Computational Thinking and Simulation in Teaching Science and Mathematics
|
|
|
- Kimberly Heath
- 9 years ago
- Views:
Transcription
1 Computational Thinking and Simulation in Teaching Science and Mathematics Hasan Shodiev Abstract Characteristics of scientific phenomenon are commonly investigated using mathematical tools in science and engineering to develop our conceptual understanding. However, computational thinking and modelling with simulations can result in a more advanced understanding of scientific concepts and offer an effective learning experience for students with various backgrounds. In this work, we show how a simulation tool, Scratch, can be used to unfold the abstract side of science through project based visualizations in fun and engaging ways. It can be an effective approach in attracting young talented students to science and technology by motivating their natural imagination to probe scientific abstraction. 1 Introdction The educational system is lacking in progress in implementing the computational approach to understanding nature and technology. However, the science community has developed a novel method of solving problems by simulating various phenomena in many science and engineering disciplines. This offers us new answers to scientific questions that are different from theory and experimentation. Computational thinking (CT) in addition to critical thinking is very important when utilizing the computational approach. This can be illustrated in Figure 1. where the diagram shows a CT path parallel to critical thinking as an integral part of obtaining solutions. Computational thinking emerged as a new paradigm alongside mathematical, physical, musical and other types of thinking after the availability of computers. CT in problem solving was first introduced by Dr. Seymour Papert [5]. In 1971, Dr. Papert, showed the use of computational thinking in performing non computational Hasan Shodiev Wilfrid Laurier University, 78 University Ave., Waterloo, ON, N2L 3C5 [email protected] 1
2 2 Hasan Shodiev Fig. 1 2-D Problem solving model activities. In his work, he forged ideas that are at least as explicative as the Euclidlike constructions and turtle geometry but more accessible and more powerful [6]. He defined CT as a problem solving method that uses computer science techniques and concepts. Jeanette Wing [8] recently started reviving CT and emphasizing its role across all disciplines. She argued that computational thinking is a fundamental skill for everyone, not just for computer science majoring students. She initiated a profound engagement with the core questions of what computer science is and what it might contribute to solving problems across the spectrum of human inquiry. We argue that advances in educational technologies allow us to bring computational thinking and effectively use it in secondary and postsecondary school levels. We intend to help bridge the gap between the K-12, non-computer science disciplines and the computer science education communities by investigation of relevant age appropriate resources for science, music [7], art [2] and video games [3]. In this work we propose embedding computational thinking concepts with a universal tool called Scratch [1]. A key component to employing CT with Scratch is the possibility to visualize the phenomena which allows enhanced understanding of the concept. There is no clear evidence of using Scratch by young women. The US National Center for Women and Information Technology (NCWIT) in a case study about Scratch, calls Scratch a promising practice for increasing gender diversity in information technology [4]. Programs in Scratch can be created by simply snapping together graphical blocks, much like LEGO bricks or puzzle pieces (see Figure 2). Fig. 2 Scratch graphical blocks There is less focus on syntax, so one is not required to add semi-colons or square brackets. The blocks are designed to fit together only in ways that make sense, so there are no syntax errors as in traditional programming languages. In this study we show an example of how Scratch can be used to simulate projectile motion in physics. A projectile is any object projected into space by the exertion of a force, i.e. a thrown basketball. In addition to projectile motion, we can simulate other physical
3 Computational Thinking and Simulation in Teaching Science and Mathematics 3 phenomena in our immediate surroundings such as the motion of colliding spheres, conservation of momentum and others. Depending on the level of mathematics obtained in secondary school, we can create the simulation with and without algebraic tools. This simulation allows students not only to improve their CT through tinkering but also to focus on physics concepts themselves. Asking students to explain the concept can be preceded by asking them to simulate the projectile motion. 2 Method Simulation without complex algebra allows us to focus on results - visualization of physical phenomena such as projectile motion. Students can play with scratch code by tinkering to get parabolic trajectory. This can be done by either changing the angle to the horizontal or the vertical distance. 2.1 Changing the angle of launching Suppose the projectile is launched in a direction defined by an initial angle with respect to the horizontal shown in Figure 3a. This angle can be decreased by a certain amount after each iteration to reach a peak and then ultimately return to the initial y-position. In the example in Figure 3b, the angle is decreased by 1 degrees after every 10 steps. Simulations for three different launch angles are shown in Figure 3. (a) (b) Fig. 3 Vertical distance change due to change of the launch angle. Vertical distance change due to change of the launch angle is Y n+1 = Y o Y θ (1)
4 4 Hasan Shodiev so distance Y changes incrementally as the angle changes incrementally. The steps are made up of both horizontal and vertical components such that the projectile rise reaches a peak and falls with a trajectory that is symmetrical to the path towards the peak. Calculating the time of flight, the horizontal range, and the height of the projectile can be avoided at this level. 2.2 Changing the vertical displacement We can also visualize the trajectory by changing the vertical displacement each iteration until it reaches the initial y-position as shown in Figure 4a. (a) (b) Fig. 4 Vertical distance change due to change of the vertical displacement. In Figure 4b, the vertical displacement of each iteration, which is made up of 10 steps, is decreased by 1 units. To utilize the entire screen of the scratch interface we set the initial x position to -240 and y position to -166 as (0,0). The iteration stops once a condition of reaching the y position of -166 once again is met. 2.3 Mathematical modelling with algebra At a higher level of mathematics, algebra can be applied to describe the behavior of a projectile. This can be done in terms of its kinematics motion without dealing with force or energy as a function of time. We assume that the initial and final y- positions of the projectile are the same. We will use the simplest example of a ball launched upwards into the air at an initial angle with respect to the horizontal and velocity. In this case we can calculate: 1. Vertical displacement of the projectile at its peak. 2. Horizontal displacement of the projectile. 3. The launch angle that will result in the largest travel distance. We can then use these scalars and determine the
5 Computational Thinking and Simulation in Teaching Science and Mathematics 5 speed and acceleration of the projectile. Visualization of projectile motion helps understanding the dynamics of the motion. Once we visualize the motion, it becomes much easier to answer above questions and calculate them. This visualization using Scratch leads us to understanding the concept of projectile motion in 2D. As a result the following benefits can be gained: 1. Advanced understanding of the concept 2. Advanced problem solving skills. In this simulation, DX and DY changes along the X and Y axis respectively. So using mathematics we can determine these vertical and horizontal changes at different points in time. DY = V xt (2) DY = V yt gt2 (3) where Vx and Vy are x and y components of velocity respectively. As shown, the horizontal component of velocity is constant and vertical component of velocity is varying with time. The initial velocities can be calculated by multiplying the initial velocity by the cosine or sine of the launch angle V x = V cosθ (4) V y = V sinθ (5) It is known that the projectile reaches the highest point when the Vy component of velocity is 0 m/s. The total time of travel is two times the time it takes to reach the peak vertical point. We can also determine the height H from (4) and maximum horizontal distance travelled R from equation (5). Scratch code for this example is shown in Figure 5. R = V 2 sin2θ (6) g (a) (b) Fig. 5 Vertical distance change due to change of the vertical displacement.
6 6 Hasan Shodiev 3 Conclusion Understanding basic Scratch commands and control tools can help implement more trajectories and generative algorithms by creating and manipulating sequences of graphical commands. Using real life science phenomena as an example, we can create innovative and interactive visualizations to tap into the imagination of students who might never have considered science as fun and playful. Students from various backgrounds tend to be intimidated by the terminology used in science. However, with more exposure to interesting projects, students can start thinking computationally and actively. Computational thinking with a hands-on scratch graphical approach gives them necessary confidence. References 1. Scratch graphyical platform Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada, James Paul Gee. What Video Games Have to Teach Us About Learning and Literacy. Second Edition: Revised and Updated Edition. Palgrave Macmillan, NCWIT. What makes scratch so accessible to novices?, National Center for Women & Information Technology PROMISING PRACTICES. 5. Seymour Papert. An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning, 1(1):95 123, Seymour Papert and Cynthia Solomon. Twenty things to do with a computer MIT AI Lab memo Alex Ruthmann, Jesse M Heines, Gena R Greher, Paul Laidler, and Charles Saulters II. Teaching computational thinking through musical live coding in scratch. In Proceedings of the 41st ACM technical symposium on Computer science education, pages ACM, Jeannette M Wing. Computational thinking. Communications of the ACM, 49(3):33 35, 2006.
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
SCRATCH Lesson Plan What is SCRATCH? Why SCRATCH?
SCRATCH Lesson Plan What is SCRATCH? SCRATCH is a programming language that makes it easy to create interactive stories, animations, games, music, and art that can then easily be shared on the web. Scratch
3. KINEMATICS IN TWO DIMENSIONS; VECTORS.
3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Chapter 10: Linear Kinematics of Human Movement
Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship
Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008
Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
In order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.
The Bullet-Block Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
Freely Falling Objects
Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding
Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1
Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
Vector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
CS100B Fall 1999. Professor David I. Schwartz. Programming Assignment 5. Due: Thursday, November 18 1999
CS100B Fall 1999 Professor David I. Schwartz Programming Assignment 5 Due: Thursday, November 18 1999 1. Goals This assignment will help you develop skills in software development. You will: develop software
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
MS Excel as Tool for Modeling, Dynamic Simulation and Visualization ofmechanical Motion
MS Excel as Tool for Modeling, Dynamic Simulation and Visualization ofmechanical Motion MARIE HUBALOVSKA, STEPAN HUBALOVSKY, MARCELA FRYBOVA Department of Informatics Faculty of Science University of Hradec
Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.
1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.
ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated
Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
Football Learning Guide for Parents and Educators. Overview
Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football
Chapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
Keywords - animation, e-learning, high school, physics lesson
Simplify Understanding Physics Lessons for High School with Animation by E-Learning FX Hendra Prasetya Faculty of Computer Science, Soegijapranata Catholic University (SCU) Semarang, Indonesia [email protected]
Web review - Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.
North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and
Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)
1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector
Barbie Bungee Jump. High School Physics
Barbie Bungee Jump High School Physics Kris Bertelsen Augusta Middle/High School Concept: The change in energy storage systems during a bungee jump activity demonstrates how energy can be transferred from
Introduction to Netlogo: A Newton s Law of Gravity Simulation
Introduction to Netlogo: A Newton s Law of Gravity Simulation Purpose Netlogo is an agent-based programming language that provides an all-inclusive platform for writing code, having graphics, and leaving
An Introduction to Applied Mathematics: An Iterative Process
An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling
Lab 2: Vector Analysis
Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments
WEIGHTLESS WONDER Reduced Gravity Flight
WEIGHTLESS WONDER Reduced Gravity Flight Instructional Objectives Students will use trigonometric ratios to find vertical and horizontal components of a velocity vector; derive a formula describing height
One- and Two-dimensional Motion
PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile
Difference between a vector and a scalar quantity. N or 90 o. S or 270 o
Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
All About Motion - Displacement, Velocity and Acceleration
All About Motion - Displacement, Velocity and Acceleration Program Synopsis 2008 20 minutes Teacher Notes: Ian Walter Dip App Chem; GDipEd Admin; TTTC This program explores vector and scalar quantities
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
ChE-1800 H-2: Flowchart Diagrams (last updated January 13, 2013)
ChE-1800 H-2: Flowchart Diagrams (last updated January 13, 2013) This handout contains important information for the development of flowchart diagrams Common Symbols for Algorithms The first step before
Turtle, Art, TurtleArt
Turtle, Art, TurtleArt Paula Bontá, [email protected] Playful Invention Company. Montreal, Quebec, Canada Artemis Papert, [email protected] Independent artist. Aberdeen, Scotland Brian Silverman,
Interactive Animation: A new approach to simulate parametric studies
Interactive Animation: A new approach to simulate parametric studies Darwin Sebayang and Ignatius Agung Wibowo Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO) Abstract Animation is the one of novel
Acceleration Due to Gravity
Acceleration Due to Gravity Subject Area(s) Associated Unit Associated Lesson Activity Title Header Physics, Math Measuring g Insert Image 1 here, right justified Image 1 ADA Description: Students measuring
2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in
2-1 Position, Displacement, and Distance
2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
PHYSICS 151 Notes for Online Lecture #6
PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
CURRICULUM FOR THE COMMON CORE SUBJECT OF MATHEMATICS
CURRICULUM FOR THE COMMON CORE SUBJECT OF Dette er ei omsetjing av den fastsette læreplanteksten. Læreplanen er fastsett på Nynorsk Established as a Regulation by the Ministry of Education and Research
AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.
1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies
Scratch: Open source software for programming, creativity and collaboration
Scratch: Open source software for programming, creativity and collaboration Ivete Leite de Oliveira Table of Content Introduction... 3 Open Source Software... 3 Open source software for creativity......3
Vector Spaces; the Space R n
Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which
Exploring Physics and Technology: A Study in Teaching Kinematics to Student-Athletes. Loraine Snead Science Department Chair
Exploring Physics and Technology: A Study in Teaching Kinematics to Student-Athletes Loraine Snead Science Department Chair Exploring Physics and Technology: A Study in Teaching Kinematics to Student-
CONNECTING LESSONS NGSS STANDARD
CONNECTING LESSONS TO NGSS STANDARDS 1 This chart provides an overview of the NGSS Standards that can be met by, or extended to meet, specific STEAM Student Set challenges. Information on how to fulfill
Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Science, Technology, Engineering & Mathematics Career Cluster
Science, Technology, Engineering & Mathematics Career Cluster 1. Apply engineering skills in a project that requires project management, process control and quality assurance. ST 1.1: Apply the skills
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
Work-Energy Bar Charts
Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
Physics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
Numeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Problem of the Month: Fair Games
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
Problem Set V Solutions
Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3
ACTIVITY 6: Falling Objects
UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.
Physics of Sports CTY Course Syllabus
Physics of Sports CTY Course Syllabus Texts: 1. Gold Medal Physics: The Science of Sports, by Arthur John Eric Goff 2. Active Physics: An Inquiry Approach to Physics, by Arthur Eisenkraft Course Schedule:
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Physics Lab Report Guidelines
Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed
Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron.
Physics 241 Lab: Cathode Ray Tube http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html NAME: Section 1: 1.1. A cathode ray tube works by boiling electrons off a cathode heating element
Mother s Day, Warrior Cats, and Digital Fluency: Stories from the Scratch Online Community
Mother s Day, Warrior Cats, and Digital Fluency: Stories from the Scratch Online Community Mitchel Resnick, [email protected] MIT Media Lab Abstract In many parts of the world today, young people grow
Functions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions
Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Performance. 13. Climbing Flight
Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:
HSC Mathematics - Extension 1. Workshop E4
HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
Calculate Gravitational Acceleration
Calculate Gravitational Acceleration Subject Areas Associated Unit Associated Lesson Activity Title Header Algebra, measurement, physics, science and technology Calculate Gravitational Acceleration Insert
Educational Innovations
Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.
To answer the secondary question, if hands-on activities would increase student interest and comprehension, several hands-on activities were used:
1 The Effect of an Overarching Topic on Student Performance in Algebra II Christine Consoletti and David Collins J.E.B. Stuart High School Fairfax County (VA) Public Schools June 2003 Question Does an
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Exam 1 Review Questions PHY 2425 - Exam 1
Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
2 Session Two - Complex Numbers and Vectors
PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar
1. Watch or research. Choose option a, b, or c and complete all the requirements: a. Watch 3 episodes/hours of NOVA, NASA, or other media productions
1. Watch or research. Choose option a, b, or c and complete all the requirements: a. Watch 3 episodes/hours of NOVA, NASA, or other media productions (examples include Discovery Channel, Science Channel,
TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13
