5. FOURIER SERIES. Fourier Series Fourier Series Definition : A series of the form. 340 College Mathematics

Size: px
Start display at page:

Download "5. FOURIER SERIES. Fourier Series Fourier Series Definition : A series of the form. 340 College Mathematics"

Transcription

1 4 Coege Mathematis 5. FOURIER SERIES 5. Itrodutio I various egieerig probems it wi be eessary to epress a futio i a series of sies ad osies whih are periodi futios. Most of the sige vaued futios whih are used i appied mathematis a be epressed i the form. os os a + a + a + + bsi+ bsi+ withi a desired rage of vaues of. Suh a series is aed a Fourier Series i the ame of the Freh mathematiia Jaques Foureier (768-8) 5. Periodi Futios Defiitio : If at equa itervas of the absissa the vaue of eah ordiate f() repeats itsef the f() is aed a periodi futio. i.e., A futio f() is said to be a periodi futio if there eists a rea umber α suh that f( + α ) f() for a. The umber α is aed the period of f(). we have f() f( + α ) f( + α ) f( + α ).. f( + α ). E : (i) si si ( + ) si ( +4 ).... si ( + ) Hee si is a periodi futio of the period. (ii) os os( + ) os ( + 4 ).. os ( + ). Hee os is a periodi futio of the period. We defie the Fourier series i terms of these two periodi futios. Fourier Series 4 5. Fourier Series Defiitio : A series of the form a f ( ) + a os( ) + b si( ) is aed a Fourier series of f() with period i the iterva (, + ) where is ay positive rea umber ad a, a, b are give by the formuae aed Euer s Formuae : a + + f ( ) d, a f( )os( ) d + b f( )si( ) d These oeffiiets a, a, b are kow as Fourier oeffiiets. I partiuar if, the Fourier series of f() with period i the iterva (, + ) is give by a f( ) + a os + b si ad the Fourier oeffiiets are give by + a f( d ), + a f()os d + b f( )si d We sha derive the Euer s formuae for whih the foowig defiite itegras are required.

2 4 Coege Mathematis (i) (ii) (iii) (iv) (v) + d m m os d si d m os si d for a itegers m ad + + m m os os d si si d (for a itegers m ad suh that m ) m m os d si d Derivatio of Euer s Formuae a We have f ( ) + a os + b si...() To fid the oeffiiets a, a ad b, we assume that the series () a be itegrated term by term from to + To fid a, itegrate () w.r.t from to a + + b f ( ) d+ a os d a () a () b () + + si( ) d a () (usig the defiite itegras (ii) above) Fourier Series 4 + a f( d )... (a) To fid a, mutipy both sides of () by os m where m is a fied positive iteger ad itegrate w.r.t from to + + m f( )os d m + b os si d + a m m os d a os os d + a m () + a os os d+ b () [Usig the defiite itegras (ii) ad (iii) above] + m a os os d ( m ) a () + a () am () + m m am f( )os d Chagig m to we get + m m os ( ) + a d m [Usig the defiite itegras (iv) ad (v) above]

3 44 Coege Mathematis + am f( )os d (b) To fid b, mutipy both sides of () by si m where m is a fied positive iteger ad itegrate w.r.t from to + + m f( )si d a m m si d a si os d + + b m si si d a m () a () b si si d [Usig the defiite itegras (ii) ad (iii) above] + m a si si d ( m ) + + m + bm si si d ( m ) m + bm si d [Usig the defiite itegras (iv) above] bm () [usig the defiite itegra (v)] + m bm f( )si d Chagig m to we get Fourier Series 45 + b f( )si d (b) Thus the Euer s formuae (a), (b), () are proved. Cor. : I partiuar if ad, we get the Fourier series a f( ) + a os + b si where the Foureir oeffiiets are give by a f( d ), a f( )os d b f( )si d Cor. : I the above formuae if ad, we get the Fourier series a f( ) + a os + b si where the Fourier oeffiiets are give by a f ( ) d, a f( )os d b f( )si d

4 46 Coege Mathematis 5.5 Coditios for a Fourier series epasio It shoud ot be mistake that every futio a be epaded as a Fourier series. I the above formuae we have oy show that if f() is epressed as a Fourier series, the the Fourier oeffiiets are give by Euer s formua. It is very umbersome to disuss whether a futio a be epressed as a Fourier series ad to disuss the overgee of this series. However the foowig oditio aed Dirihet s oditio over a probems. a f ( ) + a os + b si provided (i) f() is bouded (ii) f() is periodi, sige vaued ad fiite (iii) f() has a fiite umber of disotiuities i ay oe period. (iv) f() has at the most a fiite umber of maima ad miima. These oditios are aed Dirihets oditios. I fat epressig a futio f() as a Fourier series depeds o the evauatio o the defiite itegras ( )os f d ad ( )si f d withi the imits to +, to or - to aordig as f() is defied for a i (, + ) (, ) or (-, ) 5.6 Iterva with as mid poit If - the the iterva (, + ) beomes (-, ) ad further if -, the iterva beomes (-, ). These itervas have as the mid poit. For futios defied i suh itervas, we osider the effet of hagig to ad assify them as eve ad odd futios. Fourier Series Eve ad odd futios A futio f() is said to be eve if f(-) f() i the give iterva (, + ) ad a futio f() is said to be odd if f(-) -f() i the give iterva (, + ) 5.7. Tests for eve ad odd mature of a futio If f() is defied by oe sige epressio, f(-) f() impies f () is eve ad f(-) -f() impies f() is odd. If f() is defied by two or more epressios o parts of the give iterva with as the mid poit, f(-) from the futio as defied o oe side of f() from the orrespodig futio as defied o the other side, impies f() is eve. f(-) from the futio as defied o oe side of -f() from the orrespodig futio as defied o the other side, impies f() is odd. Eampes : () f() + i (-, ) f(-) (-) + + f() f() is eve. () f() i (-, ) f(-) (- ) - - f() f() is odd. + i (,) () f ( ) i (, ) f ( )i (, ) ( + ) f( )i(,) f(-) -f() f() is odd 5.7. Fourier oeffiiets whe f() is eve ad odd From defiite itegras, we have

5 48 Coege Mathematis a a φ( d ) φ( d ) if φ ( ) is eve. a a ad φ( d ) if φ ( ) is odd. a (a) If f() is eve i (-, ) i.e., iff f(-) f(), the f() os is aso eve. ( ) f(-) os f() os. Sie os(-θ ) os θ ad f() si is odd. ( ) f() si f ( )si sie si(-θ ) -si θ a f( d ) f( d ) (by above defiite itegra) a f( )os d f( )os d b f( )si d f( ) fd ( ) f( )os d + I this ase if the iterva is (-, ) we get a f ( d ) a f( )os d b (b) If f() is odd i (-, ) i.e., if f( -) -f() the Fourier Series 49 f() os is aso odd i (-, ) ( ) f ( )os f ( )os ad ( )si f is eve i (-, ) ( ) f ( )si f ( )si a f( d ) a f( )os d b f ( )si d f( )si d If the iterva is (-, ) the a, a b f( )si d 5.7. Itervas with as a ed poit Itervas ike (, ) ad (, ) with as ed poit have speia features. We kow that If a a φ( d ) φ( d ) if φ( a ) φ( ) ad if φ( a ) φ( ) f( - ) f() The a f ( ) d

6 5 Coege Mathematis a f( )os d b Simiary if, i.e., if the iterva is (, ) we get a f( d ) If a f( )os d b f( ) -f() the a, a, b f( )si d Simiary If f( - ) -f() the a, a, b f( )si d WORKED EXAMPLES ) Fid the Fourier oeffiiet a for f() si i (, ) (May ) a sid [ ( os ) + os. d] [ os si ] + ) Fid the oeffiiet a for f() - i (-,) (A 999) a ( ) d Fourier Series for < < ) If for < < fid the Fourier oeffiiet a i the fourier series. L a f( )os d L L L d.os( ) d + si( ) [si( ) ] 4) Obtai the Fourier series for f() - i the iterva (-, ). (A 999) Soutio : a f( d ) ( ) d d d ( ) [ ] a

7 5 Coege Mathematis a f( )os d ( )os d os os d os d si si si b f( )si d ( )si d si si d sid os os d os si + Fourier Series 5 os ( ) os ( ) ( ) Fourier series is give by a f( ) + aos+ bsi + ( ) + + si + ( ) f ( ) + si is the required Fourier series 5) Epad f() as a Fourier series i the iterva (-, ) ad hee show that (i) + + (ii) (A 999) 6 Soutio : f() f ( ) ( ) f ( ) f ( ) is eve i (, ) b a fd ( ) d d a f( )os d

8 54 Coege Mathematis osd osd os is eve + si os si si os si + ( ) + 4( ) iea., Foureir series is a f ( ) + aos+ bsi 4( ) + os + 4( ) f ( ) + os is the required Fourier series. (i) To prove + + Put i the above Fourier series 4( ) f () + os ( ) + 4 f () ie., ie., Fourier Series (ii) To prove that Put i the Fourier series of f() 4( ) f ( ) + os 4( )., + ( ) ie 4 + ( ) + 4 ( ) 4 i.e., ) Obtai the Fourier series for f() e i (, ) Soutio : a f ( ) d ed e e e

9 56 Coege Mathematis a f( )os d eos d a a e ( aosb+ bsi b) We kow that e osbd a + b e (os+ si ) a + e os e os ) ( ) ( e e ) + ( + ) (as si si( ) ad os ( ) )) b f( )si d e si d a a e ( asib bos b) We kow that e si bd a + b e (si os ) b + e os e os( ) e ( ) e ( ) + ( + ) ( ) ( e e ) ( + ) Fourier series is a f( ) + aos+ bsi Fourier Series 57 ( )( e e ) ( e e ) + os ( + ) + ( ) ( e e ) si ( + ) e e ( )os ( ) si i.e., f( ) sih ( ) os ( ) si e as sih e 7) Obtai the Fourier series for f() i (, ) that Soutio : a f( ) d d a os d si os ( ) ad prove si os si( ) os + + ( ) ( ) +

10 58 Coege Mathematis b f( )si d si d sid si is eve os si ( ) os si ( ) ( ) ( ) Fourier series is a f ( ) + aos+ bsi ( ) si + ( ) si f ( ) is the Fourier series. Put i the Fourier series + ( ) si f + ( ) si sie si if is eve.,,5 Fourier Series 59 5 si si si ie., ) Fid the Fourier series for e - i the iterva (-, ) Soutio : a f ( ) d e d e e e e e e si h a f ( )os d e os d ( os + si ) + ( )

11 6 Coege Mathematis e ( os si ) e ( os si ) + ( ) + ( ) ( e e ) + ( ) sih ( )( e e ) + + b f( )si d e e si d ( si os ) ( ) + e ( si os ) e(si os ) + e ( ) e ( ) + + ( ) ( e e ) ( ) sih + + Fourier series is Fourier Series 6 a f ( ) + aos + bsi sih ( )sih f( ) + os + + ( )sih si + sih ( ) i.e., f ( ) [+ os + + ( ) si + 9) Epad f() si, < < i a fourier series a si d [ os + si a si.os d (si(+) -si(-) d os( + ) os( ) [ ( + ) + os( + ) os( ) ( + ) d ] + [ ( + )] + b si.si d (os( ) os( + d ) ) ]

12 6 Coege Mathematis si( ) si( + ) si( ) si( + ) ( ) d + + os( ) os( + ) + ( ) ( ) + f ( ) + os Note : Whe we derive that ) Fid the fourier series for the periodi futio f( ) i (-, ) Give f() whih is eve a The fourier series is f ( ) + a os( ) a d a f ( )os d os( ) d si( ) si( ). si d si( ) + os( ) Fourier Series 6 + os( ) (os ) (( ) ) f ( ) + (( ) )os ) Epad for < f ( ) for < as a fourier series. a d ( ) + + ( [(4 ) ( )] + + a os d ( )os d + si( ) si( ) d si si + ( ). d + os os + + ( ) + + ( )

13 64 Coege Mathematis ( ) b si d ( )si d + os os d + os os + ( ). d + os os + The fourier series is f ( ) + (( ) )os + (( ) + )os. ) Fid a fourier series for the futio < < f( ) < < a fd ( ) d d [ ] + + a f( )os( ) d osd+.os d Fourier Series 65 si si + () b f( )si( ) d ( )sid.si d + os os + [ os os + ] ( ( ) ) b is zero for, 4, 6,... 4 ad b for,, 5,.. Required fourier series 4 f ( ) +.os +.si 4 si si Note : whe 4 f ( ) ) Fid the Fourier series for os i the iterva

14 66 Coege Mathematis - < < Let f ( ) os. It is a eve futio a f ( ) + a os ; b a os d. si d os 4 a os.osd si.os d {si( ) si( )} d + + os( ) os( ) (+ ) Fourier Series 67 f 4 ( ) os 4 4) If a is ot a iteger show that for - < < sia si si si si a + + a a a Sie f() si a is a odd futio, a & a are equa to zero. b sia.sid (os( - a ) os( ad ) ) + si( a ) si( + a ) a a + os sia os si a a a os sia a os siaθ sia si a sia os.si a a ossia si si si + + a a a Eerise : I A.. Defie a Fourier series. Write the empheria formuae for the fourier oeffiiets.. Write the fourier series with period i the iterva (, + ) 4. Derive the Euer s formuae i the iterva (, + )

15 68 Coege Mathematis 5. Write the Fourier oeffiiets i the iterva (-, ) whe f() is a) eve ad b) odd. 6. Metio dirihets oditios. 7. Fid the fourier oeffiiet a for the foowig futios : - (i) f() i - < < (ii) f( ) i < < (iii) < < f ( ) < < (iv) f ( ) - < < (v) f ( ) osλ i < < (vi) f ( ) < < + < (vi) f ( ) < < 8. Fid the fourier oeffiiets a ad b for the above probems. ( marks for eah ostats) B.. Fid the Fourier series for a) f() i - < <. Hee dedue i < b) f ( ) i < < Hee dedue ) f ( ) i - < <. Hee dedue Fourier Series d) f ( ) si e) f ( ) +,, f) f ( ) os a i, a is ot a iteger. + i < g) f ( ) i < h) f ( ) ( ) i < < If f ( ) i < < i j) f ( ) ( ) i i (, ) k) f ( ) i (,) < < ) f( ) < < m) f() i < < < < ) f ( ) < < < o) f ( ) <

16 7 Coege Mathematis a < < p) f ( ) a < < + < < q) f ( ) < < r) f( ), < <, Hee II.. Show that the fourier series for f() - i (-, ) is 4 ( ) os ( Hit f() is eve ). Show that the fourier series of i < f ( ) is i < < 4 ( ) f ( ) si(+ ). Show that the fourier series of + < < f ( ) is i < < si si f ( ) si ( Hit : f() is odd ) 4. Show that the fourier series of f ( ) os i (, ) is f 4 ( ) ( os os4 ) If f( ) + for < <, show that Fourier Series ad If f() i (, ), show that f ( ) (si si + si + ) (Hit f() is odd) Aswers A. 7 (i) (ii) (iii) (iv) (v) siλ λ 4 ( ) 8. (i) a, b 4 (ii) a ( ) ; b (iii) (( ) 4 a ), b (iv) a, b (m ) ( ) λsi λ (v) a, b (vi) a, b [ ( ) ] λ 4 (vii) [ ( ) a ], b B. I 4 os os4 os6 d) f ( ) e) f ( ) os os os a f) f ( ) a a 4 os os os g) f ( )

17 7 Coege Mathematis os os h) f ( ) si 4 si si si si si si5 i) (i) f( ) os os6 os (ii) f ( ) os os os j) f ( ) ( ) k) si 4 4 ) si si si si m) si si si + si( ) ) f ( ) si() o) f ( ) + 4a si() p) f ( ) q) f ( ) + ( ( ) ) os Haf rage osie ad sie series May times, it may be required to obtai a Fourier series epasio of a futio i the iterva (, ) whih is haf the period of the Fourier series. This is ahieved by treatig (, ) as haf rage of (-, ) ad defiig f() suitaby i the other haf Fourier Series 7 i.e., i (-, ) so as to make the futio eve or odd aordig as osie series or sie series is required. a f( d ), a f( )os d ( ) a os a f + for haf rage osie series ad b f( )si d ad write the series as f ( ) b si for haf rage sie series. Simiary, i (, ) a f( d ), a f( )os d a ad f ( ) + a os b f( )si d f ( ) b si NOTE : (i) To sove a probem o Fourier series we have to fid a, a ad b ad substitute i a f ( ) + aos + bsi (ii) Fidig of a, a, b, ivoves itegratio. I most of the probems, f() osists of terms ike,,, et whih after a few differetiatio wi be zero. The geeraized formua for itegratio of the produt of two futios u ad v aed the Beroui s rue may be used for fidig a ad b. 4 uvd uv uv + uv u v + where dashes deote differetiatio w.r.t ad suffies,,,... deote itegratio w.r.t.

18 74 Coege Mathematis os si os For eg. sid + (iii) The foowig vaues of osie ad sie are usefu os, os (-) os (-), os if is odd ad os ( ) if is eve. si, si si (), si ( ) if is odd ad si is eve. (iv) Itegratio work a be redued to a great etet by usig the ideas of eve ad odd futios, wheever is the mid poit. (v) If f() is either odd or eve, the f() may osist of some terms whih whe take idividuay may be odd or eve ad the itegratio work a be redued. Worked Eampes : ) Fid the haf rage sie series for f() i (, ) (May ) f ( ) L b si L where b f( )si d L L b.si d os + os d os si + ( ) Fourier Series 75 os ( ) Haf ramge Sie series is ( ).si( ) ) Obtai the haf -rage Sie series for f() over the iterva (, ) (A ) b.si d os ( ) os d + os si + os ( ) Haf ramge Sie series is ( ) f ( ).si. ) Fid the haf rage Fourier sie series of f() i the iterva (, ) (N ) b si d os ( ) + os( ).d os si si +. d os os + +

19 76 Coege Mathematis os os + ( ) ( ) f( ) + si( ) 4) Fid the haf rage osie series for the futio f() i (, ) (A ) It is required to fid a f ( ) + a os L where L a f( d ) ; a f( )os d L L L a a d os( ) d si( ) si( ). d os( ) os( ) +.d os( ) si( ) + ( ) 4( ) 4( ) f ( ) + os( ) () L Fourier Series 77 4( ) os( ) + 5) Fid the haf rage Sie series for f( ) i the itera << ( )si b d ( )( ) ( )( ) ( )( ) os si os + 4 ( os ) 8 8 f ( ) si 8 si si5 si ) Fid haf rage sie series of < f ( ) < < b f( )si d si d ( )si d + os si

20 78 Coege Mathematis os si + ( ) ( ) os( ) si( ) os( ) si si 4 si si5 f ( ) si ) Fid the haf rage sie series for f() - i the iterva (, ) (A ) b ( )si( d ) os si( ) ( )( ) ()( os f ( ) ( os )si( ) + 8. Fid the haf rage osie series for the futio of f() ( - ) i the iterva < <. ( ) a ( ) d + ( ).os( ) a d Fourier Series 79 ( ) os( d ) si os si ( ) ( ) + si( ) os() f ( ) + os 9) Epad f() as a osie haf rage series i < < Soutio : The graph of f() is a straight ie. Let us eted the futio f() i the iterva (-, ) so that the ew futio is symmetri a about they y ais ad hee it represets a eve futio i (-, ) the Fourier oeffiiet b a f ( ) + a os 4 a d d a os d si os 4 si os +

21 8 Coege Mathematis os os (os ) [( ) ] a f ( ) + a os 4 [( ) + ]os 5 4 os os os f ( ) os os os.., ( ) ie f Importat Note : It must be eary uderstood that we epad a futio i < < as a series of sies ad osies merey ookig upo it as a odd or eve futio of period. It hardy matters whether the futio is odd or eve. ) Epad f ( ) if < < 4 if < < 4 i the Fourier series of sie terms Soutio : Let f() be a odd futio i (-, ) a ad a ad b f ( )si d f( )si d Fourier Series 8 sid+ si d 4 4 os si ( ) 4 os si + ( ) 4 si os + os+ 4 4 si os os si.., [ ( ) ] ie b sie os 4 b ; b b 4 ; b 4 + b5 4 ; b 6 et. 5 5 f ( ) b si 4 4 si si si

22 8 Coege Mathematis ) Fid the sie ad osie series of the futio f() - i < <. (A 99) Soutio : (i) Fourier sie series: b f ( )si d ( )si d os si ( ) ( ) os si ( ) ( ) + Fourier sie series is f ( ) b si si si+ si + si + (ii) Fourier osie series: a f( ) d ( d ). a ( )os d Fourier Series 8 si os ( ) ( ) os os. os ( os ) [ ( ) )] a f ( ) + a os [ ( ) + ]os + os os os os os os ) Fid the Fourier series epasio with period to represet the futio f() i the rage (, ) Soutio : We have ad + a f( d ) ( ) d

23 84 Coege Mathematis [9 9] + a f( )os d ( )os d si os ( ) () si ++ ( ) si os si b f( )si d + ( )si d Fourier Series 85 os si os ( ) ( ) ( ) os ( 4)9 (7) si os os a f ( ) + aos + bsi 8 + os + si 8 f ( ) os + si ) If f ( ), show that os f ( ) + i the rage of (, ) Soutio : It is a eve futio b a f ( ) d d 4 ( ) [( ) ]

24 86 Coege Mathematis ( ) 6 a f( )os d os d si ( ) os si + + The Fourier series is a f ( ) + aos+ bsi os + + os f ( ) + 4) Fid the fourier Series epasio of osh a i(-, ) Soutio : f() osh a a osh ad sih a osh ad a sih a a a oshaos d Fourier Series 87 a a e + e os d a a e osd e os d + a aos+ si a asiaos e e + a + a + a aos+ si a asiaos e e + a + a + aos si si aos e + e a + a + a a e a e a( ) ( ) + a + a + a + a + a( ) a a ( e e ) a + a( ) ie.., a sih a ( a + ) b \ The Fourier series for osh a is a osha + a os a( ) sih a siha os a + ( a + ) Eerise. Fid the haf rage Fourier osie series for f() i <

25 88 Coege Mathematis < <. Prove that f ( ) 4 4 < <, 4si the sie series is [ ( ) ] si. Fid the haf rage Fourier sie series for f() e i the iterva (, ) 4. Fid the haf rage osie series for a < < f ( ) a a < < a, 5. Obtai a haf rage osie series for f() for < <. Hee show that Fid a Fourier sie series for < < a) f ( ) < < b) f ( ) ( ) i < < 7) Epad f(), - < < i a fourier series. (N ) 8) Obtai the Fourier series for f ( ) e i (, ) (N ) 9) Obtai the Fourier series for f() i (-, ) (N ) a ) Obtai the Fourier series for f ( ) e i (, ) Fourier Series 89 ( ) ad hee dedue that os eh (A ) + ) Prove that i < < 4 5 os os os ad dedue that Aswers 4 4 (i) (ii) 4 4 ( ) 96 9 ) f ( ) ( ) os ) f ( ) ( ) si + a 8 6 4) f ( ) os os os a 6 a a 6) a) f ( ) ( os )si 8 si() b) f ( ) ( ) 9) 4 os os a sia asih a ) e + ( ) os a ( a + ) asih a + ( ) si ( a + ) EXERCISE A. Defie Haf rage a) osie b) sie series

26 9 Coege Mathematis. Fid the osie ad sie series for f() i ad hee show that 8 5. Obtai the Fourier series for the periodi futio f() defied for < < by f ( ) + for < < ad hee show that Obtai the Fourier series of f() defied by + i < f ( ) i < 4. Prove that the Fourier series epasio of ( - ) defied i os os4 os6 the iterva (, ) is Obtai the Fourier series for the futio for < < f( ) for < i < < 6. f ( ) i < < 4 si si si5 Show that (i) f ( ) os os6 os (ii) f ( ) Fourier Series 9 i 7. If f ( ) ( ) i i the iterva (, ) fid the Fourier series of f() i (, ) 8. If f ( ) fid the Fourier series i (,) i (-, ) 9. Fid the haf-rage osie series for si i (, ). Fid the haf rage sie series for f() i (, ). Fid the haf rage osie series for f() o (, ). Fid the haf rage sie series for f() i (, ). Fid the Fourier series for f() + + i (-, ) 4. Epress f() + as a Fourier series i (, ) i (,) 5. Epad f ( ) as a Fourier series i (, ) i (-, ) ( ) ( ) [( ) ] + os+ si 6 for < < 6. If f ( ) si for < < si os Prove that + ad hee show that 4 ( ) for <, f 4 7. If f ( ) for < prove that os os5 f ( ) os + + ad hee show that 4 5

27 9 Coege Mathematis for 8. f ( ) for 8 os os os5 Prove that f ( ) For f( ) i (, ), prove that 4 os os5 f ( ) os For f ( ) si i (, ) fid the Fourier series ad hee dedue that ( ) Prove that the Haf rage fourier sie series for f() - i (, ) is si [ Marks]. Prove that the Haf rage sie series for f() e i (, ) is [ ( ) e]si + ANSWERS 4 () i os os os ( ii) si si+ si+ + 4 os os os Fourier Series 9 4 os os os os os os si 4 si4 si si os os os ( ) 8. si 4 os 9. 4 si si si ( ) 4os ( ) [( ) ]4 + si + ( )4 ( ) + os + si [( ) ]4 [( )( + ) ] si os os+ os os Fiite Sie ad Cosie Trasforms Defiitios: If f() is a setioay otiuous futio over some fiite iterva (, ) of the variabe, the the fiite Fourier Sie ad Cosie Trasforms of f() over (, )are defied by

28 94 Coege Mathematis F( ) Fd where,,, s s ad Fs ( ) f( )os d where,, I the iterva (, ) we have F ( ) ( )os s f d where,, ad F ( ) ( )os f d,, Usig Fourier Sie ad Cosie haf-rage series, the iverse trasforms i the iterva (, ) are give by f ( ) Fs ( ) si ad f ( ) F() + F( )os where F () ( ) f d I the iterva (, ), the above resut beomes F( ) Fs ( )si where F ( ) F () + F ( )os F () ( ) f d NOTE : If the iterva is ot give i the probems, the we have to take the iterva as (, A). WORKED EXAMPLES : Fourier Series 95 () Fid the fiite Fourier sie ad osie trasforms of f() i (, ) Soutio : Give : f(), i (, ) (, ) () We kow Fs ( ) f ( ) si d si d [usig ()] Cos os ( ) Fs ( ) Aso, F () fcos ( ) d Cos d [usig ()] () Si F() if,,,... If the F () [ ] Cosd [usig ()] () Fid the fiite Fourier sie ad Cosie trasforms of f() i (, ). Soutio : We kow Fs ( ) Fsi ( ) d

29 96 Coege Mathematis si d (usig give data) Usig Berouie s rue, we get os si Fs ( ) os si + + [ ] + ( ) Fs ( ) where,,,... Now F ( ) f( )os d [ os ] [ si si] os d (usig give data) Usig Berouie s rue, we get si os F ( ) si os + Fourier Series 97 ( ) (os os) + F ( ) [( ) ] where,,,... If, F () d F () () For the futio f(), fid the fiite Fourier sie ad Cosie trasforms i (, ) Soutio Give : f(), (, ) (, ) () We kow Fs ( ) f( )si d Usig Berouie s rue, we get si d [usig ()] ( ) os si Fs [ os ] ( si si ) [ os ] + ( ) Fs ( ) where,,,... Aso,

30 98 Coege Mathematis F ( ) f( )os d os d [usaig ()] si os ( ) [ os F ] F ( ) (os os) F ( ) {( ) } If, 4,6,..., F () If,, 5,...., ( ) F If, F () d (usig Berouie s rue) F () (4) Fid the fiite Fourier sie trasform of f() i (, ) Soutio Give : f(), (, ) (, ) () We kow Fs ( ) f ( ) si d si d [usig ()] Usig Berouie s rue, Fourier Series 99 os si os F ( ) ( ) () s os + os ( si si ) 6 (4os ) + (os os) Fs ( ) ( ) + [( ) ] (5) Fid the fiite Fourier sie ad Cosie trasforms of f() -. Soutio : Sie the rage is ot give we sha take the iterva as (, ) We kow Fs ( ) ( )si d( f( ) ad ) Usig Berouie s rue, F ( ) s Aso ( ) ( ) os ( ) si Fs [ ( )os ] ( si si ) [ ( ) ] F ( ) ( )os d Usig Berouie s rue,

31 4 Coege Mathematis ( ) ( ) si ( ) os Fs [ os ] ( si si ) [ os os ] F ( ) ( ) where. Whe, F () ( ) d F () (6) Fid the fiite Fourier Sie ad Cosie trasforms of f() - Soutio :Sie the rage is ot give, we sha take the iterva as (, ) Give : f( ),(, ) (, ) () We kow Fs ( ) f( )si d ( )si d [usig ()] Usig Berouie s rue, os si os Fs ( ) ( ) ( ) + ( ) Fourier Series 4 ( )os [ os ] ( )os [os ] ( )( ) [( ) ] + ( ) ( ) Fs ( ) [( ) ] where,,,.. Aso F ( ) f( )os d ( )os d Usig Berouie s rue, si os si F ( ) ( ) ( ) + ( ) ( )os ( )os If, F () [ ] ( )os os where [ ] () ( ) F d

32 4 Coege Mathematis 7) Show that the fiite Fourier sie trasform of f() (-) is 4 if is odd ad if is eve. Soutio : Sie the rage is ot give, we sha take the iterva as (, ) Give : f() (-), (, ) (, ) () We kow Fs ( ) f( )si d ( )si d [usig ()] ( )si d Usig Berouie s rue, os si os F ( ) ( ) ( ) + ( ) s ( )os [os ]( si si ) [ ] [os os] [( ) ] Fs ( ) [ ( ) ] If is odd, Fs ( ) [ ( )] 4 F ( ) s If is eve, Fs ( ) [ ] Fourier Series 4 4 Thus, F ( ) s if is odd ad if is eve. (8) Show that the fiite Fourier Cosie trasform of, if,,, f ( ) is, if. Soutio : We sha take the iterva as (, ) Give : f ( ),(, ) (, ) We kow Fs ( ) f( )os d () os d [usig ()] Usig Berouie s rue, si os si ( ) ( ) ( ) F ( ) + os ( si si ) [ os] F ( ) for If, F () d

33 44 Coege Mathematis [ ] F () (9) Fid the Fourier Cosie trasform of f() defied by, < < f ( ), < < Soutio : Give (, ) (, ) We kow F ( ) f ( )os d f( )os d f ( )os + f( )os d.os d+ ( )os d () si si (usig give data) Fourier Series 45 si si ( ) si F for () Whe, Thus, F (). d+ ( ) d [usig ()] [ ] [ ] F () (), for,,4,6, F ( ) ( ) ( ), for,,5, [Usig () & ()] () Fid the fiite Fourier Cosie trasform of the futio, for < f ( ), for < < Soutio : Give : (, ) (, ) We kow F ( ) f( )os d f( )os d

34 F 46 Coege Mathematis f ( )os + f( )os d.osd+ os d (usig give data) os d () si si si si, if iseve ( ) ( ) ( ), if isodd If F() osd [usig ()].d F () Thus,, for F ( ),,4,6, ( ) ( ), for,,5, Fourier Series 47 () Fid the fiite Fourier Cosie ad Sie trasforms of the futio f() e a i (, ). Soutio : We kow F ( ) f( )os d a F ( ) e os d () a a e ( aosb+ bsi b) Usig e osbd we get a + b F ( ) e a aos + si a + + a a a a a e os e si + + a a a e os e si + a + a + a a F ( ) [( ) e ] where,,,... a + whe, we get a F( ) e d [usig ()] a e a a e F () a Aso, Fs ( ) f( )si d

35 48 Coege Mathematis a Fs ( ) e si d a a e ( asib bos b) Usig e sibd, we get a + b asi os a F ( ) e a + a a a e si e os + + a a a e os a + a Fs ( ) [ ( ) e ] where,,,... a + () Fid f() i (, ) give that the fiite Fourier Cosie os( ) trasform is F ( ) ( + ) Soutio : I the iterva, we kow f ( ) f() + f( )os Here f ( ) f () + f ( )os () os( ) Give : f ( ) ( + ) f () Usig these i (), we get Fourier Series 49 os( ) f ( ) + os ( + ) () Fid f() i (, ) give that the fiite Fourier sie trasform os is fs ( ) Soutio : We kow fs( ) fs( )si i (, ) Here f( ) Fs ( )si ( os ) f ( ) si (Usig give data) os ( ) if is eve ad if is odd. Usig this, we get f ( ) si,5, 4 si si si5 f ( ) () () (5) (4) Fid f() i < < 4 Give that F ()6, f ( ) ( ) where,,,... Soutio : We kow f ( ) f() + f( )os i < < Give : 4 f ( ) (6) + [( ) ]os 4 4 (usig give data)

36 4 Coege Mathematis f ( ) 4+ os,,5, 4 5 f( ) 4 os os os [NOTE : S [f()] deote the fiite Fourier sie trasform of f() ad S - is its iverse. Simiary C [f()] deote the fiite Fourier Cosie trasform of f() ad C - is its iverse.] os (5) Show that S ( ) os Soutio : We sha prove that S ( ) Here S ( ) ( )si d ( )si d Usig Berouie s rue, S ( ) os si os ( ) ( ) + ( ) os os + ( )os Fourier Series 4 Cos S ( ) os S ( ) ksi k (6) Show that C os k( ) k where k. ksi k Soutio : To prove that C [os k( )] k Here. We kow [os k( )] os k( )os d [ o s( k k+ ) + os( k k )] d [ o s{ k ( k )}] d + [ o s{ k ( k+ )}] d si[ k ( k ) ] si[ k ( k+ ) ] + ( k) ( k + ) [si si k] + [si( ) si k] ( k ) ( k+ ) sik si k + k k + ksi k C [os k( )] k ksi k C os k( ) k

37 4 Coege Mathematis 5. Fiite Sie ad Cosie Trasforms of Derivatives. I the iterva (, ), we prove the foowig resuts. ( r) ( r) () Fs f ( ) F f ( ) ( r) ( r) ( r) ( r) () F s f ( ) ( ) f () f () + F s f ( ) Proof : Fourier fiite sie trasform is give by ( r) ( r) F s f ( ) f ( )si d Usig itegratio by parts, ( r ) ( r) ( r) Fs f ( ) f ( )si f ( )os d ( r ) ( r ) ( r ) f ()si f ()si f ( )os d ( r) ( r) F s f ( ) F f ( ) () ( r) ( r) Aso, F f ( ) f ( )os d Usig itegratio by parts, ( r) ( r) ( r) F f ( ) f ()os + f ( )si d ( r) ( r ) ( r) f ()os f ()os + F s f ( ) F f f f F f ( r) ( r) ( r) ( r) ( ) ( ) () () + s ( ) () [NOTE : Usig the above resuts () ad (), we obtai the foowig resuts i the iterva (, )] Usig r i () ad (), we get Fs F ( ) F[ f ( ) ] () Fourier Series 4 F f ( ) [( ) f () f ()] + Fs[ f ( ) ] (4) Usig r i () ad (), we get Fs[ f ( ) ] F[ f ( ) ] Fs[ f ( ) ] [( ) f () f()] F [ ( )] s f (5) [Usig (4)] Aso, F[ f ( ) ] [( ) f () f ()] + Fs[ f ( )] F[ f ( ) ] ( ) f () f () F[ ( )] f (6)[usig ()] I the iterva (, ), the above resuts beomes F f ( ) F[ f( )] (7) s [ ] [ ] s [ ] [ ] F f ( ) [( ) F( ) f()] + F[ f( )] (8) F f ( ) [( ) f( ) f ()] F[ f( )] (9) s F f ( ) [( ) f ( ) f ()] F[ f( )] () s WORKED EXAMPLES (7) By empoyig the fiite Fourier Cosie trasform, sove the equatio Y + Y e, Y () Y ( ). Soutio : Give : Y + Y e Usig fiite Fourier Cosie trasform, we get, F[ Y ] + F[ Y] F[ e ] () I the iterva, (, ), we have F[ f ( ) ] ( ) f () f () F[ ( )] f Here (, ) (, ) ad Y f() F y ( ) y ( ) y () F( y) [ ] s

38 44 Coege Mathematis Give : Y () Y ( ) [ ] [ ] F y F y () Aso, F[ e ] e os d e ( os+ si ) + e os + e os + F[ e ] ( ) e + for () Usig () ad () i (), we get F[ y] + F[ y] ( ) e + ( ) F [ y] ( ) e + + [( ) e ] F[ y] ( + )( ) This is deoted by f () for f () + ( ) e ( + )( ) (4) Put i (4) e e f () (5) Usig iverse Fourier Cosie trasform, y f () + f ( )os Fourier Series 45 ( ) e y ( e ) + os ( + )( ) (8) Empoyig the fiite Fourier sie trasform, sove the differetia equatio y + y i, give y() y(). Soutio : y + y Usig fiite Fourier sie trasform, we get Fs[ y ] + Fs[ y] Fs[ ] () I (, ), we get Fs[ f ( ) ] [( ) f () f ()] F[ ( )] s f Fs[ y ] [( ) y () y()] F[ ] s Y [ Y f( ) ] Usig Y() Y ( ), we get Fs[ y ] F [ ] s y () Aso, F s si d Usig Berouies rue, os si os + Fs os os + os [ os ] + + ( ) Fs [ ] + ( ) ()

39 46 Coege Mathematis Usig () ad () i (), we get, ( ) + F[ ] [ ] ( ) s y + Fs y + ( ) + [ ] ( ) Fs y + + ( ) ( ) Fs [ y] + Usig iverse fiite Fourier sie trasform, we get ( )si y Fs y 4 + ( ) ( ) y + si (9) Usig the fiite Fourier Sie trasform, sove the differetia equatio y + ky i < < give that y() y( ) ad k is a o-itegra ostat. Soutio : Give : y + ky Usig fiite Fourier sie trasform, F[ y ] + kf [ y] F[ ] () s s s I (, ) Fs[ y ] [( ) y( ) y()] Fs[ y] Usig y() y( ), we get F[ y ] F[ y] () s Aso, s [ ] si s F d Usig Berouie s rue, os si os si F [ s ] Fourier Series 47 [ ] os 6 os Fs + + os 6 os 6 os 6 [ ] ( ) Fs () Usig () ad () i () we get (6 ) [ ] [ ] ( ) Fs y + kfs y ( ) (6 ) Fs [ y] (4) ( k ) Usig iverse fiite Fourier sie trasform, we get y Fs ( y)si ( )(6 ) ( k ) y si

40 48 Coege Mathematis EXERCISES. Fid the fiite Fourier Sie trasforms of the foowig (a) i (, ) (b) - i (, ) () a i (, a) (d) os (e) e -. Fid the fiite Fourier Cosie trasforms of the foowig (a) i (, ) (b) ( - ) i (, ) () i (, a) a. Fid the Fourier Cosie trasform of the futio i < < f ( ) i < < 4. Fid the Fourier Cosie trasform of the futio i < < f ( ) i < < 5. Show that the Fiite Fourier Sie trasform of is ( ) + a 6. Show that the fiite Fourier Sie trasform of f ( ) e i + a (, ) is [ + ( ) e ] a + 7. Fid the fiite Fourier Sie trasform of (i) si a ad (ii) os a. 8. Fid the fiite Fourier Cosie trasform of si a. 9. Fid f() i (, ) give. os (a) Fs( ) Fourier Series 49 (b) Fs ( ) os () F( ),,,,..., F () (d) F( ),,,,..., F (). If k is a ostat ad < <, the prove that k osh k ( k) C k + sih a. Sove the foowig differetia equatios. (a) y y e,, give y () y ( ) usig Fourier fiite Cosie trasform. (b) y y si i give y() y( ) usig Fourier fiite Sie trasform. () y y e i, give y() y( ) usig Fourier fiite Sie trasform. (d) y + y si i, give y() y( ) usig Fourier fiite Sie trasform. (e) y + y si, < < give y () y ( ) usig Fourier fiite Cosie trasform. ANSWERS ( ) + 4. (a) (b) { ( )}a () (d) for ad + { ( ) } for,, 4,. (e) [ ( ) e ] +

41 4 Coege Mathematis. ( ) ( ) (a) (b) [( ) ] a ( ). + ( ) os 4. si 7. (i) if aais, aiteger ad,,,... Fs ( ) i aisapositive, it eger. [ + ( ) os a ] (ii) F ( ) a if a, iseve 8. F ( ) a if a, isodd a 9. (a) os si (b) si os () + si (d) + si e 4 ( ) e. (a) y + os 4 ( + )( + 4) Fourier Series 4 (d) y + si,,5,... 4 (e) 4 y ( ) ( 4 + ) os (b) 4 y si+ si 8 ( ),4,6,.. [( ) e ] () y si ( + )

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

SOLID MECHANICS DYNAMICS TUTORIAL DAMPED VIBRATIONS. On completion of this tutorial you should be able to do the following.

SOLID MECHANICS DYNAMICS TUTORIAL DAMPED VIBRATIONS. On completion of this tutorial you should be able to do the following. SOLID MECHANICS DYNAMICS TUTORIAL DAMPED VIBRATIONS This work overs elemets of the syllabus for the Egieerig Couil Eam D5 Dyamis of Mehaial Systems, C05 Mehaial ad Strutural Egieerig ad the Edeel HNC/D

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Laws of Exponents. net effect is to multiply with 2 a total of 3 + 5 = 8 times

Laws of Exponents. net effect is to multiply with 2 a total of 3 + 5 = 8 times The Mathematis 11 Competey Test Laws of Expoets (i) multipliatio of two powers: multiply by five times 3 x = ( x x ) x ( x x x x ) = 8 multiply by three times et effet is to multiply with a total of 3

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 ) Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

More information

MATH 083 Final Exam Review

MATH 083 Final Exam Review MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

The Sample Complexity of Exploration in the Multi-Armed Bandit Problem

The Sample Complexity of Exploration in the Multi-Armed Bandit Problem Joura of Machie Learig Research 5 004) 63-648 Submitted 1/04; Pubished 6/04 The Sampe Compexity of Exporatio i the Muti-Armed Badit Probem Shie Maor Joh N. Tsitsikis Laboratory for Iformatio ad Decisio

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Laws of Exponents Learning Strategies

Laws of Exponents Learning Strategies Laws of Epoets Learig Strategies What should studets be able to do withi this iteractive? Studets should be able to uderstad ad use of the laws of epoets. Studets should be able to simplify epressios that

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t

Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:

More information

Fast Fourier Transform

Fast Fourier Transform 18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

CHAPTER FIVE Network Hydraulics

CHAPTER FIVE Network Hydraulics . ETWOR YDRAULICSE CATER IVE Network ydrauics The fudameta reatioships of coservatio of mass ad eergy mathematicay describe the fow ad pressure distributio withi a pipe etwork uder steady state coditios.

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

How To Solve An Old Japanese Geometry Problem

How To Solve An Old Japanese Geometry Problem 116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio

More information

REVIEW OF INTEGRATION

REVIEW OF INTEGRATION REVIEW OF INTEGRATION Trig Fuctios ad Itegratio by Parts Oeriew I this ote we will reiew how to ealuate the sorts of itegrals we ecouter i ealuatig Fourier series. These will iclude itegratio of trig fuctios

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

APPLICATION NOTE 30 DFT or FFT? A Comparison of Fourier Transform Techniques

APPLICATION NOTE 30 DFT or FFT? A Comparison of Fourier Transform Techniques APPLICATION NOTE 30 DFT or FFT? A Compariso of Fourier Trasform Techiques This applicatio ote ivestigates differeces i performace betwee the DFT (Discrete Fourier Trasform) ad the FFT(Fast Fourier Trasform)

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

ABSTRACT INTRODUCTION MATERIALS AND METHODS

ABSTRACT INTRODUCTION MATERIALS AND METHODS INTENATIONAL JOUNAL OF AGICULTUE & BIOLOGY 156 853/6/8 1 5 9 http://www.fspublishers.org Multiplate Peetratio Tests to Predit Soil Pressure-siage Behaviour uder etagular egio M. ASHIDI 1, A. KEYHANI AND

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND OBTAINED WITH ENGEL SERIES ELVIA NIDIA GONZÁLEZ AND JULIA BERGNER, PHD DEPARTMENT OF MATHEMATICS Abstract. The aciet Egyptias epressed ratioal

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for

More information

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Supervised Rank Aggregation

Supervised Rank Aggregation Sessio: Search Quaity ad Precisio Supervised Rak Aggregatio Yu-Tig Liu,*, Tie-Ya Liu, Tao Qi,3*, Zhi-Mig Ma 4, ad Hag Li Microsoft Research Asia 4F, Sigma Ceter, No. 49, Zhichu Road, Haidia District, Beijig,

More information

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

More information

Sequences and Series Using the TI-89 Calculator

Sequences and Series Using the TI-89 Calculator RIT Calculator Site Sequeces ad Series Usig the TI-89 Calculator Norecursively Defied Sequeces A orecursively defied sequece is oe i which the formula for the terms of the sequece is give explicitly. For

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Irreducible polynomials with consecutive zero coefficients

Irreducible polynomials with consecutive zero coefficients Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information