# Resistors in Series and Parallel

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the ampere (A). By convention the direction of the current is the direction of flow of charge, even though in metallic conductors the current is due to flow of negative charge (electrons) in the opposite direction. Because of conservation of charge, the current is the same at all points in a single loop circuit. At a branch point in a circuit, where the conducting path splits into two or more paths, the total current into a branch point equals the total current out of that point. By convention, current flows out of the positive terminal of a battery or power supply and into the negative terminal. For current to be maintained in a circuit there must be a complete conducting path. Voltage is a measure of the electric potential difference between two points in a circuit. The SI unit is the volt (V). Since the electrical force is a conservative force, the sum of the voltage increases and decreases around any closed loop is zero. Resistance is the property of a circuit element (conductor) to oppose current flow. Resistance is defined by R = V I, (1) where V is the voltage across the circuit element and I is the current flowing through it. If R is constant, the same for all V, then the circuit element obeys Ohm s Law. The SI unit of resistance is the ohm (Ω). The resistance of a resistive circuit element changes with temperature. Two resistors R 1 and R 2 are connected in series if all the current that passes through R 1 also passes through R 2. Therefore, for two resistors in series the current I 1 through R 1 is the same as the current I 2 through R 2, and this current is the same as the current, I, that enters the series network: I = I 1 = I 2. The total voltage, V, across the series network is the sum of the voltages V 1 and V 2 across each resistor. That is, V = V 1 + V 2. The equivalent resistance, R s, of R 1 and R 2 in series is given by R s = R 1 + R 2. (2) Two resistors R 1 and R 2 are connected in parallel if the voltages V 1 and V 2 across each are the same and equal to the voltage, V, across the parallel network. That is, V = V 1 = V 2. The currents I 1 and I 2 through each of the resistors add to give the total current, I, flowing into and out of the network: I = I 1 + I 2. The equivalent resistance R p of R 1 and R 2 in parallel is given by 1

2 1 R p = 1 R R 2. (3) This can also be written as R p = R 1R 2 R 1 + R 2. (4) Ammeters are used to measure current. An ammeter is connected in series with the circuit so that all the current being measured flows through the ammeter. Therefore, ammeters need to have very small resistance in order not to alter the current in the circuit. Voltmeters are used to measure voltages. A voltmeter is connected in parallel at the two points between which the potential difference is to be measured. Therefore, a voltmeter needs to have a large resistance so that very little current is diverted through it. OBJECTIVE In this lab we will measure and analyze currents and voltages for circuits containing a single resistor and also for two resistors in series and for two in parallel. APPARATUS 0-40 volt DC power supply 12 volt lightbulb and socket 150 and 700 ohm resistors Digital multimeter PROCEDURE Please print the worksheet for this lab. You will need this sheet to record your data. Measurement of Voltage 1 The power supply is a source of potential difference (voltage). Locate the DC power supply at your table. Press the POWER ON/OFF button to the ON position. Next, press the RANGE button to the IN (0.85 A) position. This sets the power supply to the 0-35 V/ A range. Rotate the voltage and current ADJUST knob counterclockwise. Then set the maximum output current for this experiment by pressing the CC Set button, and while holding it down rotate the current ADJUST knob clockwise until the AMPS display reads 0.30 A. Release the CC Set button. Do not move the current setting knob (CC Set) at any point during the experiment. 2 The multimeter is a measuring device that is used to measure voltage differences, electrical currents, and electrical resistances. It can measure other electrical properties as well. See Figure 1. At the top of the meter is an LCD (liquid crystal display), in the middle is the Function/Range Switch (dial), and at the bottom are four input sockets. 2

3 Note: The meter is particularly sensitive (and prone to blowing a fuse) when using the 200 ma Input Jack (see I in the key for Figure 1.) Figure 1 KEY FOR FIGURE 1: A B C D E F 3-1/2 digit LCD with annunciators. ON/OFF button: Turns power to meter on and off. HI/LO button: Selects high or low trigger level for frequency measurements. MAX button: Selects maximum reading hold function. DC/AC button: Selects DC or AC type voltage. Function/range switch: Selects the function and range desired. G V Ω Input Jack: Input connector for volts, ohms, diode test, continuity, frequency and logic. H COM Input Jack: Ground input connector. I 200 ma Input Jack: Input connector for current up to 200 ma, L x (Inductance), C x (Capacitance). J 10 A Input Jack: Input connector for current to 10 A. 3

6 Figure 3 4 Use Excel to plot your data, with current on the vertical axis and voltage on the horizontal axis. It is expected that your data will not fall close to a straight line. Define R = V I and calculate R for each set of V and I values in Table 2 and record in the third column of Table 2. Does R increase, decrease, or stay the same as the current, I, through the light bulb increases? Two Resistors in Series 1 Connect the two resistors on the circuit board that are marked 150 ohm and 700 ohm as shown in Figure 4. They are said to be in series because all the current that passes through one also passes through the other. Make sure the power supply voltage is set to zero. Connect the power supply to the series resistor combination as in Figure 4. Set the power supply to 5 volts. Set the multimeter dial to the 20 V range and use the COM and V jacks. With the multimeter, measure and record the potential differences (voltage) V 150 and V 700 across each resistor and the voltage, V, across the two-resistor combination. Figure 4 2 When you have completed these measurements, set the power supply voltage to zero and disconnect the multimeter from the circuit. Which of the following better represents your results? 6

7 V = V V 700 V = V 150 = V With the power supply voltage set to zero, connect the multimeter in series with the resistors as shown in Figure 5. Set the multimeter to the 200 ma DC current range and connect the multimeter leads to the correct jacks. Figure 5 CAUTION: Before proceeding, have your lab instructor check that you have the correct setup: a fuse may blow if the meter is not connected to the proper points in the circuit. After being given the go-ahead by your TA, turn on the power supply and set it to 5 volts. Measure the current in the wire between the two resistors, the wire between the 700 ohm resistor and the power supply and the wire between the 150 ohm resistor and the power supply. Verify that these three currents are equal. 4 Continuing with the circuit shown in Figure 5, set the power supply voltage to 2 volts. In Table 3 record the current reading on the multimeter. Repeat for power supply voltages of 4, 6, 8, 10, and 12 volts. 5 Use Excel to plot your data, with current on the vertical axis and voltage on the horizontal axis. Use Excel to find the slope of the straight line that best fits your data and record your result, including units. 6 Use Ohm s law and the slope from your graph to calculate the equivalent resistance, R s, of the two resistors in series, in units of ohms (Ω). Record your result. 7

8 Two Resistors in Parallel 1 Connect the two resistors on the circuit board that are marked 150 ohms and 700 ohms as shown in Figure 6a. They are said to be in parallel since the voltage across each resistor equals the voltage of the power supply and the resistors provide parallel paths for the current flow. Figure 6 2 Make sure the power supply voltage is set to zero. Connect the power supply to the parallel resistor combination as in Figure 6b. Set the power supply to 5 volts. With the multimeter, measure and record the currents I 150 and I 700 flowing through each resistor and the total current, I, flowing through the power supply. Figure 7 3 When you have completed these measurements, set the power supply voltage to zero and disconnect the multimeter from the circuit. 4 Which of the following better represents your results? I = I I 700 I = I 150 = I 700 8

9 5 Continue with the parallel resistor network. With the power supply voltage set to zero, connect the multimeter to measure the total current, I, flowing through the power supply. Set the multimeter to the 200 ma DC current range. CAUTION: Before proceeding, have your lab instructor check that you have the correct setup: a fuse may blow if the meter is not connected to the proper points in the circuit. After being given the go-ahead by your TA, turn on the power supply and set it to 2 volts. 6 In Table 4 record the current reading on the multimeter. Repeat for power supply voltages of 4, 6, 8, 10, and 12 volts. 7 Use Excel to plot your data, with current on the vertical axis and voltage on the horizontal axis. Use Excel to find the slope of the straight line that best fits your data and record your result, including units. 8 Use Ohm s law and the slope from your graph to calculate the equivalent resistance, R p, of the two resistors in parallel, in units of ohms (Ω). Record your result. 9

### EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### Experiment #3, Ohm s Law

Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

### Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

### Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

### Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

### Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

### Lab 5: Simple Electrical Circuits

Lab 5: Simple Electrical Circuits Introduction: In this laboratory you will explore simple DC (direct current) electrical circuits. The primary goal of the lab will be to develop a model for electricity.

### Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### `Ohm s Law III -- Resistors in Series and Parallel

`Ohm s Law III -- esistors in Series and Parallel by Dr. ames E. Parks Department of Physics and Astronomy 40 Nielsen Physics Building he University of ennessee Knoxville, ennessee 7996-00 Copyright August,

### Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

### Background: Electric resistance, R, is defined by:

RESISTANCE & OHM S LAW (PART I and II) - 8 Objectives: To understand the relationship between applied voltage and current in a resistor and to verify Ohm s Law. To understand the relationship between applied

### very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

### Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

### Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

### Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

### Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

### Science AS90191 Describe Aspects of Physics.

Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

### Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

### Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 PARALLEL AND SERIES-PARALLEL CIRCUIT CHARACTERISTICS OBJECTIVES This experiment will have the student

### Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

Print Your Name Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Partners' Names Instructions October 15, 2015October 13, 2015 Read

### How Does it Flow? Electricity, Circuits, and Motors

How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move

### EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

### Lab #2: Non-Ideal Sources and Renewable Energy Sources

Lab #2: Non-Ideal Sources and Renewable Energy Sources Theory & Introduction Goals for Lab #2 The goals for this lab are to introduce you to the limitations of real power sources and compare them to the

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits

Electronics Lab #2 Simple Series and Parallel Circuits The definitions of series and parallel circuits will be given in this lab. Also, measurements in very simple series and parallel circuits will be

### The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

### Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Basic Ohm s Law & Series and Parallel Circuits

2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

### Two kinds of electrical charges

ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

### Kirchhoff s Laws Physics Lab IX

Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,

### Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

### R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

### Experiment 9 ~ RC Circuits

Experiment 9 ~ RC Circuits Objective: This experiment will introduce you to the properties of circuits that contain both resistors AND capacitors. Equipment: 18 volt power supply, two capacitors (8 µf

### Chapter 13: Electric Circuits

Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

### Name: Lab Partner: Section:

Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

### What is a multimeter?

What is a multimeter? A multimeter is a devise used to measure voltage, resistance and current in electronics & electrical equipment It is also used to test continuity between to 2 points to verify if

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### Current Electricity Lab Series/Parallel Circuits. Safety and Equipment Precautions!

Current Electricity Lab Series/Parallel Circuits Name Safety and Equipment Precautions! Plug in your power supply and use ONLY the D.C. terminals of the power source, NOT the A. C. terminals. DO NOT touch

### Essential Electrical Concepts

Essential Electrical Concepts Introduction Modern vehicles incorporate many electrical and electronic components and systems: Audio Lights Navigation Engine control Transmission control Braking and traction

### CHAPTER 19: DC Circuits. Answers to Questions

HAPT 9: D ircuits Answers to Questions. The birds are safe because they are not grounded. Both of their legs are essentially at the same voltage (the only difference being due to the small resistance of

### PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

### Analog and Digital Meters

Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters

### Student Content Brief Advanced Level

Student Content Brief Advanced Level Electric Circuits Background Information There are a variety of forces acting on the body of the Sea Perch. One important force is pushing electrons through the wires

### Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Solutions to Bulb questions

Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of

### Lab 3 Ohm s Law and Resistors

` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

### Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

### Lab 9: Energy Conservation in Circuits & Charge on a Capacitor

Part (1) Energy Conservation in Circuits OBJECTIVES In this part of the lab you will Write the energy conservation equation (loop rule) for several pairs of circuits Predict the relation between the currents

### Experiment #9: RC and LR Circuits Time Constants

Experiment #9: RC and LR Circuits Time Constants Purpose: To study the charging and discharging of capacitors in RC circuits and the growth and decay of current in LR circuits. Part 1 Charging RC Circuits

### Resistors in Series and Parallel Circuits

69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

### Ch. 20 Electric Circuits

Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting

### Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

### A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT

A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT ARJUN MOORJANI, DANIEL STRAUS, JENNIFER ZELENTY Abstract. We describe and model the workings of two simple electrical circuits. The circuits modeled

### RC Circuit (Power amplifier, Voltage Sensor)

Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

### Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1

CS99S Laboratory 1 Objectives: 1. Become familiar with the breadboard 2. Build a logic power supply 3. Use switches to make 1s and 0s 4. Use LEDs to observe 1s and 0s 5. Make a simple oscillator 6. Use

### User's Guide. Model W 3-in-1 Switching DC Power Supply

User's Guide Model 382260 80W 3-in-1 Switching DC Power Supply Introduction Congratulations on your purchase of the Extech 80W 3-in-1 Switching DC Power Supply. The Model 382260 has three output ranges

### Lab 6: Transformers in parallel and 3-phase transformers.

Lab 6: Transformers in parallel and 3-phase transformers. Objective: to learn how to connect transformers in parallel; to determine the efficiency of parallel connected transformers; to connect transformers

### Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu

Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab

### RESONANCE AND FILTERS

1422-1 RESONANCE AND FILTERS Experiment 1, Resonant Frequency and Circuit Impedance For more courses visit www.cie-wc.edu OBJECTIVES 1. To verify experimentally our theoretical predictions concerning the

### AC/DC Clamp Meter. Owner's Manual. Model No. 82369. Safety Operation Maintenance Español

Owner's Manual AC/DC Clamp Meter Model No. 82369 CAUTION: Read, understand and follow Safety Rules and Operating Instructions in this manual before using this product. Safety Operation Maintenance Español

### SIMPLE ELECTRIC CIRCUITS

-18- Preparatory Questions: (also read this guide sheet, which contains some of the answers!) 1. State Ohm s Law, defining every term in the equation. 2. If a bulb connected directly to a 6 V battery glows

### Activity 1: Light Emitting Diodes (LEDs)

Activity 1: Light Emitting Diodes (LEDs) Time Required: 45 minutes Materials List Group Size: 2 Each pair needs: One each of the following: One Activity 1 bag containing: o Red LED o Yellow LED o Green

### Objectives. to understand how to use a voltmeter to measure voltage

UNIT 10 MEASUREMENTS OF VOLTAGE (from Lillian C. McDermott and the Physics Education Group, Physics by Inquiry Volume II, John Wiley and Sons, NY, 1996) Objectives to understand how to use a voltmeter

### Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery:

RC Circuits PHYS 1112L Capacitors A capacitor is an electrical component that stores charge. The simplest capacitor is just two charged metal plates separated by a non-conducting material: In the diagram

### Parallel Plate Capacitor

Parallel Plate Capacitor Capacitor Charge, Plate Separation, and Voltage A capacitor is used to store electric charge. The more voltage (electrical pressure) you apply to the capacitor, the more charge

### Objectives 200 CHAPTER 4 RESISTANCE

Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

### Chapter 19 DC Circuits

Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

### SERIES-PARALLEL DC CIRCUITS

Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

### Capacitors & RC Circuits

Capacitors & C Circuits Name: EQUIPMENT NEEDED: Circuits Experiment Board One D-cell Battery Wire leads Multimeter Capacitors(100 F, 330 F) esistors(1k, 4.7k ) Logger Pro Software, ULI Purpose The purpose

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### HOW TO USE MULTIMETER. COMPILE BY: Dzulautotech

HOW TO USE MULTIMETER COMPILE BY: Dzulautotech 1. GENERAL Electricity is absolutely necessary for an automobile. It is indispensable when the engine is started, the air fuel mixture is ignited and exploded,

### RLC Series Resonance

RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

### DM-40 Operator s Manual

16 Test Equipment Auto Meter Products Inc. 413 West Elm Street Sycamore, IL 60178 Toll Free (866) 883-TEST (8378) Fax (815)-815-895-6786 www.autometer.com 2650-770X-10 Rev.E DM-40 Operator s Manual Automotive

### AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

### Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

### 6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

### AutoRanging Digital MultiMeter

Owner's Manual AutoRanging Digital MultiMeter Model No. 82139 CAUTION: Read, understand and follow Safety Rules and Operating Instructions in this manual before using this product. Safety Operation Maintenance

### DIGITAL CLAMP METER MODEL : DT3150

1. SPECIFICATIONS Bus-Bar upto 16mm x 65mm Cable upto 43mm Diameter DIGITAL CLAMP METER MODEL : DT3150 1.1 General Specification Display n 3¾ digit liquid crystal display (LCD) with a maximum reading of

### Circuit Analyses. Laboration 1 how to measure Current and Voltage and Resistance

Circuit Analyses. Laboration 1 how to measure Current and Voltage and Resistance This booklet, signed by the teacher, serves as a receipt for passing the lab. Each student must have a booklet of his own

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Physics 260 Calculus Physics II: E&M. RC Circuits

RC Circuits Object In this experiment you will study the exponential charging and discharging of a capacitor through a resistor. As a by-product you will confirm the formulas for equivalent capacitance

### Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

### DC/AC CLAMP METER. Model CM-01 USERS MANUAL PROVA INSTRUMENTS INC.

DC/AC CLAMP METER Model CM-01 USERS MANUAL PROVA INSTRUMENTS INC. EN 61010-2-032 CAT II 600V CAT III 300V Pollution Degree 2 SYMBOLS showed on the clamp meter or in this manual: Caution, risk of danger.

### ELECTRICAL CIRCUITS. Electrical Circuits

Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic

### Question Bank. Electric Circuits, Resistance and Ohm s Law

Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define

### TOPIC 3.1: ELECTRIC CIRCUITS

TOPIC 3.1: ELECTRIC CIRCUITS S4P-3-1 S4P-3-2 S4P-3-3 S4P-3-4 S4P-3-5 S4P-3-6 Describe the origin of conventional current and relate its direction to the electron flow in a conductor. Describe the historical