Effects of Projectile Motion in a Non-Uniform Gravitational Field, with Linearly Varying Air Density

Size: px
Start display at page:

Download "Effects of Projectile Motion in a Non-Uniform Gravitational Field, with Linearly Varying Air Density"

Transcription

1 Effects of Pojectile Motion in a Non-Unifom Gavitational Field, with Linealy Vaying Ai Density Todd Cutche Decembe 2, 2002 Abstact In ode to study Pojectile Motion one needs to have a good woking model of how a pojectile is effected by extenal foces. The model in this pape will exploe the effects of vaiable gavity, vaiable ai esistance, and cuvatue of the eath, on pojectile motion.

2 Intoduction To study Pojectile Motion the fist thing that we need to is come up with a good model of how a pojectile tavels. To this popely we need to account fo (among othe things not coveed hee) the effects of: vaiable gavity, vaiable ai esistance, and the cuvatue of the eath. Once we have found an expession fo the esistive foce, (this will be the foce opposing the pojectile due to gavity and ai esistance) we will use it to get a set of fou dynamical equations. This set of dynamical equations will be solved numeically fo the path of the pojectile. The numeic solutions to these dynamical equations will be pefomed using the fouth ode Runge-Kutta method pogammed in C++ (see Appendix A). 2 Theoy To come up with a good model fo pojectile motion, we must fist deive a set of dynamical equations that can be solved (eithe analytically o numeically) fo the path of the pojectile. These equations have to account fo:. Launching a pojectile at any angle (0 o 90 o ). 2. The cuvatue of the eath. 3. The fact that gavity vaies with the height of an object. 4. The fact that ai esistance vaies with the height of an object. To stat off we will get an expession fo the foce of a gavity field that is dependent on altitude. This will be ne by using Newton s Law of Univesal Gavitation: F GMm R 2 u () whee G 6 672x0 Nm 2 and is the univesal gavitation constant. M is the mass of the intestella body kg 2 that you ae on (in ou case M Eath 5 98x0 24 kg), m is the mass of the object being thown, and R is the adial distance measued between the cente mass of the two objects. We next need to get an expession fo ai esistance that is dependent on the altitude of ou pojectile (). To this we used the book s quadatic model of ai esistance ( F c v v ) whee c 22D 2 and D is the diamete of the pojectile. To get a vaiable ai esistance we make the assumption that this is coect at sea level ( ) only, and that the ai esistance educes linealy to zeo at the edge of the atmosphee (R a ). In ode to accomplish this we need to multiply this equation by some expession that is one at and zeo at R a. This leads us to the expession: F c Ra v v (2) By combining equations () and (2) we ae able to get the following expession fo the foces opposing the motion of ou pojectile. F GMm 2 u c R a v v (3) By dividing this equation by m and by beaking v v into its component vectos we get. 2

3 ā GM c 2 u m GM c 2 u m c m R a Ra R a v φ v 2 v φ 2 v v (4) v v 2 v φ2 u u φ (5) We also know fom class 2, and the Round Eath and Vaiable Gavity Effects on Pojectile Motion hanut (equation # (.20)), that ā 2 φ u 2ṙ φ φ u φ z u z (6) By combining equations (5) and (6) we ae able to get: φ 2 GM 2 c m Ra v v 2 v φ 2 (7) 2ṙ φ φ c m and Ra v φ v 2 v φ 2 (8) Finally by using equations (7) and (8) we ae able to find the dynamical equations. This is ne by solving each equation fo and φ espectively. d dt dṙ dt dφ dt d φ dt ṙ (9) φ 2 GM c Ra 2 m R e v v 2 v 2 φ (0) φ () 2ṙ φ c m R a v φ v 2 v φ 2 (2) These ae fou coupled second ode odinay diffeential equations and theefoe a numeic solution is equied. 3

4 3 The Pogam To solve the dynamical equations (9, 0,, & 2) I modified the C++ Runge-Kutta pogam that was povided in class 2. This pogam uses fouth ode Runge-Kutta to numeically solve diffeential equations. The pogam was changed to solve the dynamical equations fo and φ with pojectiles of any diamete (D), initial velocity (V o ), and launch angle (θ) this pogam was also setup to take these initial values as command line aguments. Taking the initial values as command line aguments allowed the Pojectile Launch pogam (Appendix A) to be un by a bash scipt (Appendix B) that would pass it the initial values. The pogam was then un fo objects with a diamete of 0.0 m,.0 m, 0.0 m, & 0.00 m. The initial velocity and launch angle vaied fom 0.0 m/s to 0000 m/s (in incements of 0 m/s) and 0 o to 90 o (in incements of 5 o ) espectively. This esulted in data sets. Note: The density used fo all objects is that of a baseball ( kg/m 3 ), & all pojectiles ae launched fom km above the Eath s suface. 4 Results The esults fo all the data sets tun out to be some what simila. Because of these similaities, and shee volume, I am not including all of the data. Seveal examples of data sets ae included in Appendix C. In evey case at high initial velocity the object is able to escape, at low initial velocity the object etuns to the Eath. An inteesting point is that no object was found to be able to cicle the Eath. This is because the launch position is only km above the eath suface, and so the effect of ai esistance is still quite lage. 4

5 Figue : Pojectiles with D 0m, θ 40 o, & vaying initial velocity s. In Figue it can be seen that fo high velocities such as the geen and bown taces (V o 0000 m s & V o 5000 m s) that the pojectile will escape the Eath s gavitational pull. and fo lowe initial velocity s such as the ed, blue, and black taces (V o 000 m s & V o 500 m s& V o 00 m s) the pojectile will eventually etun to Eath. This figue shows what is typical fo all of the data collected. Figue 2: Pojectiles with D m,v o 000 m s and vaying initial velocity s θ 5

6 Figue 2 shows an example of the compaison between diffeent initial launch angles fo pojectiles with the same diamete and velocity. The taces on this figue ae fo launch angles of 5 o to 90 o in incements of 5 o. The diamete and velocity of these pojectiles is m and 000 m/s espectively. This figue also shows (as was expected) that the optimum launch angle to achieve maximum ange is appoximately 45 o. 5 Conclusion The esults obtained fom this model of pojectile motion ae what would be expected of a good model. If you launch a pojectile with an extemely lage initial velocity it will escape the gavitational pull of the Eath. The angle that you launch it at has an effect on the flight of the pojectile. The optimum launch angle is appoximately 45 o. I was not able to show that you could put an object into obit, howeve this is due to the launch position of the pojectile. 6

7 6 Appendix A The following code is the C++ pogam used fo this poject. #include <iosteam.h> #include <stdio.h> #include <math.h> #define N 4 // numbe of fist ode equations #define DELTA_T 0.09 // stepsize in t #define T_MAX // max fo t #define GM e4 #define R_e //ad. of eath (m) #define R_a //distance fom cente of eath to space (m) #define Dens //density of a baseball (kg/mˆ3) #define Pi static float c; static float m; int main(int agc, cha **agv){ float Diam; //diam. of object (m) float V_o; //inital velocity (m/s) float theta_o_deg; //launch angle (deg.) uble t, y[20],inputs[agc]; int i,j,k; void unge4(uble x, uble y[], uble step); // Runge-Kutta function if (agc<=3){ cout << "\n\n\nyou need to include command line aguments!!\n" << endl; cout << "\nexample:./a.out <Diam> <V_o> <theta_o_deg>!!\n\n\n" << endl; etun 0; } else{ sscanf(agv[], "%f", &Diam); sscanf(agv[2], "%f", &V_o); sscanf(agv[3], "%f", &theta_o_deg); } float theta_o_ad = theta_o_deg*(pi/80); //launch angle (ad.) c = 0.22*Diam*Diam; m = Dens*(4.0/3.0)*Pi*(Diam/2)*(Diam/2)*(Diam/2); y[0]= R_e+; // initial y[]= V_o*sin(theta_o_ad); // initial _t y[2]= 0.0; // initial phi y[3]= V_o*cos(theta_o_ad)/R_e; // initial phi_t pintf("%lf\t", y[2]); pintf("%lf\t", y[0]); 7

8 pintf("\n"); fo (j=; j*delta_t <= T_MAX ;++j) { t=j*delta_t; unge4(t, y, DELTA_T); // time loop if (y[0]<=r_e)etun 0; // will check if the pojectile has hit the gound pintf("%lf\t", y[2]); pintf("%lf\t", y[0]); pintf("\n"); } etun 0; }//end of main uble f(uble x, uble y[], int i) { uble V_ = y[]; uble V_phi = y[0]*y[3]; if (i==0) etun(y[]); if (i==) etun((y[0]*y[3]*y[3])-(gm/(y[0]*y[0]))-((c/m)*((-(y[0]/r_a))/(-(r_e/r_a))) *(V_*sqt((V_*V_)+(V_phi*V_phi))))); if (i==2) etun(y[3]); if (i==3) etun(((-2*y[]*y[3])/y[0])-((c/(m*y[0]))*((-(y[0]/r_a))/(-(r_e/r_a))) *(V_phi*sqt((V_*V_)+(V_phi*V_phi))))); }//end of f void unge4(uble x, uble y[], uble step) { uble h=step/2.0; // the midpoint uble t[n], t2[n], t3[n]; // tempoay stoage aays uble k[n], k2[n], k3[n],k4[n]; // fo Runge-Kutta int i; fo (i=0;i<n;i++) t[i]=y[i]+0.5*(k[i]=step*f(x, y, i)); fo (i=0;i<n;i++) t2[i]=y[i]+0.5*(k2[i]=step*f(x+h, t, i)); fo (i=0;i<n;i++) t3[i]=y[i]+(k3[i]=step*f(x+h, t2, i)); fo (i=0;i<n;i++) k4[i]=step*f(x+step, t3, i); fo (i=0;i<n;i++) y[i]+=(k[i]+2*k2[i]+2*k3[i]+k4[i])/6.0; etun; }//end of unge4 8

9 7 Appendix B Below is the bash scipt used to un the C++ pogam #!/bin/bash Diam=0.00 V_o=0 while [ "$V_o" -lt 000 ] # Beginning of oute loop theda=0 # Reset theda. while [ "$theda" -lt 9 ] # Beginning of inne loop./theo_poj_.2.out $Diam $V_o $theda > $Diam"_"$V_o"_"$theda.dat let "theda += 5" ne # End of inne loop let "V_o += 0" ne # Incement pass count. # End of oute loop # All ne. Diam=0.0 V_o=0 while [ "$V_o" -lt 000 ] # Beginning of oute loop theda=0 # Reset theda. while [ "$theda" -lt 9 ] # Beginning of inne loop./theo_poj_.2.out $Diam $V_o $theda > $Diam"_"$V_o"_"$theda.dat let "theda += 5" ne # End of inne loop let "V_o += 0" ne # Incement pass count. # End of oute loop # All ne. 9

10 Diam=.0 V_o=0 while [ "$V_o" -lt 000 ] # Beginning of oute loop theda=0 # Reset theda. while [ "$theda" -lt 9 ] # Beginning of inne loop./theo_poj_.2.out $Diam $V_o $theda > $Diam"_"$V_o"_"$theda.dat let "theda += 5" ne # End of inne loop let "V_o += 0" ne # Incement pass count. # End of oute loop # All ne. Diam=0.0 V_o=0 while [ "$V_o" -lt 000 ] # Beginning of oute loop theda=0 # Reset theda. while [ "$theda" -lt 9 ] # Beginning of inne loop./theo_poj_.2.out $Diam $V_o $theda > $Diam"_"$V_o"_"$theda.dat let "theda += 5" ne # End of inne loop let "V_o += 0" ne # Incement pass count. # End of oute loop # All ne. 0

11 8 Appendix C Figue 3: Pojectiles with D 0m, θ 75 o, & vaying initial velocity s. Figue 4: Pojectiles with D m, θ 0 o, & vaying initial velocity s.

12 Figue 5: Pojectiles with D 0 0m, θ 40 o, & vaying initial velocity s. Figue 6: Pojectiles with D 0 00m, θ 75 o, & vaying initial velocity s. 2

13 9 Refeences. Fowles and Cassiday Analytical Mechanics, sixth edition 2. Class notes & hanuts (Tutoial s) D. Anthony A. Tova Easten Oegon Univesity Theoetical Physics Pogamming and Poblem Solving with C++ Nell Dale Chip Weems Mak Headington 3

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Converting knowledge Into Practice

Converting knowledge Into Practice Conveting knowledge Into Pactice Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 2 0 1 0 C o p y i g h t s V l a d i m i R i b a k o v 1 Disclaime and Risk Wanings Tading

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Seshadri constants and surfaces of minimal degree

Seshadri constants and surfaces of minimal degree Seshadi constants and sufaces of minimal degee Wioletta Syzdek and Tomasz Szembeg Septembe 29, 2007 Abstact In [] we showed that if the multiple point Seshadi constants of an ample line bundle on a smooth

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

SELF-INDUCTANCE AND INDUCTORS

SELF-INDUCTANCE AND INDUCTORS MISN-0-144 SELF-INDUCTANCE AND INDUCTORS SELF-INDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. Self-Inductance L.........................................

More information

Supplementary Material for EpiDiff

Supplementary Material for EpiDiff Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

An Epidemic Model of Mobile Phone Virus

An Epidemic Model of Mobile Phone Virus An Epidemic Model of Mobile Phone Vius Hui Zheng, Dong Li, Zhuo Gao 3 Netwok Reseach Cente, Tsinghua Univesity, P. R. China zh@tsinghua.edu.cn School of Compute Science and Technology, Huazhong Univesity

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Chapte 3 Is Gavitation A Results Of Asymmetic Coulomb Chage Inteactions? Jounal of Undegaduate Reseach èjurè Univesity of Utah è1992è, Vol. 3, No. 1, pp. 56í61. Jeæey F. Gold Depatment of Physics, Depatment

More information

Magnetic Bearing with Radial Magnetized Permanent Magnets

Magnetic Bearing with Radial Magnetized Permanent Magnets Wold Applied Sciences Jounal 23 (4): 495-499, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.04.23080 Magnetic eaing with Radial Magnetized Pemanent Magnets Vyacheslav Evgenevich

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

Channel selection in e-commerce age: A strategic analysis of co-op advertising models

Channel selection in e-commerce age: A strategic analysis of co-op advertising models Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

Manual ultrasonic inspection of thin metal welds

Manual ultrasonic inspection of thin metal welds Manual ultasonic inspection of thin metal welds Capucine Capentie and John Rudlin TWI Cambidge CB1 6AL, UK Telephone 01223 899000 Fax 01223 890689 E-mail capucine.capentie@twi.co.uk Abstact BS EN ISO 17640

More information

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer CRRC- Method #: Standad Pactice fo Measuing Sola Reflectance of a Flat, Opaque, and Heteogeneous Suface Using a Potable Sola Reflectomete Scope This standad pactice coves a technique fo estimating the

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation Risk Sensitive Potfolio Management With Cox-Ingesoll-Ross Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

The Effect of Modified Gravity on Solar System Scales

The Effect of Modified Gravity on Solar System Scales The Effect of Modified Gavity on Sola System Scales Dane Pittock Physics Depatment Case Westen Reseve Univesity Cleveland, Ohio 44106 USA May 3, 013 Abstact Duing my senio poject, I have exploed the effects

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential Excitation enegies fo molecules by Time-Dependent Density-Functional Theoy based on Effective Exact Exchange Kohn-Sham potential Fabio Della Sala National Nanotechnology Laboatoies Lecce Italy A. Göling

More information

Nontrivial lower bounds for the least common multiple of some finite sequences of integers

Nontrivial lower bounds for the least common multiple of some finite sequences of integers J. Numbe Theoy, 15 (007), p. 393-411. Nontivial lowe bounds fo the least common multiple of some finite sequences of integes Bai FARHI bai.fahi@gmail.com Abstact We pesent hee a method which allows to

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Classical Mechanics (CM):

Classical Mechanics (CM): Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much

More information

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC

More information

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, two-body obits, thee-body obits, petubations, tides, non-gavitational foces,

More information

A Web Application for Geothermal Borefield Design

A Web Application for Geothermal Borefield Design Poceedings Wold Geothemal Congess 205 Melboune, Austalia, 9-25 Apil 205 A Web Application fo Geothemal Boefield Design Davide Rolando,2, José Acuna and Maco Fossa 2 KT Royal Institute of Technology, Binellvägen

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

Newton s Law of Universal Gravitation and the Scale Principle

Newton s Law of Universal Gravitation and the Scale Principle Newton s Law of Univesal avitation and the ale iniple RODOLO A. RINO July 0 Eletonis Enginee Degee fo the National Univesity of Ma del lata - Agentina (odolfo_fino@yahoo.o.a) Ealie this yea I wote a pape

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE

INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE 1 INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE ANATOLIY A. YEVTUSHENKO 1, ALEXEY N. KOCHEVSKY 1, NATALYA A. FEDOTOVA 1, ALEXANDER Y. SCHELYAEV 2, VLADIMIR N. KONSHIN 2 1 Depatment of

More information

Basic Financial Mathematics

Basic Financial Mathematics Financial Engineeing and Computations Basic Financial Mathematics Dai, Tian-Shy Outline Time Value of Money Annuities Amotization Yields Bonds Time Value of Money PV + n = FV (1 + FV: futue value = PV

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers Concept and Expeiences on using a Wiki-based System fo Softwae-elated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wth-aachen.de,

More information

Statistics and Data Analysis

Statistics and Data Analysis Pape 274-25 An Extension to SAS/OR fo Decision System Suppot Ali Emouznead Highe Education Funding Council fo England, Nothavon house, Coldhabou Lane, Bistol, BS16 1QD U.K. ABSTRACT This pape exploes the

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information