csc = cos sin co cos = an = sin Pyhagorean Ideniy sin + cos = Divide boh sides of Pyhagorean Ideniy by cos an + = sec Divide boh sides of Pyhagorean Ideniy bysin + co = csc Odd and even Trig Funcions Negaive Ideniies Noe: sine and angen are odd funcions. Cosine is an even funcion Ideniies relaing Sine and Cosine (Complemenary Angles) sin( ) = sin cos( ) = cos an( ) = an π π sin = cos( ) = cos( ) π π cos = sin( + ) = sin( ) Some Ideniies ha we have no sudied Doubleangle for Sine sin = sin cos Doubleangle for Cosine Expressed ways Doubleangle for Tangen cos = sin cos = cos cos = cos sin an an = an 9
4.2 Trigonometric Functions; The Unit Circle
4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.
More informationSection 5.1 The Unit Circle
Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationA Curriculum Module for AP Calculus BC Curriculum Module
Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy.
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationFourier Series and Fourier Transform
Fourier Series and Fourier ransform Complex exponenials Complex version of Fourier Series ime Shifing, Magniude, Phase Fourier ransform Copyrigh 2007 by M.H. Perro All righs reserved. 6.082 Spring 2007
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationMA261A Calculus III 2006 Fall Homework 4 Solutions Due 9/29/2006 8:00AM
MA6A Calculus III 006 Fall Homework 4 Soluions Due 9/9/006 00AM 97 #4 Describe in words he surface 3 A halflane in he osiive x and y erriory (See Figure in Page 67) 97 # Idenify he surface cos We see
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More information1 HALFLIFE EQUATIONS
R.L. Hanna Page HALFLIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of halflives, and / log / o calculae he age (# ears): age (halflife)
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationPreCalculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.
PreCalculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle
More informationName: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: Solving Exponenial Equaions (The Mehod of Common Bases) Solving Exponenial Equaions (Using Logarihms)
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More information4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discreeime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.11.
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationSOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.
SOLI MEHNIS TUTORIL GER SYSTEMS This work covers elemens of he syllabus for he Edexcel module 21722P HN/ Mechanical Principles OUTOME 3. On compleion of his shor uorial you should be able o do he following.
More informationAnalogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar
Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 073807 Ifeachor
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationSignal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, halfwae and fullwae. Le s firs consider he ideal
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationMeasuring macroeconomic volatility Applications to export revenue data, 19702005
FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationMTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More information1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z 1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z
o ffix uden abel ere uden ame chool ame isric ame/ ender emale ale onh ay ear ae of irh an eb ar pr ay un ul ug ep c ov ec as ame irs ame lace he uden abel ere ae uden denifier chool se nly rined in he
More informationTerm Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 111 Nojihigashi, Kusasu, Shiga 5258577, Japan Email:
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationMOTION ALONG A STRAIGHT LINE
Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationAP Calculus AB 2007 Scoring Guidelines
AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and
More informationLectures # 5 and 6: The Prime Number Theorem.
Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζfuncion o skech an argumen which would give an acual formula for π( and sugges
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More informationRC, RL and RLC circuits
Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.
More informationPresent Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
More information6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes
Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.
More informationRevisions to Nonfarm Payroll Employment: 1964 to 2011
Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More information3 RungeKutta Methods
3 RungeKua Mehods In conras o he mulisep mehods of he previous secion, RungeKua mehods are singlesep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he
More informationAP Calculus AB 2010 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College
More informationFullwave rectification, bulk capacitor calculations Chris Basso January 2009
ullwave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
More informationImagine a Source (S) of sound waves that emits waves having frequency f and therefore
heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing
More informationThe option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
More information6.3 Polar Coordinates
6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard
More informationSteps for D.C Analysis of MOSFET Circuits
10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.
More informationMortality Variance of the Present Value (PV) of Future Annuity Payments
Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role
More informationDifferential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationAnswer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prinou should hae 1 quesions. Muliplechoice quesions may coninue on he ne column or page find all choices before making your selecion. The
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationRC Circuit and Time Constant
ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisorcapacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he
More informationIssues Using OLS with Time Series Data. Time series data NOT randomly sampled in same way as cross sectional each obs not i.i.d
These noes largely concern auocorrelaion Issues Using OLS wih Time Series Daa Recall main poins from Chaper 10: Time series daa NOT randomly sampled in same way as cross secional each obs no i.i.d Why?
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationInverse Circular Function and Trigonometric Equation
Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse
More informationNewton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
More informationChapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
More informationMaking Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
More informationDensity Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).
FW 662 Densiydependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Longerm
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationA Reexamination of the Joint Mortality Functions
Norh merican cuarial Journal Volume 6, Number 1, p.166170 (2002) Reeaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali
More informationVoltage level shifting
rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bipolar
More informationNOTES ON OSCILLOSCOPES
NOTES ON OSCILLOSCOPES NOTES ON... OSCILLOSCOPES... Oscilloscope... Analog and Digial... Analog Oscilloscopes... Cahode Ray Oscilloscope Principles... 5 Elecron Gun... 5 The Deflecion Sysem... 6 Displaying
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1  TRANSIENTS
EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67  FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1  RANIEN Uni conen 2 Undersand he ransien behaviour of resisorcapacior (R) and resisorinducor (RL) D circuis
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More informationPrincipal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationPulseWidth Modulation Inverters
SECTION 3.6 INVERTERS 189 PulseWidh Modulaion Inverers Pulsewidh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol
More informationINTRODUCTION TO EMAIL MARKETING PERSONALIZATION. How to increase your sales with personalized triggered emails
INTRODUCTION TO EMAIL MARKETING PERSONALIZATION How o increase your sales wih personalized riggered emails ECOMMERCE TRIGGERED EMAILS BEST PRACTICES Triggered emails are generaed in real ime based on each
More informationUSE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES
USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES Mehme Nuri GÖMLEKSİZ Absrac Using educaion echnology in classes helps eachers realize a beer and more effecive learning. In his sudy 150 English eachers were
More informationImproper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].
Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationC FastDealing Property Trading Game C
AGES 8+ C FasDealing Propery Trading Game C Y Collecor s Ediion Original MONOPOLY Game Rules plus Special Rules for his Ediion. CONTENTS Game board, 6 Collecible okens, 28 Tile Deed cards, 16 Wha he Deuce?
More informationConceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...
Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The BlackScholes Shl Ml Moel... pricing opions an calculaing
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More information4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More information